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Abstract14

We present a new computational fluid dynamics approach to simulating two-phase flow15

in hybrid systems containing solid-free regions and deformable porous matrices. Our16

approach is based on the derivation of a unique set of volume-averaged partial differen-17

tial equations that asymptotically approach the Navier-Stokes Volume-of-Fluid equations18

in solid-free-regions and multiphase Biot Theory in porous regions. The resulting equa-19

tions extend our recently developed Darcy-Brinkman-Biot framework to multiphase flow.20

Through careful consideration of interfacial dynamics (relative permeability and capillary21

effects) and extensive benchmarking, we show that the resulting model accurately cap-22

tures the strong two-way coupling that is often exhibited between multiple fluids and de-23

formable porous media. Thus, it can be used to represent flow-induced material deforma-24

tion (swelling, compression) and failure (cracking, fracturing). The model’s open-source25

numerical implementation, hybridBiotInterFoam, effectively marks the extension of com-26

putational fluid mechanics into modeling multiscale multiphase flow in deformable porous27

systems. The versatility of the solver is illustrated through applications related to mate-28

rial failure in poroelastic coastal barriers and surface deformation due to fluid injection in29

poroplastic systems.30

Plain Language Summary31

Knowledge of how fluids flow through porous materials has significant implications32

for the design and operation of batteries, manufacturing plants, oil rigs, and biomedical33

devices. Even though scientists have been successful in creating computer models that34

capture fluid flow through rigid porous media, it has been very challenging to create mod-35

els that can model flow through deformable porous media. In this paper, we describe a36

new model that can predict flow of immiscible fluids (say water and air, or oil and water)37

through and around deformable porous media. We derived this model by putting together38

separate conventional fluid-flow and solid-deformation models into a single simulation39

framework through a technique called volume averaging. The resulting model can capture40

complex multiscale, multiphysics phenomena such as hydraulic fracturing in the subsur-41

face and its results on surface deformation and subsidence. Given the model’s generality,42

successful verification, and open-source implementation, we are confident that this com-43

putational model can be used to study important phenomena in the fields of water and44

energy resources.45

1 Introduction46

Multiphase flow in deformable porous media is a ubiquitous phenomenon with im-47

portant implications in many energy and environmental technologies including geologic48

CO2 sequestration, soil bioremediation, water treatment, enhanced biochemical produc-49

tion, nuclear waste disposal, and battery technology (Bächer & Gekle, 2019; Bock et al.,50

2010; Cunningham et al., 2003; Räss et al., 2018; Towner, 1987). It also underlies iconic51

geophysical features at many scales, from coastal, riparian, and volcanic landforms to frac-52

tures in subsurface reservoirs, cracks in clay soils, and bubbles in soft sediments. An im-53

portant and largely unresolved challenge in the areas outlined above is the difficulty of54

describing the inherently multiscale and multiphysics nature of situations where a mixture55

of several fluids interacts with a deformable porous material. For example, when modeling56

flow through biofilms or membranes it is imperative to understand how fluid flow behaves57

inside the microporous medium (in pores with length scales of ∼ 10−6 m) while simulta-58

neously understanding how the deformation of this medium affects the overall flow field59

(often controlled by much larger flow paths with length scales on the order of ∼ 10−2 m)60

(Bottero et al., 2010). Similarly, the propagation of flow-driven fractures in porous mate-61

rials and the propagation of waves in coastal barriers involve feedbacks between flow and62

mechanics in systems with characteristics pore widths that differ by three or more orders63
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of magnitude. In the present study, we develop a framework capable of representing mul-64

tiphase flow and solid mechanics in systems with two characteristic pore length scales, as65

required to simulate many of the aforementioned phenomena.66

The starting point for our study is based on the present ample understanding of67

multiphase flow dynamics within and around static porous materials, from viscous and68

capillary fingering (Ferer et al., 2004; Lenormand & Zarcone, 1989; Lenormand et al.,69

1988) to temperature and surface tension driven flows (Shih & Megaridis, 1996), all the70

way to turbulent multiphase flows (Colombo & Fairweather, 2015; Soulaine & Quintard,71

2014). This knowledge, in conjunction with numerical techniques such as the Lattice72

Boltzmann Method, the Finite Volume Method, Homogenization Theory, and Averag-73

ing Theory, forms the basis of fast and accurate models that are routinely applied to help74

design and improve hydrocarbon production (Burrus et al., 1991; Mehmani & Tchelepi,75

2019), CO2 sequestration (Hassan & Jiang, 2012), and even nuclear reactors (Tentner et76

al., 2008). However, the study of multiphase flow across different scales remains limited77

as shown by the absence of well-established approaches to describe how bubbles or waves78

propagate into an unsaturated porous medium or how a multiphase fluid mixture is pushed79

out of a porous medium into open space. Understanding such processes would have a di-80

rect and immediate impact in the design of batteries, natural gas extraction from shales,81

biochemical gas production, fracturing systems, and coastal barriers.82

A similar situation pertains with regard to the coupling between fluid flow and solid83

mechanics. Theoretical and numerical approaches based on Biot’s Theory of poroelastic-84

ity (Biot, 1941), Terzaghi’s effective stress principle (Terzaghi, 1943), and Mixture Theory85

(Siddique et al., 2017) have been successful at modeling systems with flow in deformable86

porous media including arteries, biofilms, boreholes, hydrocarbon reservoirs, seismic sys-87

tems, membranes, soils, swelling clays, and fractures (Auton & MacMinn, 2017; Barry et88

al., 1997; Jha & Juanes, 2014; Lo et al., 2005, 2002; MacMinn et al., 2016; Mathias et89

al., 2017; Santillán et al., 2017). However, as mentioned above, we still have very little90

understanding of how flow-induced deformation of these solid materials affects the macro-91

scopic flow around them (and thus their boundary conditions) or how fluid-fluid interfaces92

behave when pushed against a soft porous medium and vice-versa.93

Three major approaches have been proposed to resolve the challenge posed by fluid94

flow in porous media containing both solid-free regions and microporous domains (here-95

after referred to as multiscale systems). The most straightforward of these involves per-96

forming direct numerical simulations (DNS) throughout the entire multiscale domain, both97

within and outside the porous medium (Breugem & Boersma, 2005; Hahn et al., 2002;98

Krafczyk et al., 2015). Although rigorous, this technique is impractical in situations with99

a large difference in length scales between the largest and smallest pores, where it requires100

exceedingly fine grids and tremendous computational resources.101

To save time and resources, other studies have relied on hybrid DNS-Darcy ap-102

proaches, where fluid and solid mechanics within a porous medium are modeled as av-103

eraged quantities through Darcy’s law, pore-network models, or Biot’s theory of poroe-104

lasticity (Weishaupt et al., 2019; Ehrhardt, 2010). One such approach relies on the use105

of the Beavers-Joseph (BJ) boundary condition to couple fluid flow in solid-free domains106

(simulated using the Navier-Stokes Equations) and in microporous domains (simulated us-107

ing Darcy’s law) for single phase flow and static porous media (Beavers & Joseph, 1967;108

Fetzer et al., 2016). Recent studies have extended this BJ approach to allow multiphase109

flow in the solid-free domain (Baber et al., 2016) or to include the effects of poroelastic-110

ity within the porous medium (Lacis et al., 2017; Zampogna et al., 2019). However, to111

the best of our knowledge, no BJ based technique has yet been developed to couple solid112

mechanics with multiphase flow simultaneously within the solid-free and porous domains.113

The Darcy-Brinkman (DB) approach presents a well-known alternative to the BJ114

interface matching technique. The crux of the DB approach is the use of a spatially de-115
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pendent penalization term within the Navier-Stokes fluid momentum equation. This term116

effectively creates an equation that approximates Navier-Stokes within solid-free domains117

and Darcy’s law within microporous domains. Although initially implemented as an em-118

pirical approach (Brinkman, 1947), this technique has since been formalized and rigor-119

ously derived from first principles through volume averaging theory (Soulaine et al., 2016;120

Whitaker, 2013). The resulting so-called “micro-continuum” approach has been exten-121

sively used to solve single phase flow through static multiscale porous media, such as flow122

in biofilms (Kapellos et al., 2007) and in rocks containing unresolved porosity (Guo et123

al., 2018; Kang et al., 2019; Singh, 2019). The approach has proved highly flexible as il-124

lustrated by its uses to represent embedded solid boundaries in low permeability media125

(Khadra et al., 2000) and the evolution of solid grain morphologies caused by mineral dis-126

solution (Soulaine et al., 2017, 2019).127

Recently, a study by Carrillo and Bourg (2019) introduced a Darcy-Brinkman-Biot128

(DBB) approach capable of accurately representing single phase flow in multiscale de-129

formable media including elastic porous membranes and plastic swelling clays. Simultane-130

ously, studies by Soulaine et al. (2019) and Carrillo et al. (2020) extensively benchmarked131

and released an open source extension of the micro-continuum framework for multiphase132

flow in static multiscale porous media. This allowed accurate modeling of complex sys-133

tems such as multiphase flow in a fractured microporous medium, methane extraction134

from tight porous media, and wave absorption in coastal barriers. In the present paper,135

we build upon these previous studies to create the first model representing coupled fluid136

and solid mechanics during multiphase flow in multiscale deformable porous media: the137

multiphase Darcy-Brinkman-Biot model (Figure 1).138

Figure 1. Conceptual representation of the multiphase Darcy-Brinkman-Biot model. The insert represents
an exemplary Representative Elementary Volume (REV) within the microporous domain and q 5 is the poros-
ity. The model considers wetting properties, interface mechanics, and irreducible saturations when averaging
over the REV. Note that the stated relation between the averaging volume’s length scale !+ and the porous
length scale !% is required for the creation of a REV, and thus, for the application of this model.

–4–



manuscript submitted to Water Resources Research

This paper is organized as follows. Section 2 introduces the concept of volume aver-139

aging and describes the derivation of the governing equations for coupled fluid and solid140

mechanics. Section 3 explains the numerical implementation and algorithm development141

for the coupled mass and momentum equations and introduces the resulting open-source142

solver “hybridBiotInterFoam”. Section 4 presents five test cases that verify the implemen-143

tation of different coupling terms within the model, with an emphasis on fracturing me-144

chanics. Section 5 then presents two alternative applications that illustrate the versatility145

of the model, namely wave absorption in poroelastic coastal barriers and surface deforma-146

tion due to fluid injection in poroplastic geologic formations. Lastly, Section 6 concludes147

with a summary of the paper and a discussion on future work.148

2 Model Derivation149

2.1 Volume Averaging150

In this section we introduce the concept of volume averaging. This technique forms151

the basis of the micro-continuum equations, as it allows the classical mass and momen-152

tum conservation equations to account for the coexistence of solid (s), wetting fluid (w),153

and non-wetting fluid (n) within a given control volume. It is well suited for use in con-154

junction with the Finite Volume Method (FVM) (Patankar, 1980), as the numerical grid155

elements used in the FVM provide an intuitive and straightforward numerical interpreta-156

tion of what we will define as the averaging volume (+). In keeping with standard volume157

averaging theory, we start by defining the volume averaging operator158

V8 =
1
+

∫
+8

V83+ (1)

where V8 is a function defined in each phase’s respective volume +8 (8 = F, =, B) . We also159

define the phase averaging operator160

V
8

8 =
1
+8

∫
+8

V83+ (2)

The volume and phase averaged variables associated with the fluids are intrinsically161

related by the porosity (q 5 = (+F + +=)/+) and saturation fields (U8 = +8/(+F + +=)),162

such that V8 = q 5 U8V
8

8 (8 = F, =). For solid variables, the analogous relation involves only163

the solid fraction qB , such that VB = qBV
B

B . Note that q 5 + qB = 1 and UF + U= = 1;164

thus, knowledge of one of the q8 or U8 variables implies knowledge of the other. Volume165

averaging then allows for the definition of several regions within a multiscale, multiphase166

system such as that represented in Figure 1:167

q 5 =

{
1, in solid-free regions
]0; 1[ , in porous regions

(3)

UF =


0, in regions saturated with non wetting fluid
]0; 1[ , in unsaturated regions
1, in regions saturated with wetting fluid

(4)

The application of an averaging transformation to fluid and solid conservation equa-168

tions will result in variables and equations that are weighted differently in each region.169

However, the averaging of differential equations is not straightforward, which is why we170

introduce the following spatial averaging theorems for volumes containing three distinct171
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phases (Howes & Whitaker, 1985; S. Whitaker, 1999)172

mV8

mC
=

mV8

mC
− 1
+

∫
�8, 9

V8v8, 9 · n8, 9 3� −
1
+

∫
�8,:

V8v8,: · n8,: 3� (5)

∇V8 = ∇V8 +
1
+

∫
�8, 9

V8n8, 93� +
1
+

∫
�8,:

V8n8,:3� (6)

∇ · #8 = ∇ · #8 +
1
+

∫
�8, 9

#8 · n8, 93� +
1
+

∫
�8,:

#8 · n8,:3� (7)

where �G,H represents the interfacial area between phase G and H, nG,H is a vector nor-173

mal to the interface and oriented toward phase H, and vG,H is the velocity of the interface.174

These surface integrals are crucial components of the following derivations as they convert175

the boundary conditions at the fluid-fluid and fluid-solid interfaces into body forces within176

the averaged partial differential equations.177

2.2 Derivation of the Fluid Mechanics Equations178

We begin the derivation by stating the micro-continuum equations for two immis-179

cible incompressible fluids, which arise from applying the volume averaging operators to180

the classical Navier-Stokes mass and momentum conservation equations (Carrillo et al.,181

2020). This equation set can also be thought of as a modified and expanded version of the182

popular Volume-of-Fluid equations (Hirt & Nichols, 1981).183

mq 5

mC
+ ∇ ·[ 5 = 0 (8)

mq 5 UF

mC
+ ∇ ·

(
UF[ 5

)
+ ∇ ·

(
q 5 UFU=[A

)
= 0 (9)

md 5 [ 5

mC
+ ∇ ·

(
d 5

q 5
[ 5 [ 5

)
= − q 5 ∇? + q 5 d 5 g + ∇ · Y

+ JF,B + J=,B + JB,F + JB,= + JF,= + J=,F
(10)

where Y = ` 5 (∇[ 5 + (∇[ 5 )) ) is the averaged single-field viscous stress tensor, g is184

gravity, ` 5 is the arithmetic average of each fluid’s viscosity ` 5 = UF `F + U=`=, and185

d 5 is the arithmetic average of each fluid’s density d 5 = UF dF + U=d=. The single-186

field expressions for velocity [ 5 , pressure ?, and relative velocity [A are defined as the187

weighted averages of their respective phase averaged variables.188

[ 5 = q 5

[
UF[

F

F + U=[
=

=

]
(11)

? = UF ?
F
F + U=?== (12)

[A = [
F

F −[
=

= (13)
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We note that the single-phase velocity as defined above is equal to the sum of the189

Darcy filtration velocities: [ 5 = [F +[=. Finally, the J8,: =
1
+

∫
�8,:

n8,: · (−O?8 + Y8) 3�190

values represent the momentum exchange from phase 8 to phase : (8, : = F, =, B). As de-191

scribed in Carrillo and Bourg (2019) and Carrillo et al. (2020), these terms can be recast192

into the following expression through asymptotic matching to the multiphase Darcy equa-193

tions:194

md 5 [ 5

mC
+ ∇ ·

(
d 5

q 5
[ 5 [ 5

)
= − q 5 ∇? + q 5 d 5 g + ∇ · Y

− q 5 `:−1
(
[ 5 −[B

)
+ q 5 L2,1 + q 5 L2,2

(14)

where `:−1 is the drag coefficient (a function of the fluid viscosities and permeability :),195

[B is the averaged solid velocity, q 5 `:−1 ([ 5 −[B) is a solid-fluid momentum exchange196

term that accounts for a moving porous medium in an Eulerian frame of reference, and197

L2,8 represents the forces emanating from fluid-fluid and fluid-solid capillary interactions.198

As shown in Carrillo et al. (2020),199

L2,1 =

{
− W

q 5
∇ ·

(
nF,=

)
∇UF in solid-free regions

−?2∇UF in porous regions
(15)

L2,2 =

{
0 in solid-free regions
"−1 ("FU= − "=UF ) (∇?2 + (dF − d=) g) in porous regions

(16)

where, ?2 is the average capillary pressure within a given averaging volume, W is the200

fluid-fluid interfacial tension, "8 is the mobility of each fluid, and " = "F + "= is the201

single-field mobility. Lastly, nF,= is the unit normal direction of the fluid-fluid interface202

as calculated by the Continuum Surface Force (CSF) formulation (Brackbill et al., 1992).203

The equations presented above tend towards the standard Navier-Stokes Volume-of-Fluid204

approach in solid-free regions (where the drag term becomes negligible) and towards the205

multiphase Darcy equations in microporous regions (where the viscous stress tensor be-206

comes negligible under the scale-separation assumption) (Whitaker, 1986; Carrillo et al.,207

2020):208

Eqn. 14 ≈

(
[ 5 −[B

)
= − :

`

(
∇? − d 5 g − L2,1 − L2,2

)
in porous regions

md 5 [ 5

mC
+ ∇ ·

(
d 5 [ 5 [ 5

)
= −∇? + ∇ · Y + d 5 g + L2,1 in solid-free regions

(17)

For clarity and conciseness `:−1 will be kept in its current form until the end of the209

derivation, at which point its full analytical form will be presented.210

2.3 Derivation of the Solid Mechanics Equations211

We proceed with the derivation of the micro-continuum solid mechanics equations212

by starting from the equations presented in Carrillo and Bourg (2019) for solid mass and213

momentum conservation in systems with a single solid phase.214

mqB

mC
+ ∇ ·

(
qB[

B

B

)
= 0 (18)
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−∇ · 2 = qB∇ · 3s + qBdBg + HB,F + HB,= (19)

where 2 is the volume averaged solid elastic (or plastic) stress tensor and 3s = V2>= 5 −215

O? − O?BF4;; is the Terzaghi stress tensor (a function of confining pressure V2>= 5 , fluid216

pressure ?, and swelling or disjoining pressure ?BF4;;). Here, the HB,8 =
1
+

∫
�B,8
(3 + 2) · nB,83�217

values represent the momentum exchange between the solid phase B and fluid phase 8218

(8 = F, =). Just as we did for the fluid equations, we will assume that the sum of the av-219

eraged stresses at the solid-fluid interface can be expressed as the sum of two independent220

terms: a drag force that captures shear-induced momentum exchange
(
H3A06

)
and a cap-221

illary force originating from capillary pressure jumps across the integrated solid surfaces222

within the porous media
(
H20?

)
.223

H3A06 + H20? = HB,F + HB,= (20)

We now seek closure of these two coupling terms. By conservation of momentum,224

we know that any drag-induced momentum lost by the fluid must be gained by the solid,225

thus (Carrillo & Bourg, 2019)226

H3A06 = q 5 `:
−1

(
[ 5 −[B

)
(21)

Closure of the capillarity-induced interaction term H20? is obtained by combining227

the solid and fluid momentum equations within the porous medium at low Reynold num-228

bers and low permeability, which yields229

−∇ · 2 = qB∇ · 3s − q 5 ∇? +
(
qBdB + q 5 d 5

)
g + q 5 L2,1 + q 5 L2,2 + H20? (22)

In multiphase porous systems with incompressible grains and no swelling pressure230

(i.e. ∇ · 3s = −∇?), Biot Theory states that ∇ · 2 = ∇? − d∗g + ?2∇UF , where d∗ =231

(qBdB + q 5 d 5 ) and ?2 is the capillary pressure (Jha & Juanes, 2014; Kim et al., 2013).232

This expression is satisfied by the previous equation in the absence of capillary forces,233

where L2,1, L2,2, H20? , and ?2 equal zero (Carrillo & Bourg, 2019). In the presence of234

capillary forces, however, it imposes the following equality235

H20? = −(q 5 L2,1 + q 5 L2,2 + ?2∇UF ) (23)

Given that L2,1 = −?2∇UF in the porous domains (Carrillo et al., 2020), the previ-236

ous equation can be rearranged to obtain237

H20? = qBL2,1 − q 5 L2,2 (24)

Equation 24 gives closure to the last coupling parameter and marks the end of this238

derivation. The result is a solid conservation equation that tends towards Biot Theory in239

porous regions and towards an infinitely deformable solid with no momentum sources in240

solid-free regions.241

2.4 Interfacial Conditions between Solid-Free Regions and Porous Regions242

One of the most important features within the framework presented above is the ex-243

istence of an interface between solid-free and microporous domains. Although the creation244

of a rigorous un-averaged description of this interface is still an open question, we approx-245
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imate a solution to it by guaranteeing its necessary components within our fluid and solid246

averaged equations.247

An accurate description of fluid behavior at the interface requires three compo-248

nents: 1) mass conservation across the interface, 2) continuity of stresses across the inter-249

face, and 3) an interfacial wettability condition. Components 1 and 2 are intrinsically ful-250

filled by our solver due to its single-field formulation for velocity and pressure within the251

fluid conservation equations (Eqns. 8 and 14). As shown in Neale and Nader (1974) and252

Carrillo and Bourg (2019) these two components are necessary and sufficient to model253

single-phase flow within a multiscale system. Furthermore, these conditions have also254

been used for closure when modelling multiphase flow in moving porous media (Lacis255

et al., 2017; Zampogna et al., 2019; Carrillo et al., 2020). The required wettability con-256

dition at the porous interface (Component 3) is included in our model through the imple-257

mentation of a penalized contact angle condition (Eqn. 33) following the steps outlined in258

Horgue et al. (2014) and Carrillo et al. (2020).259

The complementary solid conditions at the porous interface are very similar: 1)260

solid mass conservation across the interface, 2) continuity of fluid-induced stresses across261

the interface, and 3) a discontinuity of solid stresses at the interface. Just as before, the262

first two conditions are intrinsically fulfilled through the use of a single set of mass and263

momentum conservation equations across both domains and have also been used as clo-264

sure conditions in previous studies (Lacis et al., 2017; Zampogna et al., 2019). The third265

condition is enforced by the use of volume-averaged solid rheology models that tend to-266

wards infinitely deformable materials in solid-free regions, as shown in Carrillo and Bourg267

(2019). When volume-averaged, the behavior of the solid’s stress tensor is domain depen-268

dent (i.e. solid fraction dependent). Thus, in solid regions, the elasticity and viscosity of269

the porous medium is determined by standard averaged rheological properties (the elastic270

and viscoplastic moduli). Contrastingly, in solid-free regions, the solid fraction tends to271

zero and, as such, said properties do as well. The result is a stress-free “ghost" solid that272

does not apply resistance to the porous region, creating the required stress discontinuity at273

the porous interface.274

Although necessary, these conditions represent but an approximation to the complete275

description of fluid and solid mechanics at the porous interface. However, to the best of276

our knowledge, there does not exist an alternative set of boundary conditions that can or277

have been used to model multiphase flow in multiscale porous media.278

2.5 Model Summary279

The final set of equations in our proposed multiphase DBB framework now fol-280

lows. The combination of these solid and fluid conservation equations leads to a model281

that tends towards multiphase Navier-Stokes in solid-free regions and towards Biot Theory282

in porous regions, as described in Figure 1.283

mq 5

mC
+ ∇ ·[ 5 = 0 (25)

mq 5 UF

mC
+ ∇ ·

(
UF[ 5

)
+ ∇ ·

(
q 5 UFU=[A

)
= 0 (26)

md 5 [ 5

mC
+ ∇ ·

(
d 5

q 5
[ 5 [ 5

)
= − q 5 ∇? + q 5 d 5 g + ∇ · Y

− q 5 `:−1
(
[ 5 −[B

)
+ q 5 L2,1 + q 5 L2,2

(27)
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mqB

mC
+ ∇ ·

(
qB[

B

B

)
= 0 (28)

−∇ · 2 = qB∇ · 3s + qBdBg + q 5 `:−1
(
[ 5 −[B

)
− q 5 L2,1 + qBL2,2 (29)

All that is left is stating the closed-form expressions of the multiscale parameters284

`:−1, L2,8 , and [A , which are defined differently in each region. A full derivation and285

discussion of these parameters can be found in Carrillo et al. (2020).286

`:−1 =


0 in solid-free regions

:−1
0

(
:A,F
`F
+ :A,=

`=

)−1
in porous regions

(30)

L2,1 =

{
− W

q 5
∇ ·

(
nF,=

)
∇UF in solid-free regions

−?2∇UF in porous regions
(31)

L2,2 =

{
0 in solid-free regions
"−1 ("FU= − "=UF ) (∇?2 + (dF − d=) g) in porous regions

(32)

nF,= =

{
∇UF

|∇UF | in solid-free regions
2>B (\) nF0;; + B8= (\) tF0;; at the interface between solid-free porous regions

(33)

[A =



�U <0G
(��[ 5

��) ∇UF

|∇UF | in solid-free regions

q−1


−

(
"FU

−1
F − "=U−1

=

)
∇?+(

dF"FU
−1
F − dF"=U−1

=

)
g+(

"FU=U
−1
F + "=UFU−1

=

)
∇?2−(

"FU
−1
F − "=U−1
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in porous regions

(34)

where �U is an interface compression parameter (traditionally set to values between 1287

and 4 in the Volume-of-Fluid method), :0 is the absolute permeability, :A ,8 and "8 =288

:0:8,A/`8 are the relative permeability and mobility of each fluid, and " = "F + "=.289

Lastly, \ is the imposed contact angle at the porous wall, and nF0;; and tF0;; are the nor-290

mal and tangential directions relative to said wall, respectively.291

Finally, closure of the system of equations requires appropriate constitutive models292

describing the averaged behavior of the different phases within the porous regions. For the293

purpose of validating our multiphase DBB approach, in the present paper we use the fol-294

lowing well established constitutive models: absolute permeability is modeled as isotropic295

and porosity-dependent through the well-known Kozeny-Carman relation (:0 = :0
0

q3
5

(1−q 5 )2
);296

relative permeabilities and average capillary pressures within the porous domains are rep-297

resented using the Van Genutchen (van Genuchten, 1980) and Brooks-Corey (Brooks &298

Corey, 1964) models (Appendix A); plasticity is described through the Herschel-Bulkley299

model, were the solid viscously deforms only after local stresses become higher than the300

material yield stress (Appendix B1); the solid’s yield stress and plastic viscosity are mod-301

eled as solid fraction-dependent based on the Quemada fractal model (Quemada, 1977;302

Spearman, 2017) (Appendix B2); finally, elastic solids are modeled as averaged linear-303

elastic materials, such that their averaged elastic coefficients scale linearly with respect to304

the solid fraction (Appendix B3). The last three choices imply that solid rheological prop-305

erties are modeled as isotropic and independent of saturation, a significant simplification306
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that is sufficient for the purpose of testing and validating the present framework. For the307

reader’s convenience, a full implementation of this framework and its related models are308

included in the accompanying simulation “toolbox". If necessary, more complex constitu-309

tive models, such as the saturation-depended solid rheology models presented in Wan et310

al. (2014), Oldecop and Alonso (2003), Buscarnera and Einav (2012), and Di Donato et311

al. (2003) can be readily implemented into our code by virtue of its open-source imple-312

mentation.313

3 Numerical Implementation314

3.1 Numerical Platform315

The implementation of the multiphase DBB model was done in OpenFOAMr, a316

free, open-source, parallelizable, and widely used computational fluid mechanics platform.317

This C++ code uses the Finite Volume Method to discretize and solve partial differential318

equations in complex 3-D structured and unstructured grids. Its object-oriented structure319

and multitude of supporting libraries allows the user to easily customize each simulation’s320

setup with different numerical discretization schemes, time-stepping procedures, matrix-321

solution algorithms, and supporting physical models. The implementation described below322

represents the natural extension of the multiphase micro-continuum toolkit “hybridInter-323

Foam” (Carrillo et al., 2020) to systems with deformable solids. In particular, its solution324

algorithm stems directly from that used by “hybridInterFoam” and its precursor “inter-325

Foam”.326

3.2 Solution Algorithm327

The solution of the governing equations is done in a sequential manner, starting with328

the fluid mechanics equations and following with the solid mechanics equations for ev-329

ery time step. Of particular importance is the handling and modification of the velocity-330

pressure coupling required for modeling incompressible fluids in conjunction with a mov-331

ing solid matrix. For this step, we based our solution algorithm on the Pressure Implicit332

Splitting-Operator (PISO) (Issa, 1986). First, we explicitly solve the fluid saturation equa-333

tion (Eqn. 9) for UC+1F through the Multidimensional Universal Limiter of Explicit So-334

lution (MULES) algorithm (Márquez & Fich, 2013). This allows for stable numerical335

advection of the saturation field by the application of Flux Corrected Transport Theory336

(Rudman, 1997). Then, we update the boundary values of [ 5 and [A in addition to the337

cell-centered values of the permeability : C+1, density dC+1
5

, and viscosity ` 5 C+1 based on338

the newly calculated saturation field UC+1F . The capillary forces LC+12,8 are also updated ac-339

cordingly. After that, a preliminary value of the fluid velocity [∗
5
is calculated by implic-340

itly solving the algebraically discretized form of the fluid momentum equation used in the341

Finite Volume Method.342

0?[
∗
5 = N

(
[∗5

)
+ dC+15 g + LC+12,8 − ∇?C (35)

where N
(
[∗
5

)
contains inertial, convective, viscous, and drag source terms originating343

from neighboring cells and 0? represents these same terms but at the volume of interest.344

Note that the [∗
5
field does not follow mass conservation. To account for this, we use the345

fluid continuity equation (Eqn. 25) in conjunction with the previous equation (Eqn. 35) to346

update the velocity field [∗∗
5
and calculate a preliminary mass-conservative pressure field347

?∗. In other words, these fields must satisfy,348

[∗∗5 =
1
0?

(
N

(
[∗5

)
+ dC+15 g + LC+12,8 − ∇?∗

)
(36)
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∇ ·[∗∗5 = −
mq 5

mC
(37)

These equations can be recast into a single coupled equation which is then used to349

implicitly solve for pressure. This step can be done through several generalized matrix350

solvers that are standard in OpenFOAMr.351

∇ ·
(

1
0?

(
N

(
[∗5

)
+ dC+15 g + LC+12,8 − ∇?∗

))
− ∇ ·

(
1
0?
∇?∗

)
= −

mq 5

mC
(38)

After solving for pressure ?∗, velocity can be re-calculated from Equation 36. This352

semi-implicit pressure-velocity correction step is repeated until the desired convergence is353

reached. It has been shown that at least two pressure-velocity correction loops are required354

to ensure mass conservation (Issa, 1986). At this point [C+1
5

and ?C+1 are set and used as355

input values for updating the drag and pressure source terms present in the solid mechan-356

ics momentum equation (Eqn. 29). Then, said equation is discretized in a similar way as357

the fluid momentum equation (Eqn. 27) and used to implicitly solve for [C+1B . Finally, the358

updated solid velocity is used to “advect” the solid fraction field qB by solving the mass359

conservation equation (Eqn. 28). At this point the algorithm advances in time according360

to the imposed Courant-Friedrichs-Lewy (CFL) number. Further discussion regarding the361

discretization techniques and matrix-solution procedures can be found in Carrillo et al.362

(2020) and Jasak (1996).363

3.3 Open-Source Implementation364

The complete set of governing equations and solution algorithms, along with the365

necessary rheology, relative permeability, and capillary pressure models (Appendix A and366

B) were implemented into a single solver “hybridBiotInterFoam”. This solver, along with367

its representative tutorial cases, automated compilation and running procedures, and all368

the simulated cases presented in this paper were incorporated into an open-source CFD369

package of the same name. OpenFOAMr and our code are free to use under the GNU370

general public license and can be found at https://openfoam.org/ and https://371

github.com/Franjcf (Carrillo & Bourg, 2020), respectively.372

4 Model Validation373

Most of the underlying components of the approach described above have been374

previously tested and verified. Carrillo and Bourg (2019) validated the momentum ex-375

change terms as an effective coupling mechanism between a single fluid phase and a de-376

formable plastic or elastic porous medium. The effects of confining and swelling pressures377

on porous media were also examined in said study. Then, Carrillo et al. (2020) extensively378

validated the extension of the Darcy-Brinkman equation into multiphase flow within and379

around static porous media by comparison with reference test cases in a wide range of380

flow, permeability, capillarity, and wettability conditions. Therefore, the only thing left to381

validate is the ability of the multiphase DBB model to accurately predict the behavior of382

multiscale systems that exhibit coupling effects between multiple fluids and a deformable383

porous matrix.384

To that point, we begin with two validation cases relating to multiphase poroelas-385

ticity and the coupling between solid deformation and fluid pressure. Then, we proceed386

with two poroplastic cases that validate this framework for multiscale plastic systems. Fi-387

nally, we conclude with two additional cases that verify the implementation of the capil-388

lary force interaction terms. All of these can be found in the accompanying CFD simula-389

tion package.390
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Figure 2. One-dimensional Terzaghi consolidation problem. (A) Simulation setup. (B) Analytical (solid
lines) and numerical (symbols) pressure profiles at C = 100 s for different loading pressure values. (C) Time-
dependent pressure profiles for different column porosity values (From top to bottom: qB = 0.75, 0.5, 0.25).

4.1 Terzaghi Consolidation Problem391

The Terzaghi uniaxial compaction test has been extensively used as a benchmark392

for the validation of numerical codes relating to poroelasticity (Terzaghi et al., 1996). Its393

main utility is to test the accuracy of the solid-fluid couplings that relate fluid pressure to394

solid deformation and vice versa. The problem consists of a constrained saturated elas-395

tic porous medium that is abruptly compressed from its upper boundary by a constant396

uniaxial load (Figure 2). This creates a sudden increase in pore pressure, which is then397

dissipated by flow through the upper boundary (all other boundaries have impermeable398

boundary conditions). In the case of a one-dimensional porous medium, the resulting tem-399

poral and spatial evolution in fluid pressure can be described by the following simplified400

analytical solution (Verruijt, 2013).401

?

?<0G
= erf

(
ℎ − I

2
√
2E C

)
for

2E C

ℎ2 � 1 (39)

where 2E = (:0� (a − 1))/([(2a2 + a − 1)) is the consolidation coefficient, :0 is per-402

meability, � is Young’s modulus, a is Poisson’s ratio, [ is the fluid’s unit weight, ℎ is the403

column height, and I is the vertical coordinate. Our equivalent numerical setup is shown404

in Figure 2. The values of the relevant parameters in our simulations are ℎ = 10 m,405

:0 = 5 × 10−11 m2, � = 2 MPa, and a = 0.25. To show the accuracy of our model406

across different conditions, the loading pressure was varied from 10 to 200 kPa (Figure407

2B) and the porosity from 0.25 to 0.75 (Figure 2C). Lastly, the column was partially sat-408

urated (UF = 0.5) with fluids with equal densities (d 5 = 1000 kg/m3), viscosities409

(` 5 = 1 cp), and negligible capillary effects. This last points allowed for testing the va-410

lidity of the fluid-solid couplings irrespective of the simulated phases without violating411

any of the assumptions present in the analytical solution. Our numerical results show ex-412

cellent agreement with Equation 39 for all tested conditions. Further verification of these413

terms for an oscillating linear elastic solid with pressure boundary conditions (as opposed414

to stress boundary conditions) can be found in the Supporting Information.415
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Figure 3. Capillary effects in a poroelastic column. (A) Simulation setup. (B & C) Analytical (solid lines)
and numerical (symbols) effective stress profiles for different capillary pressure values (?2,0 = 50 to 2000 Pa)
and Van Genuchten coefficients (< = 0.6 and 0.8).

4.2 Capillary Pressure Effects in a Poroelastic Column416

Having verified the two-way coupling between solid deformation and fluid pressure,417

we now verify the implementation of the capillary pressure terms within the solid mechan-418

ics equation. To do so, we simulate a poroelastic column (1 m tall, 1500 Cells, q 5 = 0.5)419

bounded by two non-wetting fluid reservoirs at its upper and lower boundaries. The col-420

umn is initialized with a linear saturation profile spanning from UF = 0 to 1 (see Fig. 3).421

Fluid saturation is kept fixed by not solving Equation 26, and the mobilities of both flu-422

ids are set to very high values ("8 = 1 × 1010 m3/kg.s) to minimize drag-related effects.423

Under these conditions, the solid’s effective stress is exclusively controlled by capillary424

effects and is described by the following analytical solution:425

Effective Stress = qB × UF × ?2 (40)

We used the Van Genutchen capillary pressure model with < = 0.6 or 0.8 and426

?2,0 = 50 to 2000 Pa to calculate the solutions to said problem. The resulting agreement427

between the numerical and analytical solutions, shown in Fig. 3, confirms the accuracy428

of the fluid-solid capillary pressure coupling implemented in our model. Furthermore, the429

transitional behaviour of the effective stress at the macroscopic solid-fluid interface con-430

firms the applicability of the interfacial condition described in Section 2.4: as expected,431

solid stresses are dictated by standard elasticity theory in the porous region and become432

negligible in solid-free regions.433

Given that the fluid-solid couplings in a poroelastic solid are now verified, we pro-434

ceed to verify said terms for poroplastic materials.435

4.3 Fluid Invasion and Fracturing in a Hele-Shaw Cell436

The third verification case (and the first poroplastic case) consists in the qualita-437

tive replication of a set of fracturing experiments that examined the injection of aqueous438

glycerin into dry sand within a 30 by 30 by 2.5 cm Hele-Shaw cell (Huang et al., 2012a,439

2012b). These experiments are inherently multiscale, in that the characteristic length scale440

of fractures in this system (∼ cm) is orders of magnitude larger than that of pores within441

the microporous matrix (∼ `m). They are also multiphysics, as they clearly exemplify the442
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drag-controlled transition from Darcy flow within the porous medium to Stokes flow in the443

open fractures and the coupling between the hydrodynamics of fluid flow and the mechan-444

ics of fracture propagation (Figure 4).445

The experimental setup involved the injection of aqueous glycerin at various flow446

rates @ between 5 and 50 ml/min while also varying the fluid’s viscosity `6;H between 5447

and 176 cp for different experiments. Our numerical simulations were parameterized us-448

ing measured values of the glycerin-air surface tension (W = 0.063 kg/s2), the density of449

pure glycerin (d6;H = 1250 kg/m3), the density of air (d08A = 1 kg/m3), the viscosity450

of air (`08A = 0.017 cp), and the average radius and density of sand grains (100 `m and451

2650 kg/m3, respectively). To mimic the sand’s experimental configuration and perme-452

ability, the simulated solid fraction field was set to a random initial normal distribution453

such that qB = 0.64 ± 0.05 and the permeability was modelled as a function of the solid454

fraction through the Kozeny-Carman relation with :0 = 6.7 × 10−12 m2. Relative per-455

meabilities were calculated through the Van Genutchen model with the Van Genuchten456

coefficient < set to 0.99 (see Appendix A), while capillary pressures were deemed neg-457

ligible (as 2WA−1 � `:−1* 5 !). Finally, the porous medium was modeled as a continu-458

ous Hershel-Bulkley-Quemada plastic (Appendix B) with yield stress g0 = 16.02 m2/s2
459

(Quemada, 1977). Plasticity was used as the preferred mode of solid rheology due to its460

ability to account for the compressive and irreversible effects caused by fracturing within461

these experiments (Ahmed et al., 2007; van Dam et al., 2002).462

Numerically speaking, the simulations were carried out in a 30 by 30 cm 2-D grid463

(500 by 500 cells) with constant velocity and zero-gradient pressure boundary conditions464

at the inlet, zero-gradient velocity and zero pressure boundary conditions at the boundary465

walls, and a solid velocity tangential slip condition at all boundaries (i.e. the solid can-466

not flow across the boundaries, but the fluids can). Lastly, to enable a closer comparison467

between our 2D simulation and the 3D experiment we added an additional drag term to468

the fluid momentum equation equal to 12`0−2[ 5 , which accounts for viscous dissipation469

through friction with the walls in a Hele-Shaw cell with aperture 0 (Ferrari et al., 2015).470

As shown in Figure 4, a dramatic transition in the mode of fluid invasion is ob-471

served with increasing fluid injection velocity and viscosity. At low flow rates and low472

viscosity (@ = 5 ml/min, ` = 5 cp), there is no discernible solid deformation and the473

main mode of fluid flow is through uniform invasion of the porous medium (Figure 4A).474

At intermediate flow rates and low viscosity (@ = 25 ml/min to 30 ml/min, ` = 5 cp),475

we still observe a uniform invasion front, but small fractures begin to appear (Figure 4B,476

C). At high viscosity (` = 176 cp), we see clear fracturing patterns preceded by a non-477

uniform fluid invasion front (Figure 4H, I).478

Figure 4 shows that our simulation predictions are qualitatively consistent with the479

experiments presented in Huang et al. (2012a) with regard to both the stability of the cap-480

illary displacement front and the observed fracturing transition behavior. As suggested481

above, accurate prediction of this transition requires not only proper handling of fluid-482

fluid interactions (surface tension and relative permeability effects), but also accurate de-483

scriptions of their relationship with solid mechanics (drag) and the proper implementation484

of a solid rheological model that can replicate irreversible and unstable fracturing pro-485

cesses. We note that in our simulations, fracture initialization and propagation are pre-486

dicted based on continuum-scale equations for the rheology and mechanics of the bulk487

microporous solid, with no specific treatment of grain-scale mechanics. Grid-level insta-488

bilities are brought about by the normally distributed porosity and permeability fields, as489

shown in Appendix C. The microstructural differences between the experiments and our490

simulations (most clear in Figure 4C, F, and H, K) likely arise at least in part from the491

fact that the solid is modelled as a continuum rather than a granular material.492

This section demonstrates that the multiphase DBB model can be used to replicate493

and predict the main mode of fluid flow and solid deformation within fracturing systems.494
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Figure 4. Comparison of experimental (A, B, C, G, H, I) and simulated (D, E, F, J, K, L) fracturing in
a Hele-Shaw cell. The color bar represents the solid fraction within the simulations (where red implies a
pure solid and blue pure fluids) and the black lines represent the advancing glycerin saturation front. The
experiments shown here are part of the results presented in Huang et al. (2012a).

A comprehensive study of the controlling parameters for multiphase fracturing in the pres-495

ence of both viscous and capillary stresses will be the focus of an adjacent study.496

4.4 Modeling Fracturing Wellbore Pressure497

Having shown that our model can qualitatively predict fracturing behavior, we now498

aim to determine whether it can do so in a quantitative matter. As depicted in Figure 5,499

fluid-induced fracturing of low-permeability rocks proceeds through the following well-500

established series of stages: First, fluid pressure increases linearly as fracturing fluid is501

injected into the wellbore. Second, as wellbore pressure increases and approaches the502

leak-off pressure, a small amount of pressure is propagated by fluid leakage into the rock.503

Third, fluid pressure continues to increase until it reaches the breakdown pressure, at504

which point it is high enough to fracture the rock. Fourth, a fracture is initiated and prop-505

agates; the wellbore pressure slowly decreases. Fifth, injection stops, fracture propagation506
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stops, and wellbore pressure rapidly dissipates (Abass et al., 2007; Ahmed et al., 2007;507

Huang et al., 2012a; Papanastasiou, 2000; Santillán et al., 2017).508

Figure 5. Conceptual representation of wellbore pressure evolution during fluid-induced fracturing of low
permeability rocks. In this section, we are interested in modeling the behavior between C 5 A02 and CBC>? .

In this section we aim to numerically replicate the time-dependent fracturing well-509

bore pressure during fracture propagation (i.e., the fourth stage outlined above) as de-510

scribed by an analytical solution presented in Barros-Galvis et al. (2017).511

?F4;; = ?0 −
`@

4c:0ℎ

[
;=

(
C:0g0

q 5 `A
2
F4;;

)
+ 0.81

]
(41)

where C is the time elapsed since fracture initialization, @ is the fluid injection rate, ?F4;;512

is the wellbore pressure, ?0 is the minimum pressure required for starting a fracture (a513

function of the solid’s yield stress g0), ℎ is the formation thickness, and AF4;; is the well-514

bore radius. The remaining variables follow the same definitions described earlier.515

The general numerical setup is almost identical to the one presented in the previ-516

ous section. The key difference is that we now inject aqueous glycerin into a strongly-non517

wetting (and thus almost impermeable) porous material. This is done to ensure an accu-518

rate replication of the analytical solution and its related assumptions, where fracturing is519

the main mode of fluid flow and there is virtually no fluid invasion into the porous ma-520

trix. The exact simulation parameters are @ = 46 to 110 ml/min, g0 = 0.2 or 2 m2/s2,521

:0 = 6.7 × 10−11 or 6.7 × 10−12 m2, `6;H = 5 cp, and < = 0.05. Note that low values of <522

indicate that the porous formation is strongly non-wetting to the injected fluid. All other523

parameters are as in the previous section.524

Lastly, as hinted at before, a notable characteristic of our model is that different525

normally-distributed solid fraction field initializations give different fracturing results (Ap-526

pendix C). For this reason, we performed four simulations for each parameter set. In Fig-527

ure 6, we present the average predicted wellbore pressure evolution with errors bar repre-528

senting the 95% confidence interval.529

Figure 6 shows that our model can accurately and reliably predict the pressure and530

deformation behavior of a variety of fracturing systems, as all curves exhibit excellent531

agreement with their respective analytical solution. Note that the length of each curve re-532

lates inversely to the injection speed. This is because fractures at higher injection rates533

consistently reach the system’s boundary faster than their counterparts, at which point534

there is a sharp decrease in pressure and the analytical solution no longer applies. There-535

fore, each curve’s cutoff point represents the time at which the fracture effectively be-536
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Figure 6. Wellbore pressure as a function of injection rate and time. (A) The initial simulation setup show-
ing the initial wellbore radius AF4;; = 1.3 cm, as well as the normally distributed solid fraction field. (B) The
fractured system, where the thin black line represents the position of the advancing glycerin saturation front.
C and D show the wellbore pressure as a function of time for different flow rates and different combinations
of solid yield stress and permeability. Solid curves represent analytical solutions, while symbols represent
simulation predictions. The color scheme in A and B is the same as in Figure 4, and ?<0G is the maximum
analytically-predicted pressure in each simulation.

comes an open channel between the wellbore and the outer boundary, normalized to the537

average value of that time for the slowest-moving fracture (i.e. C = C<0G).538

The successful replication of the analytical pressure profiles in this section verifies539

the model components pertaining to the pressure-velocity-deformation coupling and the540

two-way momentum transfer between the fluid and solid phases (drag). Therefore, the only541

model component left to verify is the implementation of the capillary force terms during542

fracturing of a plastic solid.543

4.5 Capillary Effects on Fracturing Wellbore Pressure544

Our fifth verification systematically varies the capillary entry pressure within non-545

wetting fracturing systems to quantify its effects on wellbore pressure. For this, we con-546

sider two different complementary cases: one where capillary forces are comparable to547

their viscous counterparts, and another where they are significantly larger than them. All548

parameters are the same as in the previous experiments (Section 4.4) unless otherwise549

specified.550

The first set of experiments expands the previous analysis (Section 4.4) into strongly551

non-wetting systems with the addition of a constant capillary pressure jump at the frac-552

ture interface imposed by a flat capillary pressure curve (?2 = ?2,0 = 1 to 2 kPa, g0 =553

2 m2/s2, :0 = 6.7 × 10−12 m2, < = 0.05, and @ = 78 ml/min ). In this case, all the554

assumptions present in the fracturing analytical solution (Eqn. 41) are satisfied. However,555
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said solution still does not account for capillarity. For constant flow in non-wetting sys-556

tems, the addition of a constant capillary entry pressure jump at the fluid-solid interface557

would increase the calculated propagation pressure in Eqn. 41 by said value such that558

?=4F
F4;;

= ?F4;; + ?2 . This effect is exemplified in Figure 7A, where we present the up-559

dated analytical results in conjunction with our equivalent numerical results, demonstrating560

excellent agreement between them. Note that the predicted linear relationship between561

wellbore pressure and capillary entry pressure is not explicitly imposed in the numeri-562

cal model. On the contrary, it arises naturally from the balance of viscous, capillary, and563

structural forces in Eqns. 25-29.564

Figure 7. Effect of capillary entry pressure on fracturing wellbore pressure. (A-B) Wellbore pressure as
a function of time and entry pressure for low and high permeability systems, respectively. In B, curves at
increasingly high pressures were cut off for illustrative purposes and the solid line represents a fitted reference
logarithmic pressure descent curve. (C-H) Time evolution of fractured system with a 1 kPa capillary entry
pressure and high permeability. (C) Initial fluid invasion (C/C<0G < 0): at early times the wellbore pressure
rises rapidly and becomes larger than the entry capillary pressure. The fluid invades the porous formation
symmetrically. (D) Fracture initiation (C/C<0G = 0): The wellbore pressure continues to rise until it is larger
than the breakdown pressure, at which point small fractures start to form. Fluid invasion continues. (E-F)
Fracture propagation (C/C<0G > 0 | ?F4;; > ?2,0): the wellbore pressure drops as fractures propagate.
Fluid invasion continues asymmetrically around said fractures. (G) Fluid invasion stops (C/C<0G > 0 |
?F4;; ∼ ?2,0): As the wellbore pressure keeps dropping, the entry capillary pressure condition at the porous
interface ensures that that wellbore pressure never goes below ?2,0, at which point fluid invasion stops. (H)
Fracture reaches the simulation boundary (C/C<0G = 1). The color convention in Figures C-H is the same as in
Figure 4.

The second set of experiments modifies the previous experiments by making the565

porous medium significantly more permeable, while still maintaining a constant capillary566

pressure jump at the fracture interface (?2 = ?2,0 = 1 to 3 kPa, g0 = 0.2 m2/s2, :0 =567

6.7 × 10−11 m2, < = 0.99, and @ = 78 ml/min). This results in a set of cases where the568

wellbore pressure is increasingly controlled by the capillary pressure drop rather than by569

the viscous pressure drop across the fracture and porous formation.570
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Figure 7 demonstrates precisely this effect. Our simulations show that the wellbore571

pressure always decays towards the capillary entry pressure once viscous effects are dis-572

sipated by fracture growth, i.e., we observe a transition between viscous- and capillary-573

dominated regimes. At low values of ?2,0 (< 2500 Pa) the entry pressure is not high574

enough to prevent fluid flow into the surrounding porous matrix during fracturing (Figure575

7B-H). The resulting pressure drop cannot be modeled by the previously presented analyt-576

ical solution (as it violates the no leak-off assumption), but still follows a logarithm-type577

curve that is characteristic of flow in fracturing systems. With increasing fracture propaga-578

tion, the viscous pressure drop decreases until the wellbore pressure equals the entry pres-579

sure, which is, by definition, the minimum pressure drop required for fluid flow in highly580

permeable non-wetting systems. Finally, we note that in cases where capillary entry pres-581

sure is high relative to the pressure required to fracture the solid (i.e., at (?2,0 > 2.250 Pa582

in the conditions simulated in Fig. 7b), fracturing begins before the wellbore pressure can583

exceed ?2,0. This prevents essentially all flow into the porous formation, and the wellbore584

pressure is immediately stabilized at ∼ ?2,0. For all cases, fractures continue to propagate585

until they reach the system boundary, at which point the pressure drops rapidly as noted in586

Section 4.4.587

In this section we reduced the inherent complexity of the model’s capillary force588

terms �2,8 (Eqns. 31-32) into a simple set of intuitive verifications. The quantitative agree-589

ment between these two analytical cases and their corresponding numerical simulations590

validate the implementation of the impact of capillary pressure effects on the mechanics of591

a ductile porous solid within our model.592

5 Illustrative Applications593

Having verified and tested the model, we now proceed with two illustrations that594

demonstrate how hybridBiotInterFoam enables the simulation of relatively complex cou-595

pled multiphase multiscale systems. The following cases serve as illustrative examples of596

our model’s features and capabilities as well as tutorial cases within the accompanying597

toolbox.598

5.1 Elastic Failure in Coastal Barriers599

Coastal barriers are ubiquitous features in coastal infrastructure development. When600

designed appropriately, these structures can be very effective in regulating water levels601

and protecting against inclement weather (Morton, 2002). However, accurate prediction602

of the coupled fluid-solid mechanics of these structures (which can lead to barrier failure)603

is inherently challenging as it requires modeling large-scale features (waves) while also604

considering small-scale viscous and capillary interactions within the barrier.605

The following case represents the continuation of the three-dimensional coastal bar-606

rier illustration presented in Carrillo et al. (2020) with the addition of linear-elastic porome-607

chanics. As such, the simulation was created by initializing a heterogeneous porosity field608

(with :0 = 2 × 10−8 m2 and q 5 = 0.5) in the shape of a barrier within a 8.3 by 2.7609

by 0.25 m rectangular grid (1600 by 540 by 50 cells). The relevant solid mechanics pa-610

rameters were � = 5 MPa, a = 0.45, and dB = 2350 kg/m3. Relative permeabilities611

and capillary pressures were evaluated through the Van Genuchten model with < = 0.8612

and ?2,0 = 1 kPa. Before the start of the simulation, the water level was set to partially613

cover the barrier and then allowed to equilibrate. A single wave was then initialized at t614

= 0. This results in a simulation that exhibits a clear wave absorption cycle that gradually615

dissipates in time, as seen in Figure 8. Detailed discussion on the fluid mechanics of this616

problem can be found in Carrillo et al. (2020).617

Here, however, we are interested in evaluating the barrier’s propensity to failure.618

We do this by applying the Von Mises yield criterion, which is commonly used to pre-619
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Figure 8. Waves crashing against a poroelastic coastal barrier. Here, the thin black line represents the
water-air interface (UF = 0.5) and red-blue colors outside the coastal barrier represent water and air, re-
spectively. Colored contours within the barrier are the calculated Von Mises stresses and are shown in 5 kPa
increments in the general downwards direction. Note that the largest stresses are seen during the initial wave
crash and increase towards the base of the barrier due to gravitational effects.

dict material failure in elastic systems. It states that if the second invariant of the solid’s620

deviatoric stress (the Von Mises stress) is greater than a critical value (the yield strength)621

the material will begin to deform non-elastically (Von Mises, 1913). Although we do not622

specify said critical value within our simulations, we can map the time-evolution of Von623

Misses stresses within the coastal barrier as a result of a wave absorption cycle (Figure 8).624

Our results illustrate the potential utility of our simulation framework in predicting the lo-625

cation and time-of-formation of stress induced defects within coastal barrier as a function626

of wave characteristics, permeability, and barrier geometry.627

5.2 Flow-Induced Surface Deformation628

Surface deformation due to subsurface fluid flow is a common geological phenomenon629

occurring in strongly coupled systems and has clear implications in studies related to in-630

duced seismicity (Shapiro & Dinske, 2009), CO2 injection in the subsurface (Morris et631

al., 2011), land subsidence (Booker & Carter, 1986), and the formation of dykes and vol-632

canoes (Abdelmalak et al., 2012; Mathieu et al., 2008). In order to properly model these633

systems, it is necessary to be able to capture the time-evolution of surface uplift, cracks,634

and hydraulic fractures, as well as the effects that these features have on the overall flow635

field. Here, we use the terms hydraulic fracture vs. crack to refer to solid failure at vs.636

away from the injected fluid, respectively.637

This illustrative case was inspired by the experiments reported by Abdelmalak et638

al. (2012), where the authors injected a highly viscous fluid into a dry silica powder in639

a Hele-Shaw cell in order to study the impact of hydraulic fractures on surface deforma-640

tion, e.g., during the creation of volcanic structures. The system also bears some anal-641
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ogy to situations involving the injection of fluids into subsurface reservoirs, e.g., dur-642

ing geologic CO2 sequestration (Rutqvist, 2012). The base case of our simulations con-643

sists of an impermeable rectangular container (50 by 30 cm, 500 by 300 cells) that is644

open to the atmosphere, is partially filled with a dry porous medium (qB = 0.6 ± 0.05,645

dB = 2650 kg/m3, :0 = 5 × 10−11 m2), and has an injection well at its lower boundary646

that injects water at @ = 6.5 ml/s (Figure 9). To account for irreversible solid deformation,647

the porous medium is modeled as a plastic with yield stress g0 = 0.22 m2/s2. The solid648

is represented as impermeable to the invading fluid through the use of the Van Genuchten649

model with < = 0.05 and ?2 = 0. Then, using this base case as a standard, we individ-650

ually varied each of the main parameters (@, :0, g0, <, qB , `F0C4A ) over several simu-651

lations in order to model the resulting solid deformation processes: fracturing, cracking,652

surface uplift, and subsidence (Figure 9).653

Figure 9. Study of hydraulic fracturing and cracking on surface deformation. (A-I) Representative cases
showing the effects of changing permeability :0 (purple), solid yield stress g0 (green), injection rate @
(brown), and injected fluid viscosity ` (red) on surface deformation. The blue and yellow subsections contain
the results of increasing or decreasing the controlling parameters, respectively. (J-L) Time evolution of the
fracturing base case. (M) Surface subsidence example. The difference between the base case (E) and all other
simulations is shown in each case’s legend. Dotted white lines represent the surface height of the initial solid
fraction configuration. Note that the color scheme in all simulations is the same as in Figure 4.

The resulting cases demonstrate that cracking (solid failure away from the injected654

fluid) is strictly dependent on the number and orientation of existing hydraulic fractures,655

as it only occurs when there is more than one fracture branching off from the main injec-656

tion point (Figure 9B, C, D, H, and I). This is likely because in cases presenting a single657
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vertical fracture solid displacement is almost exclusively perpendicular to the fracturing658

direction, leading to virtually no surface deformation or cracking (Figure 9A, E and M).659

Contrastingly, the creation of inclined fractures exerts vertical forces on the solid, resulting660

in surface uplift and crack formation. The above diagram strongly suggests that deforma-661

tion is controlled by the balance between viscous and structural forces: larger fractures662

occur within softer solids with higher momentum transfer, and smaller fractures occur in663

tougher solids with lower momentum transfer. As stated above, a comprehensive examina-664

tion of the parameters that control solid fracturing will be the focus of an adjacent paper.665

In addition to the surface uplift presented above, subsurface subsidence is observed666

in the simulated system in conditions where the porous solid is rendered permeable to the667

invading fluid (i.e., < � 0.05). This phenomenon is not primarily controlled by momen-668

tum transfer, but rather by a gravitational effect whereby the displacement of air by water669

within the porous medium around the advancing hydraulic fracture renders the solid-fluid670

mixture heavier. Once it is heavy enough to overcome the plastic yield stress, the solid671

sinks and compresses around the fluid source (Figure 9M).672

With these last two illustrative examples, we have shown that our modeling frame-673

work is flexible and readily applicable to a large variety of cases within elastic and plastic674

systems. We invite the interested reader to tune, adapt, and expand the present illustrative675

simulations, which are included in the accompanying CFD toolbox.676

6 Conclusions677

We derived, implemented, benchmarked, and applied a novel CFD package for sim-678

ulation of multiscale multiphase flow within and around deformable porous media. This679

micro-continuum modeling framework is based on elementary physics and was rigorously680

derived through the method of volume averaging and asymptotic matching to the mul-681

tiphase Volume of Fluid equations in solid-free regions and multiphase Biot Theory in682

porous regions. The result is a single set of partial differential equations that is valid in683

every simulated grid cell, regardless of content, which obviates the need to define differ-684

ent meshes, domains, or complex boundary conditions within the simulation. The solver’s685

numeric and algorithmic development were also discussed and implemented into hybridBi-686

otInterFoam, an open-source package accessible to any interested party.687

Throughout this paper and its of predecessors (Carrillo & Bourg, 2019; Carrillo et688

al., 2020), we show that the Multiphase DBB model can be readily used to model a large689

variety of systems, from single-phase flow in static porous media, to elastic systems under690

compression, to viscosity- or capillarity-dominated fracturing systems, all the way up to691

multiscale wave propagation in poroelastic coastal barriers.692

We note, however, that the solver presented here cannot be liberally applied to any693

porous system, as it comes with the following inherent limitations. First, closure of the694

system of equations requires appropriate constitutive and parametric relations that describe695

fluid pressure, permeability, capillarity, and rheology within volume averaged porous re-696

gions. Therefore, the assumptions present in each of these models should be carefully697

considered. Second, volume averaging imposes important length scale restrictions in or-698

der to fulfill the scale separation hypothesis, where the pore sizes within the averaging699

volume must be substantially smaller than the chosen REV, and the REV must be substan-700

tially smaller than the macroscopic length scale. Third, as implemented here, the multi-701

phase DBB framework only represents continuum-level elastic or plastic solid mechanics.702

As such, it cannot be used to model phenomena originating from sub-REV heterogeneities703

such as fluidization or granular mechanics (Meng et al., 2020), except insofar as they are704

captured in an averaged manner at the REV scale. Fourth, the use of the CSF as a repre-705

sentation of capillary forces within solid-free regions enforces mass conservation, but it706

creates a diffuse fluid-fluid interface that may generate spurious and parasitic currents.707
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Finally, although the modeling framework developed here opens up significant new708

possibilities in the simulation of coupled fluid-solid mechanics, it also creates a need709

for the development of constitutive relations describing the coupling between multiphase710

flow and poromechanics. Of particular importance is the formulation of saturation and711

deformation-dependent solid rheological models (both plastic and elastic), as well as the712

rigorous derivation of the interfacial condition between solid-free and deformable porous713

regions. In this paper we proposed a suitable approximation for said boundary condition714

based on our single-field formulation, the implementation of a wettability boundary condi-715

tion, and the previous work done by Neale and Nader (1974) and Zampogna et al. (2019).716

However, the accuracy and validity of such an approximation is still an open question, one717

that is at the frontier of our modeling and characterization capabilities (Qin et al., 2020).718

The derivation and implementation of said boundary condition, along with the addition of719

erosion and chemical reactions into this modeling framework, will be the focus of subse-720

quent papers.721
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A Relative Permeability and Capillary Pressure Models729

A1 Relative Permeability Models730

The two relative permeability models used in this paper and implemented in the ac-731

companying code depend on defining an effective saturation in order to account for the732

presence of irreducible saturations within a porous medium733

UF,4 5 5 =
UF − UF,8AA

1 − UF,8AA − UF,8AA

here, UF,4 5 5 is the wetting fluid’s effective saturation, which is the wetting fluid’s satura-734

tion normalized by each fluid’s irreducible saturation U8,8AA . The Brooks and Corey (1964)735

model relates each phase’s relative permeability to saturation through the following expres-736

sions737

:A ,= =
(
1 − UF,4 5 5

)<
:A ,F =

(
UF,4 5 5

)<
where < is a non-dimensional coefficient that controls how sensitive the relative perme-738

ability is with respect to saturation. The van Genuchten (1980) model calculates relative739

permeabilities in the following way740

:A ,= =
(
1 − UF,4 5 5

) 1
2
( (

1 − UF,4 5 5
) 1
<

)2<

:A ,F =
(
UF,4 5 5

) 1
2

(
1 −

(
1 −

(
UF,4 5 5

) 1
<

)<)2
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In this case, < controls how wetting (or non-wetting) the porous medium is to a741

given wetting (or non-wetting) fluid. High values of < indicate high relative permeabili-742

ties for the non-wetting fluid, while low values of < indicate very low relative permeabili-743

ties for the same fluid.744

A2 Capillary Pressure Models745

The implemented capillary pressure models also depend on an effective wetting-fluid746

saturation UF,?2 ,747

UF,?2 =
UF − U?2,8AA

U?2,<0G − U?2,8AA

here, U?2,<0G is the maximum saturation of the wetting fluid and U?2,8AA is its irreducible748

saturation. The Brooks and Corey (1964) model uses the following expression to calculate749

the capillary pressures within a porous medium750

?2 = ?2,0
(
UF,?2

)−V
where ?2,0 is the entry capillary pressure, and V is a parameter depending on the pore751

size distribution. Conversely, the van Genuchten (1980) model calculates the capillary752

pressure with the following relation753

?2 = ?2,0

( (
UF,?2

)− 1
< − 1

)1−<

B Solid Rheology Models754

B1 Hershel-Bulkley Plasticity755

A Bingham plastic is a material that deforms only once it is under a sufficiently high756

stress. After this yield stress is reached, it will deform viscously and irreversibly. The757

Herschel-Bulkley rheological model combines the properties of a Bingham plastic with a758

power-law viscosity model, such that said plastic can be shear thinning or shear thickening759

during deformation. In OpenFOAMr this model is implemented as follows:760

2 = `
4 5 5
B

(
∇[B + (∇[B)) −

2
3
∇ · ([B O)

)
where `4 5 5B is the effective solid plastic viscosity, which is then modeled through a power761

law expression:762

`
4 5 5
B = min

(
`0
B ,

g

[
+ `B[=−1

)
where `0

B is the limiting viscosity (set to a large value), g is the yield stress, `B is the vis-763

cosity of the solid once the yield stress is overcome, = is the flow index (= = 1 for con-764

stant viscosity), and [ is the shear rate.765

B2 Quemada Rheology Model766

The Quemada rheology model (Quemada, 1977; Spearman, 2017) is a simple model767

that accounts for the fact that the average yield stress and effective viscosity of a plastic768
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are functions of the solid fraction. These two quantities are large at high solid fractions769

and small at low solid fractions, as described by the following relations770

g = g0

( (
qB/q<0GB

)
(1 − qB/q<0GB )

)�
`B =

`0(
1 − qB

q<0G
B

)2

here, q<0GB is the maximum solid fraction possible (perfect incompressible packing), g0 is771

the yield stress at qB = q<0GB /2 , `0 is the viscosity of the fluid where the solid would be772

suspended at low solid fractions (high fluid fractions), and � is a scaling parameter based773

on the solid’s fractal dimension.774

B3 Linear Elasticity775

A linear elastic solid assumes that a solid exhibits very small reversible deformations776

under stress. Linear elasticity is described by the following relation:777

2 = `B∇us + `B (∇us)) + _BCA (∇us) �

where DB is the solid displacement vector (not to be confused with solid velocity *B), and778

`B and _B are the Lamé coefficients (Jasak & Weller, 2000).779

C Fracturing Instabilities780

The following figures demonstrate how different fracturing patterns can result from781

different solid fraction initializations. Here we set up two sets of four identical experi-782

ments. In the first set, the only difference between cases is the value of the standard devia-783

tion of their respective normally-distributed solid fraction field (all centered at qB = 0.64).784

These experiments follow the same simulation setup used for the fracturing case shown in785

Figure 4K.786

Figure A. Effects of the solid fraction field’s standard deviation on fracturing.

In the second set of experiments we simulated the base case presented in Figure 9787

with different solid fraction profiles picked from the same normal distribution qB = 0.6 ±788

0.05.789

Figures A and B clearly show that the created fractures are dependent on the initial790

solid fraction distribution.791
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Figure B. Effects of different solid fraction field initializations on fracturing.

List of Symbols792

U= Saturation of the non-wetting phase793

UF Saturation of the wetting phase794

2 Elastic (or plastic) solid stress tensor in the grid-based domain (Pa)795

3 Terzaghi stress tensor in the grid-based domain (Pa)796

H8,: Drag force exerted by phase : on phase 8 (Pa/m)797

J8,: Drag force exerted by phase : on phase 8 (Pa/m)798

L2,8 Surface tension force in the grid-based domain (Pa.m−1)799

g Gravity vector (m.s−2)800

n8, 9 Normal vector to the i-j interface in the continuous physical space801

nF0;; Normal vector to the porous surface802

Y Single-field fluid viscous stress tensor in the grid-based domain (Pa)803

tF0;; Tangent vector to the porous surface804

[ 5 Single-field fluid velocity in the grid-based domain (m/s)805

[A Relative velocity in the grid-based domain (m/s)806

[B Solid velocity in the grid-based domain (m/s)807

v8, 9 Velocity of the i-j interface in the continuous physical space (m/s)808

W Interfacial tension (Pa.m)809

` 5 Single-field viscosity (Pa.s)810

`8 Viscosity of phase 8 (Pa.s)811

a Poisson’s ratio812

[88 Phase-averaged velocity of phase 8 in the grid-based domain (m/s)813

[8 Superficial velocity of phase 8 in the grid-based domain (m/s)814

q 5 Porosity field815

qB Solid fraction field816

d 5 Single-field fluid density (kg/m3)817

d8 Density of phase 8 (kg/m3)818

g0 Plastic yield stress (Pa)819

\ Surface contact angle820

�8, 9 Interfacial area between phase 8 and 9 (m2)821

�U Parameter for the compression velocity model822
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� Young’s modulus (Pa)823

� Identity matrix824

: Apparent permeability (m2)825

:0 Absolute permeability (m2)826

:A ,8 Relative permeability with respect to phase 8827

" Total mobility (kg−1m3s−1)828

< Van Genuchten coefficient829

"8 Mobility of phase 8 (kg−1m3s−1)830

? Single-field fluid pressure in the grid-based domain (Pa)831

?2 Capillary pressure (Pa)832

?2,0 Entry capillary pressure (Pa)833

+ Volume of the averaging-volume (m3)834

+8 Volume of phase 8 in the averaging-volume (m3)835
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