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Introduction  

The supporting information include additional methods and results that are relevant but 

not critical to the conclusions of the paper. Contents include: 

• a brief explanation and list of equations used to calculate vegetation indices 

included in the study; 

• several figures that present supplemental information using similar methods as 

described in the main manuscript. 
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Text S1. Equations for calculating vegetation indices 

 

The normalized difference vegetation index (NDVI; Tucker, 1979), photochemical 

reflectance index (PRI; Gamon et al., 1992), and chlorophyll index (ChlorophyllRS; Datt, 

1999; Magney et al., 2019) were calculated using the below equations using canopy 

reflectance observed by the broadband Flame spectrometer (Ocean Optics Inc.). Rλ 

represents the reflectance at a wavelength of λ nm, or in the red (620-670 nm) or near-

infrared (NIR; 830-860 nm) regions of the electromagnetic spectrum. 

 

 NDVI = (RNIR – RRed)/(RNIR + RRed) (S1) 

 

 PRI = (R531 – R570)/(R531 – R570) (S2) 

 

 ChlorophyllRS = (R850 – R710)/(R850 – R680) (S3) 
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Figure S1. Observations of gross primary productivity (GPP) at US-UMB for 2007-2017 

(a-k) and composite means of years with and without late-summer dips in productivity 

(l). In panel l, the mean of 2007, 2013, 2014, 2016, and 2018 is shown in red as years 

experiencing summer losses in productivity, while the mean of 2010, 2011, 2015, 2017, 

and 2019 is shown in blue as years that did not see summer losses (see also Figure 1a). 

The black line in panels a-k represents the 2007-2019 multi-year mean. Shading in all 

panels represents ±1 standard deviation of the respective multi-year means. 
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Figure S2. Correlation plots between red solar-induced chlorophyll fluorescence (SIF) 

and GPP at 90-minute (a, b), daily (c), and weekly (d) temporal resolution observations. 

Color bars are weighted by day of year (b-d) or by hour of day (a).   

 

 

 

Figure S3. Correlation plot between daily-averaged red SIF and photosynthetically active 

radiation (PAR). Color bar is weighted by day of year.   
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Figure S4. Slopes and correlation coefficients from monthly linear fits of daily-averaged 

GPP (a, b) and far-red SIF (c, d) with PAR. Data from 2018 are in red, while 2019 data are 

in blue. Error bars represent the standard deviations of results from a bootstrapping 

method used to test the robustness of the linear regressions.  

 

 

 

Figure S5. Correlation plot between daily-averaged relative far-red (a) and red (b) SIF 

and GPP/PAR, an LUE proxy. Color bar is weighted by day of year.   
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Figure S6. Correlation plot between 90-minute far-red SIF and GPP observations. Color 

scale is weighted by the red:far-red SIF ratio. (Compare with Figure 7b from Magney et 

al., 2019.)   
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