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Introduction

Here we present the simulation and semi-analytical solution to the pressure behaviour

of an oscillating porelastic core. We also present alternative representations of Figures 5

and 6 from the main manuscript.
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Text S1. Pressure Oscillation in Poroelastic Core

This additional verification quantifies the effects of the seismic stimulation of a poroe-

lastic core saturated with water and trichloroethene (TCE). Our simulations follow the

experimental and numerical set up described in Lo, Sposito, and Huang (2012), where a

horizontal one-dimensional sand core (0.3 m long, 30 × 1 grid cells, φf = 0.5, αw = 0.9,

k0 = 1.1 × 10−11 m2) is subjected to constant uniaxial compression and oscillatory pore

pressure variations imposed by time-dependent boundary conditions (Figure S1). In this

case, flow is allowed through both boundaries, which results in a system that continuously

undergoes a relaxation-compression cycle. The ensuing cyclical change in the core’s fluid

content as a function of time can be described by a semi-analytical solution first derived

in Lo et al. (2012) and reproduced in the next section.

For our matching simulations, the porous structure’s Young’s modulus was set to E =

53 MPa and its Poisson ratio to ν = 0.32. Here, water density was ρw = 1000 kg/m3,

water viscosity was 1 cp, TCE density was ρTCE = 1480 kg/m3, and TCE viscosity was

µTCE = 0.57 cp. Furthermore, the pressure at the left boundary was held at p = 1 kPa

while the pressure at the right boundary was set by p = p0sin (2πft), with p0 = 1 - 2 MPa

and f = 35 - 70 Hz. Lastly, the core was uniaxially compressed through a constant stress

of 1 kPa applied at both boundaries. A comparison between our numerical solutions and

Lo’s semi-analytical solution is presented in Figure S1, yielding excellent agreement for

all tested cases.

Lastly, we note that the Multiphase DBB formulation should be able to describe ‘Slow”

Biot pressure waves caused by the relative motion of the solid and fluid phases which

occurs at much higher frequencies than the ones simulated here (i.e. 10 MHz). However,
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capturing these effects and modelling “Fast/Compressional” pressure waves would require

the implementation of a pressure-velocity coupling algorithm that allows for compressible

flow (Lo et al., 2012). Such an endeavour is outside the scope of this paper.
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Text S2. Semi-Analytic Solution for the Seismic Stimulation of a Poroelastic

Core

Here we present the analytical solution used to describe the system in the previous

section. Given a Biot coefficient of unity and incompressible fluids, the fractional change

in an oscillating poroelastic core’s fluid content Ω as a function of time t is given by (Lo

et al., 2012)

Ω (t) = −a1υ + a2αwpa + 0.5 (a2p0sin(ωt) − a2αwpa) +
∞∑
n=1

A

A = (nπ)−22cos (nπ) a2p0

sin (ωt) +
ω2
nsin (ωt+ δn)

((ω2 − ω2
n)

2
+D2ω2)

0.5

 (1 − cos (nπ) )

where υ is the uniaxial confining pressure, pa is the fixed pressure at the left boundary,

p0 is the amplitude of the oscillating pressure at the right boundary, and ω = 2πf is the

angular frequency of the pressure variation. The summation terms ωn and sin (δn) are

defined as

ωn =

(
Cnπ

Length

)2

sin (δn) =
Dω

((ω2 − ω2
n)

2
+D2ω2)

0.5
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ω2 − ω2

n

((ω2 − ω2
n)

2
+D2ω2)

0.5

Furthermore, the dissipation constant D, the wave speed C, and the compressibility

constants a1 and a2 are defined as follows

D =
1

k0

1
T
φf

(
ρwMw

αw
+ ρnMn

αn

)
− (ρwMw + ρnMn)
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C2 =
(
Kb +

4

3
G
)

M
T
φf

(
ρwMw

αw
+ ρnMn

αn

)
− (ρwMw + ρnMn)

a1 = (3Kb)
−1

a2 = K−1b

where T = 0.5
(
1 + φ−1f

)
is the tortuosity, Kb is the bulk modulus of the solid matrix, G

is the shear modulus of the solid matrix, and the rest of the variables are defined as in the

main manuscript. The infinite sum was calculated through a python script, where it was

truncated at the point where the last sum term represented 0.01% of the previous term.
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Figure S1. Change in fluid content of an oscillating poroelastic core. (A) Simulation

setup. (B) Semi-analytical (solid lines) and numerical solutions (symbols) for the percent

change in the core’s fluid volume as a function of time.
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Figure S2. Wellbore pressure evolution during fluid-induced fracturing of low

permeability rocks. Here we show how we sync the fracturing analytical solution

shown in (Barros-Galvis et al., 2017) together with raw numerical data through non-

dimensionalization of time.
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Figure S3. Alternative to Figure 6 depicting dimensionalized wellbore pressure as a

function of injection rate and time. (A) A fractured system, where the thin black line

represents the position of the advancing glycerin-air interface. (B) The wellbore pressure

as a function of time for different flow rates and different yield stress-permeability pairs.

Solid curves represent analytical solutions, while symbols represent the simulated data

points. The color scheme in A is the same as in Figure 4 in the main manuscript.

Figure S4. Equilibrium state of the coastal barrier case shown in Figure 8 within the

main manuscript. The color scheme and simulation setup is the same as in said figure.
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