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Abstract 14 

The mixing and mingling of magmas of different compositions are important geological pro-15 

cesses. They produce various distinctive textures and geochemical signals in both plutonic 16 

and volcanic rocks and have implications for eruption triggering. Both processes are widely 17 

studied, with prior work focusing on field and textural observations, geochemical analysis of 18 

samples, theoretical and numerical modelling, and experiments. However, despite the vast 19 

amount of existing literature, there remain numerous unresolved questions. In particular, how 20 

does the presence of crystals and exsolved volatiles control the dynamics of mixing and min-21 

gling? Furthermore, to what extent can this dependence be parameterised through the effect 22 

of crystallinity and vesicularity on bulk magma properties such as viscosity and density? In 23 

this contribution, we review the state of the art for models of mixing and mingling processes 24 

and how they have been informed by field, analytical, experimental and numerical investiga-25 

tions. We then show how analytical observations of mixed and mingled lavas from four vol-26 

canoes (Chaos Crags, Lassen Peak, Mt. Unzen and Soufrière Hills) have been used to infer a 27 

conceptual model for mixing and mingling dynamics in magma storage regions. Finally, we 28 

review recent advances in incorporating multi-phase effects in numerical modelling of mix-29 

ing and mingling, and highlight the challenges associated with bringing together empirical 30 

conceptual models and theoretically-based numerical simulations. 31 

 32 

1 Introduction: Magma mixing and mingling and volcanic plumbing systems 33 
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It is now widely accepted that magmas of different compositions can mix and mingle together 34 

(Blake et al., 1965; Eichelberger, 1980; Sparks & Marshall, 1986, Wiebe, 1987; Snyder, 35 

1997; Wilcox, 1999; Perugini & Poli, 2012; Morgavi et al., 2019). Textural consequences of 36 

mingling have long been observed (Phillips, 1880; Judd, 1893) although the earliest observa-37 

tions were not necessarily interpreted correctly (Wilcox, 1999), with heterogeneities inter-38 

preted as originating from metasomatism (Fenner, 1926) or solid-state diffusion (Nockolds, 39 

1933). Advancements in geochemical analysis combined with an understanding of phase 40 

equilibria led to acknowledgement of mixing and mingling as key processes, alongside crys-41 

tal fractionation, in producing the compositional diversity of igneous rocks (Vogel et al., 42 

2008). Additionally, interaction between magmas became recognised as a potential trigger for 43 

volcanic eruptions (Sparks et al., 1977). Evidently, understanding mixing and mingling pro-44 

cesses is crucial for deciphering the evolution of igneous rocks and the eruptive dynamics of 45 

volcanoes. 46 

 47 

Previous work has sometimes been flexible with regards to precise definitions of the terms 48 

‘mixing’ and ‘mingling’. We here define mixing to be chemical interaction between two 49 

magmas that produces a composition intermediate between the original end-members (Bun-50 

sen, 1851). Chemical mixing proceeds by chemical diffusion (Watson, 1982; Lesher, 1994) 51 

and, if allowed to complete, leads to hybridisation and homogeneous products (Humphreys et 52 

al., 2010). By contrast, mingling is the physical interaction of the two magmas, such as 53 

through convective stirring (e.g., Oldenburg et al., 1989) or chaotic advection (e.g., Perugini 54 

& Poli, 2004; Morgavi et al., 2013), and creates compositional heterogeneities. Mixing and 55 

mingling often occur together, with mixing acting to ‘smooth–out’ compositional heterogene-56 

ities produced by mingling. However, mixing and mingling can be inhibited by large con-57 

trasts in magma viscosity (Sparks & Marshall, 1986; Frost & Mahood, 1987; Sato & Sato, 58 

2009) and density (Blake & Fink, 1987; Koyaguchi & Blake, 1989; Grasset & Albarade, 59 

1994). If homogenisation is sufficiently slow then cooling and/or degassing of the system can 60 

lead to crystallisation and preservation of a variety of textural and chemical signatures 61 

(D’Lemos, 1987; Morgavi et al., 2016) reflecting the temperatures, compositions, crystallini-62 

ties and relative proportions of the initial magmas (Eichelberger, 1980; Bacon, 1986; Sparks 63 

& Marshall, 1986). 64 

 65 

Mixing and mingling models typically assume injection of a hotter, mafic magma into a 66 

cooler, more felsic host (Campbell & Turner, 1989; Clynne, 1999). This can be followed by 67 
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later intrusion (or back-injection) of veins and pipes of remobilised felsic material into the 68 

mafic component (Elwell et al., 1960; 1962; Wiebe, 1992; 1994; 1996; Wiebe & Collins, 69 

1998; Wiebe et al, 2002; Wiebe & Hawkins, 2015). Such injections have been modelled ex-70 

perimentally (Huppert et al., 1984, 1986; Campbell & Turner, 1986; Snyder & Tait, 1995; 71 

Perugini & Poli, 2005), theoretically (Sparks & Marshall, 1986) and numerically (Andrews & 72 

Manga, 2014; Montagna et al., 2015). Additionally, heat and volatile transfer from the mafic 73 

to the felsic end-member induces physico-chemical responses in both magmas. The mafic 74 

component undergoes crystallisation and degassing due to undercooling (Eichelberger, 1980; 75 

Cashman & Blundy, 2000; Coombs et al., 2002; Petrelli et al., 2018), leading to an increase 76 

in bulk viscosity (Caricchi et al., 2007; Mader et al., 2013) and potentially a decrease in den-77 

sity (if bubbles of the exsolved gas phase remains trapped), whereas the felsic magma par-78 

tially melts due to super-heating (Pistone et al., 2017). This can create a temporal window 79 

where the bulk viscosities of the two magmas become closer thereby facilitating mingling 80 

and mixing before continued crystallisation of the mafic magma increases its viscosity. An-81 

other scenario is mixing and mingling between partially-molten silicic rocks and a hot, rhyo-82 

litic injection (Bindeman and Simakin, 2014), which is important for the formation of large, 83 

eruptible magma bodies containing crystals mixed from different portions of the same magma 84 

storage system (antecrysts; Francalanci et al., 2011; Ubide et al., 2014; Stelten et al., 2015; 85 

Bindeman & Melnik, 2016; Seitz et al., 2018). In all cases, the physico-chemical changes and 86 

their associated timescales govern the style of mixing, the resultant textures and the eruptive 87 

potential. 88 

 89 

1.1 Chemical mixing 90 

Chemical mixing occurs through the diffusion of different components along spatial gradients 91 

in chemical potential (Adkins, 1983) to create homogeneous products. If all components have 92 

equal diffusivities, the mixing of two chemically-distinct magmas gives rise to linear trends 93 

on Harker-type variation diagrams (Harker, 1909) that can be used to constrain the end-mem-94 

ber compositions. Non-linear mixing trends produced by variable diffusivities amongst melt 95 

components, including trace elements (Nakamura & Kushiro, 1998; Perugini et al., 2008; Pe-96 

rugini et al., 2013), are also common and have been identified in various localities (Reid et 97 

al., 1983; Bacon & Metz, 1984; Cantagrel et al., 1984; Gourgaud & Maury, 1984; Bateman, 98 

1995; Bacon, 1986; Coombs et al., 2000; Troll & Schmicke, 2002; Perugini et al., 2003; 99 

Choe & Jwa, 2004; Janoušek et al., 2004; Prelević et al., 2004; Kumar & Rino, 2006; 100 

Ruprecht et al., 2012; Kim et al., 2014; Weidendorfer et al., 2014). Further complexity arises 101 
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from uphill diffusion in some species (e.g. Sr, Nd, Al), since diffusion is governed by gradi-102 

ents in chemical potential rather than concentration, and the temporal dependence of diffusiv-103 

ities in mixing events caused by changes in temperature and bulk composition (Lesher, 1994; 104 

Bindeman & Davis, 1999).  105 

 106 

Evidence of mixing is preserved primarily at the microscale since the relatively slow rate of 107 

diffusion alone (Morgan et al., 2008; Acosta-Vigil et al., 2012) cannot redistribute chemical 108 

components over large spatial scales (Bindeman & Davis, 1999). Crystals, in particular, can 109 

preserve chemical records of changing storage conditions that can be associated with mixing. 110 

For instance, resorption zones and reverse zoning in plagioclase might indicate changes to 111 

more mafic melt compositions, possibly due to multiple mixing events (Hibbard, 1981; 112 

Tsuchiyama, 1985; Lipman et al., 1997). The mixing history can be determined by combining 113 

these observations with methodologies such as major-element (Rossi et al., 2019), trace-ele-114 

ment (Humphreys et al., 2009) and isotopic analyses (Davidson et al., 2007), along with 115 

measurements from the bulk rock or other minerals. This can include timescales of mixing 116 

(Chamberlain et al., 2014; Rossi et al., 2019) and ascent (Humphreys et al., 2010), tempera-117 

tures and pressures of mixing (Samaniego et al., 2011), and the relative contribution of pro-118 

cesses such as fractional crystallisation (Foley et al., 2012; Ruprecht et al., 2012; Scott et al., 119 

2013). 120 

 121 

1.2 Physical mingling 122 

Mingling results from fluid flow, either directly due to shear between two magmas during in-123 

jection, or as a consequence of buoyancy-driven convection. Although mingling cannot occur 124 

in the complete absence of mixing, if convection timescales are shorter than diffusive time-125 

scales, mingling dominates the interaction and produces heterogeneities that are preserved as 126 

mingling textures if the magma cools and consolidates before homogenisation is complete. 127 

Examples include composite dykes and sills (Wiebe, 1973), intermingled layered intrusions 128 

of alternating composition (Wiebe, 1993; Wiebe, 1998), banded pumice (Clynne, 1999), and 129 

mafic enclaves (Eichelberger, 1980). Enclaves are perhaps the most widely-reported mingling 130 

texture and are widespread in both plutonic (D’Lemos, 1986; 1996; Topley et al., 1990; 131 

Blundy & Sparks, 1992; Williams & Tobisch, 1994; Baxter & Feeley, 2002) and volcanic 132 

(Bacon, 1986; Martin et al., 2006; Browne et al., 2006a,b; Perugini et al., 2007; Fomin & 133 

Plechov, 2012) settings. Enclaves are produced by disaggregation of intrusions into host mag-134 

mas (Eichelberger, 1980; Thomas, et al., 1993; Tepley et al., 1999; Perugini & Poli, 2005; 135 
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Hodge, et al., 2012a; 2012b; Caricchi et al., 2012; Andrews & Manga, 2014; Vetere et al., 136 

2015); Figure 1 illustrates the sizes, shapes and crystallinities that can result. Enclaves often 137 

contain crystals mechanically transferred from the surrounding host magma (xenocrysts), 138 

which can be interrogated to infer conditions (e.g., temperature, crystallinity, melt or bulk 139 

rock composition) at the time of mixing (Reid et al., 1983; Cantagrel et al., 1984; Wiebe, 140 

1993; Coombs et al., 2000; Humphreys et al., 2009; Borisova et al., 2014; Ubide et al., 2014). 141 

 142 

The multi-phase nature of magma is important for mingling dynamics. Experiments have 143 

demonstrated that the presence of phenocrysts can enhance mixing (Kouchi & Sunagawa, 144 

1983; 1985) although a crystal framework can also inhibit efficient mingling (Laumonier et 145 

al., 2014; 2015). Crystallisation-induced degassing (Cashman & Blundy, 2000) of the mafic 146 

end-member due to heat and water loss to the felsic component (Pistone et al., 2017) causes 147 

the exsolution of buoyant volatile phases that can enhance mingling (Eichelberger, 1980; 148 

Wiesmaier et al., 2015). There is also growing recognition that magma storage systems are 149 

dominated by mushy regions with melt concentrated in isolated, possibly transient, lenses 150 

(Hildreth, 1981; 2004; Bachmann & Huber, 2016; Cashman et al., 2017; Sparks et al., 2019). 151 

Despite this, many studies continue to model mingling as taking place between two crystal-152 

free fluids in a vat (Montagna et al., 2015). Such a picture is hard to reconcile with evidence 153 

from petrological analysis (Turner and Costa, 2007; Druitt et al., 2012; Cooper, 2017) and the 154 

lack of geophysical evidence for large extended bodies of melt (Sinton and Detrick, 1992; 155 

Miller and Smith, 1999; Farrell et al., 2014; Pritchard et al., 2018). It is therefore clear that 156 

the presence of crystals and volatiles, and their effect on magma rheology (Caricchi et al., 157 

2007; Mueller et al., 2010; Pistone et al., 2012; Mader et al., 2013), must be accounted for 158 

when modelling mingling (Hodge et al., 2012; Andrews & Manga, 2014; Laumonier et al., 159 

2014). 160 

 161 

2) Controls on magma mingling: Observations, experiments, and numerical models 162 

 163 

2.1 Field observations 164 

Mingling textures preserved in the field record the varying extents to which magma mingling 165 

can occur. At one extreme, mafic sheets in granite plutons (Bishop & French, 1982; Topley et 166 

al., 1990; Wiebe, 1993, 1998) provide an example of individual intrusions that remain intact 167 

following injection. Multiple injected sheets can create layered intrusions that remain hot for 168 

an extended period of time, although such layers could also result from porosity waves within 169 
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a mush (Jackson & Cheadle, 1998; Solano et al., 2012). When buoyant (silicic and volatile-170 

rich) layers underlie mafic sheets, irregular protrusions or pipes of felsic magma are gener-171 

ated by gravitational instabilities and can penetrate the overlying mafic sheets (Fig. 2; Elwell 172 

et al., 1960; 1962; d’Ars & Davy, 1991; Snyder & Tait, 1995; Caroff et al., 2011). By con-173 

trast, examples of intimate mingling include compositionally-banded pumice (Clynne, 1999; 174 

Andrews & Manga, 2014), which might have hybridised fully had eruption not interrupted 175 

the mixing process. Enclaves represent an intermediate outcome between layered intrusions 176 

and banded/hybridised products and are the preserved fragments of a disaggregated mafic in-177 

trusion into a more felsic body. Some, but not all, show fine-grained quenched margins and 178 

coarse, vesicular cores suggesting slower cooling towards the centre of the enclave (Eichel-179 

berger 1980; Bacon & Metz, 1984; Bacon, 1986; Blundy & Sparks, 1992; Browne et al., 180 

2006a).  181 

 182 

In mingled rocks, it is common to find crystals derived from one mixing end-member resid-183 

ing in the other (Fig. 3). Such xenocrysts have been found in composite dykes (Judd, 1893; 184 

King 1964, Prelević et al., 2004; Litvinovsky et al., 2012; Ubide et al. 2014), mafic sheets 185 

(Wiebe, 1993; Wiebe & Collins, 1998; Bishop & French, 1982; Topley et al., 1990) and ba-186 

saltic lava flows (Iddings, 1890; Diller, 1891; Hiess et al., 2007) but are most commonly de-187 

scribed in mafic enclaves hosted in both volcanic (Fenner, 1926; Bacon & Metz, 1984; Bacon 188 

1986; Stimac & Pearce, 1992; Coombs et al., 2000; Murphy et al., 2000; Leonard, 2002; 189 

Browne et al., 2006a; Martin et al., 2006; Humphreys et al., 2009; Ruprecht et al., 2012; 190 

Borisova et al., 2014) and plutonic (Reid et al., 1983; D’Lemos, 1986, 1996; Frost & Ma-191 

hood, 1987; Larsen & Smith, 1990; Pin et al., 1990; Vernon, 1990; Blundy & Sparks, 1992; 192 

Wiebe, 1994; Bateman, 1995; Wiebe et al., 1997; Akal & Helvaci, 1999; Silva et al., 2000; 193 

Baxter & Feeley, 2002; Kim et al., 2002; Choe & Jwa, 2004; Janoušek et al., 2004; Wada et 194 

al., 2004; Kumar & Rino, 2006; Şahin, 2008; Xiong et al., 2012; Kim et al., 2014) rocks. 195 

Textures within these minerals, such as reaction rims on olivine xenocrysts in andesites, can 196 

be used to estimate magma ascent timescales (Reagan et al., 1987; Matthews et al., 1992, 197 

1994; Dirksen et al., 2014; Zhang et al., 2015). Transfer of different minerals can also influ-198 

ence the mixing signature on Harker diagrams (Ubide et al., 2014). Crystal transfer is likely 199 

to be accompanied by entrainment of its original melt (Cantagrel et al., 1984; Gourgaud & 200 

Maury, 1984; Coombs et al., 2000; Wright et al., 2011; Perugini & Poli, 2012; Ubide et al., 201 

2014). However, direct observation of entrained melt is rare in natural volcanic examples 202 

(Wright et al., 2011) and is not evident in plutons where melts hybridise and crystallise. One 203 
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example (Fig. 3b) shows an olivine xenocryst in an andesitic lava flow (White Island, New 204 

Zealand), where the crystal is surrounded by a film of basaltic glass (light grey), that is 205 

clearly distinct from the bulk of the lava (dark grey) and is the original melt from which the 206 

olivine crystallised. Such entrainment provides a mechanism by which the crystal’s original 207 

magma can ‘dilute’ the intrusion (Perugini & Poli, 2012; Ubide et al., 2014) and enhance 208 

mingling. However, outstanding questions concerning the role of crystal shape on entrain-209 

ment remain. 210 

 211 

In addition to xenocryst capture, evidence for crystal transfer from the enclave back to the 212 

host is provided by disequilibrium phenocryst textures indicative of interaction with a more 213 

mafic magma (Cantagrel et al., 1984; Stimac & Pearce, 1992; Clynne, 1999; Nakada & Mo-214 

tomura, 1999; Tepley et al., 1999; Coombs et al., 2000; Troll & Schmincke, 2002; Ruprecht 215 

& Wörner, 2007; Humphreys et al., 2009; Ruprecht et al., 2012). This can occur through dis-216 

aggregation of xenocrystic enclaves which disperse their load into the host (Tepley et al., 217 

1999; Humphreys et al., 2009; Fomin & Plechov, 2012).  218 

 219 

2.2 Analogue experiments 220 

Early analogue experiments used non-magmatic fluids and particles to model magma min-221 

gling by injecting one viscous fluid into another (Huppert et al., 1984, 1986; Campbell & 222 

Turner, 1986). These studies considered magmas as pure melts and demonstrated that large 223 

viscosity contrasts prohibit efficient mingling. Field observations that some mafic magmas 224 

became vesiculated in response to undercooling by the host magma (Eichelberger, 1980; Ba-225 

con & Metz, 1984; Bacon, 1986) motivated experiments focussed on bubble transfer from 226 

one viscous layer into another, and demonstrated that the rise of bubble plumes could cause 227 

mingling (Thomas et al., 1993; Phillips & Woods, 2001; 2002). Recent experiments have ex-228 

amined the effect of crystals on intrusion break-up. For example, Hodge et al. (2012) injected 229 

a particle-rich corn syrup (high density and viscosity) into a large, horizontally sheared body 230 

of particle-free corn syrup (low density and viscosity) to model the injection of cooling (par-231 

tially crystallised) mafic magma into a convecting magma chamber. They found that low par-232 

ticle concentrations caused the injection to fragment and form ‘enclaves’, whereas at high 233 

particle concentrations it remained intact and formed a coherent layer. Although no analogue 234 

experiments have considered liquid injection into variably crystalline suspensions, experi-235 

ments with gas injection into particle-liquid suspensions show a strong control of particle 236 
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concentration and injection style, with a threshold between ductile and brittle behaviour at 237 

random close packing (Oppenheimer et al., 2015; Spina et al., 2016). 238 

 239 

2.3. High-temperature and/or high-pressure experiments 240 

Investigations of magma interactions in high-temperature and/or high-pressure experiments 241 

can be broadly divided into two categories. Static experiments consider the juxtaposition of 242 

heated magmas and study mixing resulting from the diffusion of different melt components 243 

(Watson & Jurewicz, 1984; Carroll & Wyllie, 1989; Wylie et al., 1989; Van der Laan & 244 

Wyllie, 1993). Fluid motion can still occur in these static experiments, as variable diffusion 245 

rates between elements can create density gradients that drive compositional convection 246 

(Bindeman & Davis, 1999). Additionally, since water diffuses much more rapidly than other 247 

components (Ni & Zhang, 2008), transfer of water from hydrous mafic magmas to silicic 248 

bodies lowers the liquidus temperature of the latter, leading to undercooling and the produc-249 

tion of quenched margins in the mafic member, even without a temperature contrast (Pistone 250 

et al., 2016a). Bubbles that exsolve in a lower, mafic layer can also rise buoyantly into the 251 

upper layer, entraining a filament of mafic melt behind them (Wiesmaier et al., 2015). Such 252 

bubble-induced mingling can be highly efficient and has also been documented in natural 253 

samples (Wiesmaier et al., 2015). It has been proposed that a similar style of mingling can 254 

occur through crystal settling (Renggli et al., 2016; Jarvis et al., 2019). 255 

 256 

Dynamic experiments apply shear across the interface between two magmas and reproduce 257 

mingling behaviour. The shear can be applied in various ways, with a rotating parallel plate 258 

geometry (Kouchi & Sungawa, 1982; 1985, Laumonier et al., 2014; 2015), a Taylor-Couette 259 

configuration (De Campos et al., 2004, 2008; Zimanowski et al., 2004; Perugini et al., 2008), 260 

a Journal Bearing System (De Campos et al., 2011; Perugini et al., 2012) or by using a centri-261 

fuge (Perugini et al., 2015). These experiments have produced a variety of textures from ho-262 

mogenous mixed zones to banding. When pure melts are used, the combination of diffusional 263 

fractionation and chaotic advection can produce phenomena such as double-diffusive convec-264 

tion (De Campos et al., 2008) and reproduce non-linear mixing trends for various major and 265 

trace elements (Perugini et al., 2008; De Campos et al., 2011). Experimental results also sug-266 

gest new quantities to describe the completeness of mixing, such as the concentration vari-267 

ance (Perugini et al., 2012) and the Shannon entropy (Perugini et al., 2015). Where crystals 268 

are considered, the presence of phenocrysts can enhance mingling by creating local velocity 269 

gradients and disturbing the melt interface (Kouchi & Sunagawa, 1982; 1985; De Campos et 270 
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al., 2004). In contrast, other studies (Laumonier et al., 2014: 2015) have shown that the pres-271 

ence of a crystal framework in the mafic member prevents mingling, whilst the presence of 272 

water can enhance mingling by lowering the liquidus temperature, and thus the crystallinity, 273 

of the magma (Laumonier et al., 2015).  274 

 275 

2.4 Numerical models 276 

Sparks and Marshall (1986) developed the first simple model to describe viscosity changes 277 

caused by thermal equilibration of a hot mafic magma and a cooler silicic magma, and the re-278 

sulting (limited) time-window in which mingling/mixing can occur. More sophisticated mod-279 

els have simulated mingling between melts driven by double-diffusive convection (Olden-280 

burg, 1989), compositional melting (Kerr, 1994; Cardoso & Woods, 1996) and the Rayleigh-281 

Taylor instability (Semenov & Polyansky, 2017). Another group of studies has used single-282 

phase models to simulate elemental diffusion and advection in a chaotic flow field (Perugini 283 

& Poli, 2004; Petrelli et al., 2006). These models reproduce naturally-observed geochemical 284 

mixing relationships, including linear-mixing trends between elements with similar diffusion 285 

coefficients and large degrees of scatter when diffusion coefficients differ (Perugini & Poli, 286 

2004; Nakamura & Kushiro, 1998). Interestingly, the simulations produce both regular and 287 

chaotic regions, which are unmixed and well-mixed, respectively, and have been interpreted 288 

to correspond to enclaves and host rock (Petrelli et al., 2006). This framework has been ex-289 

tended to account for a solid crystal-phase (Petrelli et al., 2016) by including a Hershel-Buck-290 

ley shape-dependent rheology (Mader et al., 2013) and a parameterisation of the relationship 291 

between temperature and crystallinity (Nandedekar et al., 2014). This body of work has 292 

demonstrated that chaotic advection can speed-up homogenisation. 293 

 294 

Models of mixing and mingling that consider two-phase magmas containing either solid crys-295 

tals or exsolved volatiles often assume coupling between the phases. In this way, the solid or 296 

volatile phase can be represented as a continuous scalar field and the resultant effect on rheol-297 

ogy is accounted for through a constitutive relationship. For example, Thomas and Tait 298 

(1997) used such a framework to show that volatile exsolution in an underplating mafic 299 

magma could create a foam at the interface with an overlying silicic magma. Depending on 300 

the exsolved gas volume fraction and melt viscosity ratio, mixing and mingling could then 301 

proceed through foam destabilisation, enclave formation, or a total overturn of the system. 302 

Folch and Martí (1998) showed analytically that such exsolution could lead to overpressures 303 

capable of causing volcanic eruptions. Recent finite-element models show that injection of a 304 
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volatile-rich mafic magma into a silicic host can cause intimate mingling when viscosities 305 

and viscosity contrasts are low (Montangna et al., 2015; Morgavi et al., 2019). The combina-306 

tion of reduced density in the chamber and the compressibility of volatiles can (non-intui-307 

tively) lead to depressurisation in the chamber (Papale et al., 2017), which is important for 308 

interpretation of ground deformation signals (McCormick Kilbride et al., 2016).  309 

 310 

The effect of crystals on mixing and mingling has also been modelled by treating the crystals 311 

as a continuous scalar field. Examples include simulations of mixing across a vertical inter-312 

face between a crystal suspension (30% volume fraction) and a lighter, crystal-free magma 313 

(Bergantz, 2000), and injection of a mafic magma into a silicic host with associated melting 314 

and crystallisation (Schubert et al., 2013). The role of crystal frameworks in both the intrud-315 

ing and host magma is addressed by Andrews and Manga (2014), who model the role of ther-316 

mal convection in the host, and associated shear stress on the intruding dyke. If convection 317 

occurs whilst the dyke is still ductile, then mingling will produce banding. Otherwise, the 318 

dyke will fracture to form enclaves. Woods and Stock (2019) have also coupled thermody-319 

namic and fluid modelling to simulate injection, melting and crystallisation in a sill-like ge-320 

ometry.  321 

 322 

Finally, isothermal computational fluid dynamic simulations have been used to examine the 323 

case of aphyric magma injecting into a basaltic mush. For sufficiently slow injection rates, 324 

the new melt percolates through the porous mush framework, whereas for faster injections, 325 

fault-like surfaces delimit a “mixing bowl” within which the crystals fluidise and energetic 326 

mixing takes place (Bergantz et al., 2015; 2017; McIntire et al., 2019; Schleicher & Bergantz, 327 

2017; Schleicher et al., 2016). By explicitly modelling the particles with a Lagrangian 328 

scheme it is possible to account for particle-scale effects, including lubrication forces (Car-329 

rara et al., 2019), that are neglected when using constitutive relations from suspension rheol-330 

ogy. These simulations suggest that mushes with ≤ 60% crystals can be mobilised by injec-331 

tion, but neglect welded crystals or recrystallisation of crystal contacts. Furthermore, geo-332 

physical observations suggest that mushes spend the majority of their lifetimes with much 333 

higher crystallinities (80-90%; Sinton and Detrick, 1992; Farrell et al., 2014; Pritchard et al., 334 

2018). 335 

 336 

3) Petrologic constraints on mingling conditions: Petrographic interpretations 337 
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Here, through the use of examples, we show how the texture and chemistry of enclaves and 338 

xenocrysts have been interrogated to interpret information on mixing and mingling processes. 339 

Although many studies have examined mixed and mingled rocks from both plutonic and vol-340 

canic realms, here we review work on examples from four volcanoes (Chaos Crags and Las-341 

sen Peak, both USA; Mt. Unzen, Japan; and Soufrière Hills, Montserrat) which have erupted 342 

intermediate composition lavas containing mafic enclaves (Fig. 4). We use common features, 343 

as recorded in the literature and augmented by an additional sample of Mt. Unzen lava from 344 

the 1792 dome collapse deposit, to develop a conceptual model that describes how volatile 345 

and crystals contents control mixing and mingling in magma storage regions. We analyse the 346 

latter using back-scatter electron images (BSE) obtained using both a Hitachi S-3500N (Uni-347 

versity of Bristol) and a Tescan Mira II (University of Lausanne) scanning electron micro-348 

scope (SEM). Plagioclase compositions were measured on a Cameca SX100 (University of 349 

Bristol) with an accelerating voltage of 20 kV, emission current of 10 nA and a spot size of 3 350 

μm. 351 

 352 

3.1. Volcanic systems 353 

 354 

3.1.1 Chaos Crags 355 

Chaos Crags comprises of a series of enclave-bearing rhyodacite lava domes that erupted be-356 

tween 1125 and 1060 years ago (Clynne, 1990). The host lavas are crystal-rich, containing 357 

phenocrysts of plagioclase, hornblende, biotite and quartz, whilst the enclaves are basaltic an-358 

desite to andesite with occasional olivine, clinopyroxene and plagioclase phenocrysts in a 359 

groundmass of amphibole and plagioclase microphenocrysts (Heiken & Eichelberger, 1980). 360 

Many, but not all, enclaves have fine-grained and crenulated margins and all contain resorbed 361 

phenocrysts captured from the host (Fig. 4a). Some phenocrysts in the host also show resorp-362 

tion textures (Tepley et al., 1999). 363 

 364 

3.1.2 Lassen Peak 365 

Lassen Peak erupted in 1915, producing a dacite dome and lava flow followed by a sub-Pli-366 

nian eruption that deposited two types of pumice: homogeneous dacite and banded dacite/an-367 

desite. The dome and flow are porphyritic with phenocrysts of plagioclase, biotite, horn-368 

blende and quartz in a glassy, vesicular groundmass containing microphenocrysts of plagio-369 

clase, pyroxenes and Fe-Ti oxides. The dacite dome and lava flow also contain xenocryst-370 

bearing andesitic enclaves with equigranular texture and a lack of crenulated margins (Fig. 371 
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4b; Clynne, 1999). The enclaves have olivine phenocrysts (which occasionally appear as xen-372 

ocrysts in the host) with plagioclase and pyroxene microphenocrysts. 373 

 374 

3.1.3 Mt. Unzen 375 

Mt. Unzen has erupted lavas and domes since 300-200 ka (Hoshizumi et al., 1999), most re-376 

cently during the 1991-1995 eruption. With the exception of an andesitic lava flow from 377 

1663, Mt. Unzen lavas are consistently dacitic, containing basaltic to andesitic enclaves 378 

(Hoshizumi et al., 1999; Browne et al., 2006a). Dacite erupted in the 1991-1995 eruption is 379 

porphyritic with about 20% phenocrysts of plagioclase, hornblende, biotite and quartz, with 380 

plagioclase, pargasite, pyroxenes, apatite and Fe-Ti oxides occurring as microlites in a highly 381 

crystalline groundmass (Nakada & Fuji, 1993; Nakada et al., 1999; Nakada & Motomura, 382 

1999; Venezky & Rutherford, 1999; Cordonnier et al., 2009; Hornby et al., 2015). Two types 383 

of enclaves are observed: porphyritic and equigranular. Porphyritic enclaves contain large 384 

crystals of plagioclase, hornblende and rare quartz within a finer groundmass of plagioclase 385 

and hornblende microphenocrysts, minor amounts of clinopyroxene and olivine, and intersti-386 

tial glass (Fig. 4c). The overall crystallinity is 70-90%. Equigranular enclaves contain equant 387 

microphenocrysts of plagioclase with smaller quantities of hornblende and orthopyroxene 388 

(Browne et al., 2006a).  389 

 390 

3.1.4 Soufrière Hills 391 

The 1995-2010 Soufrière Hills eruption produced a series of andesitic lava domes containing 392 

enclaves of basaltic to basaltic-andesitic composition (Wadge et al., 2014; Plail et al., 2014). 393 

The andesite contains approximately 40% phenocrysts (plagioclase, hornblende, orthopyrox-394 

ene, Fe-Ti oxides and minor quartz) in a much finer-grained groundmass with up to 25% 395 

glass (Murphy et al. 2000; Humphreys et al., 2009; Edmonds et al., 2016). The enclaves have 396 

a diktytaxitic groundmass of plagioclase, pyroxenes, amphibole and Fe-Ti oxides with larger 397 

xenocrysts inherited from the andesite (Fig. 4d). Some enclaves have crenulated and fine-398 

grained margins, whereas others are more equigranular and of a less mafic composition (Mur-399 

phy et al., 2000; Plail et al., 2014; 2018). 400 

 401 

3.2 Phenocryst, xenocryst and groundmass textures and chemistries 402 

 403 

3.2.1 Enclave groundmass textures 404 
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The enclaves from all four volcanoes show both similar and contrasting textural features. At 405 

Chaos Crags, most enclaves have fine-grained and crenulate margins (Fig. 4a; Tepley et al., 406 

1999), although those erupted in later domes are more angular and lack fine-grained margins. 407 

Enclaves in Lassen Peak samples are subrounded to subangular with an equigranular texture 408 

(Fig. 4b; Clynne, 1999). Many enclaves from the 1991-1995 eruption at Mt. Unzen have 409 

crenulate and fine-grained margins (Browne et al., 2006), although some have angular edges 410 

and a uniform crystal size (Fig. 4c; Fomin & Plechov, 2012). Similar features are observed at 411 

Soufrière Hills, with many inclusions being ellipsoidal (Fig. 4d) and some angular; most, but 412 

not all, have fine-grained, crenulate margins (Murphy et al., 2000). Both the size and volume 413 

fraction of enclaves increased during the eruption (Barclay et al., 2010; Plail et al., 2014; 414 

2018).  415 

 416 

In all localities, fine-grained margins and crenulate contacts are attributed to undercooling of 417 

the mafic magma due to juxtaposition against the much cooler felsic host (Eichelberger, 418 

1980) and associated rapid crystallisation of the mafic melt near the contact with the felsic 419 

host. These crystalline rims have a greater rigidity than the lower-crystallinity enclave interi-420 

ors so that as the enclave continues to cool and contract, the rims deform to a crenulate shape 421 

that preserves the original surface area (Blundy & Sparks, 1992). Enclaves not exhibiting 422 

such quench textures are also found at all localities. 423 

 424 

3.2.2 Plagioclase 425 

The composition and texture of plagioclase crystals are extremely good recorders of mag-426 

matic processes because 1) their stability field in pressure-temperature-composition (P-T-X) 427 

space is very large in volcanic systems, and 2) compositional zoning modulated by changes 428 

in the P-T-X space is well preserved due to the relatively slow diffusion in the coupled substi-429 

tution between Na-Si and Ca-Al (Grove et al., 1984; Morse, 1984; Berlo et al., 2007).  430 

 431 

Texturally, plagioclase phenocrysts in the host lavas at all four localities comprise a popula-432 

tion of unreacted, oscillatory zoned crystals with a lesser amount of reacted crystals that have 433 

sieved cores and/or resorption rims (Fig 5a; Tepley et al., 1999; Clynne 1999; Murphy et al., 434 

2000; Browne et al., 2006b). Associated enclaves contain plagioclase xenocrysts incorporated 435 

from the host with sieved-texture resorption zones that consist of patchy anorthite-rich plagi-436 

oclase and inclusions of glass (quenched melt). These reacted zones can penetrate to the cores 437 
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of smaller crystals (Fig. 5b,c), but in larger xenocrysts appear as a resorption mantle sur-438 

rounding a preserved oscillatory-zoned core (Fig. 5d). All xenocrysts are surrounded by a 439 

clean rim that is of the same composition as the plagioclase microphenocrysts in the enclave 440 

groundmass. 441 

 442 

The relationship between anorthite (An) and FeO content of plagioclase crystals can also pro-443 

vide insight into magma mixing and mingling. Plagioclase crystals erupted from Soufrière 444 

Hills volcano between 2001 and 2007 show a shallow, linear trend between FeO and An con-445 

tents in oscillatory-zoned regions of plagioclase phenocrysts in the host (Humphreys et al., 446 

2009); sieved zones in the same phenocrysts form a curved trend at higher FeO (Fig. 6d). In 447 

enclave-hosted xenocrysts, oscillatory-zoned cores plot on the same linear trend as oscilla-448 

tory-zoned phenocrysts, whereas the clean rims overlap with the curved trend of the pheno-449 

cryst sieved zones (Fig. 6f). The same curved trend is found for enclave microphenocrysts 450 

(Fig. 6e; Humpreys et al., 2009). We observe similar characteristics in our sample of Mt. Un-451 

zen dome lava (Figs. 6a-c).   452 

  453 

3.2.3 Quartz 454 

Quartz crystals in mingled lavas can also show distinctive features. Host phenocrysts are 455 

rounded and embayed (Fig. 7a; Clynne, 1999; Tepley et al., 1999; Murphy et al., 2000; 456 

Browne et al., 2006a; Christopher et al., 2014) and can also be fractured (Clynne, 1999). In 457 

the enclaves, quartz xenocrysts are surrounded by reaction rims of clinopyroxene and horn-458 

blende microphenocrysts and glass (Fig 7b; Clynne, 1999; Tepley et al., 1999; Murphy et al., 459 

2000; Browne et al., 2006).  460 

 461 

3.3 Interpretation of textures and chemistries 462 

The common textural and chemical features of these volcanic systems suggest commonalities 463 

in the mixing and mingling processes. First, since enclaves from all volcanoes contain xeno-464 

crysts that originated in the host magmas, the mafic component must have been sufficiently 465 

ductile to incorporate these crystals during mixing. Plagioclase xenocrysts contain rounded, 466 

patchy zones with a sieved texture showing that both partial and simple dissolution occurred 467 

(Tsuchiyama, 1985; Nakamura & Shimakita, 1998; Cashman & Blundy, 2013), suggesting 468 

that the enclave magmas were undersaturated in plagioclase at the time of incorporation. 469 

Since up to 70% of the enclave groundmass consists of plagioclase microphenocrysts, this 470 

implies the mafic magmas were crystal-poor at the time of xenocryst incorporation. 471 
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 472 

Compositional variations of FeO and An in the plagioclase crystals provide further infor-473 

mation on the relative compositions of the host and enclave melt at Soufrière Hills (Hum-474 

phreys et al., 2009) and Mt. Unzen (Fig. 6). Most analyses from host phenocrysts show a 475 

shallow, increasing linear trend between An and FeO content (Fig. 6a,d); the few points with 476 

FeO enrichment correspond to resorbed zones. Unresorbed cores of xenocrysts have similar 477 

compositions, suggesting that both crystal core populations derive from the same host dacite 478 

magma. Enclave microphenocrysts, however, show greater FeO enrichment (Figs. 6b,e) and 479 

overlap with xenocrysts rim compositions. Similar results are reported for plagioclase in an-480 

desite lavas erupted from El Misti, Peru, which underwent resorption in response to mafic re-481 

charge (Ruprecht & Wörner, 2007). At Mt. Unzen, enclave microphenocrysts and xenocrysts 482 

rims show a strong positive correlation for the whole An range, whilst these phases at Sou-483 

frière Hills show a negative correlation for An > 75 mol% (Fig. 6). This difference is inter-484 

preted to reflect the absence of Fe-Ti oxide as an early crystallising phase in the Soufrière 485 

Hills mafic end-member, which would cause FeO to increase in the residual melt as other 486 

phases precipitated until the point of oxide saturation (Humprheys et al., 2009). The lack of 487 

this inflection in the Mt. Unzen sample suggests that Fe-Ti oxides were present in the mafic 488 

magma prior to mixing, as suggested for the 1991-1995 eruption (Holtz et al., 2005; Botchar-489 

nikov et al., 2008). 490 

 491 

Whereas the observed enrichment in FeO in enclave microphenocrysts, sieved zones in phe-492 

nocrysts and xenocrysts, and xenocrysts rims is likely due to crystallisation from a more 493 

mafic melt, it is also possible that growth of these regions may be sufficiently fast for kinetic 494 

effects to play a role; if growth is faster than diffusion of FeO in the melt then an FeO-rich 495 

boundary layer may develop around crystals (Bottinga et al., 1966; Bacon, 1989; Mollo et al., 496 

2011) that could also explain the enrichment. However, such a process would generate a neg-497 

ative correlation between FeO and An (Neill et al., 2015), not the positive correlation ob-498 

served at Unzen and Soufrière Hills. 499 

 500 

The contrasting textures of quartz in the host and enclaves also provide insight into the min-501 

gling/mixing process. Rounding of quartz xenocrysts, together with glass-filled embayments, 502 

suggests dissolution of quartz in the host. Conversely, quartz reaction rims comprising horn-503 

blende microphenocrysts, glass and vesicles in the enclaves (Figures 3d, 7b) suggest that the 504 
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dissolution-induced increase in the silica content (and H2O solubility) of the surrounding melt 505 

caused diffusion of H2O towards the quartz (Pistone et al., 2016a).  506 

 507 

Whereas the presence of resorbed xenocrysts in enclaves suggests that there was time for 508 

crystals to be incorporated, and to react, before the enclave started to crystallise, the presence 509 

of fine-grained rims on some enclaves (Tepley et al., 1999; Murphy et al., 2000; Browne et 510 

al, 2006a; Barclay et al., 2010; Plail et al., 2014) implies rapid cooling and crystallisation 511 

(chilling) of the mafic magma against the cooler silicic host (Bacon, 1986). Xenocrysts must 512 

therefore have been incorporated prior to the formation of the chilled margin, providing a 513 

limited temporal window for crystal transfer. A comparison of the thickness of xenocryst re-514 

sorption zones at Mt. Unzen (Brown et al. 2006a) with those produced experimentally 515 

(Tsuchiyama & Takahasi, 1983; Tshuchiyama, 1985; Nakamura & Shimakita, 1998) suggests 516 

resorption on a timescale of days; this contrasts with thermal modelling (Carslaw & Jaeger, 517 

1959) suggesting enclaves should thermally equilibrate on a timescale of hours. Again, this 518 

requires incorporation of xenocrysts prior to intrusion disaggregation and enclave formation 519 

(Browne et al., 2006a). As the considered volcanic lavas contain similarly resorbed plagio-520 

clase xenocrysts within enclaves of comparable sizes, it seems likely that this temporal con-521 

straint on the sequence of crystal transfer prior to enclave formation is generally true for the 522 

systems presented here. 523 

 524 

Importantly, all locations also contain enclaves with unquenched margins (Tepley et al., 525 

1999; Plail et al., 2014) and equigranular textures (Heiken & Eichelberger, 1980; Browne et 526 

al., 2006a). Equigranular enclaves at Mt. Unzen have been interpreted as originating from 527 

disaggregation of the interior of the intruding magma, which cooled more slowly than the in-528 

trusion margin where porphyritic enclaves (xenocrysts-bearing, chilled margin) formed. Sim-529 

ilarly, at Soufrière Hills, the quenched enclaves may form from an injected plume of mafic 530 

magma, whereas unquenched and more hybridised enclaves form from disturbance of a hy-531 

brid layer at the felsic-mafic interface (Plail et al., 2014). Angular enclaves with unquenched 532 

margins may record the break-up of larger enclaves (Clynne, 1999; Murphy et al, 2000; 533 

Fomin & Plechov, 2012; Plail et al., 2014), which can return resorbed host-derived crystals to 534 

the host; this explains the presence of resorption zones in crystals in the host lavas (Fig. 5b), 535 

and chemical signatures (Fig. 6a) of crystallisation from mafic magma. Further support for 536 

enclave fragmentation comes from microlites that are chemically indistinguishable from en-537 

clave phases at Soufrière Hills (Humphreys et al., 2009). A possible method to determine 538 
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whether equigranular enclaves form from a hybrid layer or disaggregation of larger enclaves 539 

is to examine the mineralogy of the crystals in the enclave. The two different mechanisms 540 

will produce different degrees of undercooling within the enclave magma, which, in the hy-541 

brid-layer model, will depend on the relative proportions of the end-member magmas, and 542 

thus can produce different crystal assemblages/textures (Humphreys et al., 2006). 543 

 544 

3.4. Conceptual model of magma mixing and mingling 545 

Common features of eruptive products described above suggest common aspects of mixing 546 

and mingling. Xenocrystic mafic enclaves with chilled margins, in particular, require that 547 

magma injection is accompanied by crystal incorporation from the host magma, as also sug-548 

gested by a comparison of thermal timescales with the times needed to generate the observed 549 

thicknesses of resorption zones (Browne et al., 2006a). These constraints on the sequence of 550 

mixing processes have led to a similar conceptual model of mixing and mingling (Fig. 8; 551 

Clynne, 1999; Tepley et al., 1999; Murphy et al., 2000; Browne et al., 2006; Plail et al., 2014) 552 

in which the mafic magma is injected as a fountain (Clynne, 1999) or collapsing plume (Plail 553 

et al., 2014) before ponding at the base of the silicic host (Fig. 8a). Shear caused by the injec-554 

tion disrupts the interface between the two magmas, leading to the formation of blobs of hy-555 

bridised magma with incorporated host crystals that then rapidly chill against the silicic host, 556 

preventing further hybridisation (Tepley et al., 1999; Plail et al, 2014). Heating of the host, in 557 

turn, causes partial melting, reducing the crystallinity and causing convective motions that 558 

disperse the enclaves. Meanwhile, at the mafic-silicic contact, a hybrid interface layer forms 559 

(Fig. 8b). As this layer crystallises, second boiling drives fluid saturation; exsolved buoyant 560 

fluids produce a low-density, gravitationally-unstable, interface layer that breaks-up to form 561 

further enclaves (Fig. 8c; Clynne, 1999; Browne et al., 2006a). As cooling propagates down-562 

wards through the mafic body, enclaves can come from deeper portions resulting in more 563 

equigranular enclaves that lack chilled margins or xenocrysts (Brown et al., 2006a; Plail at 564 

al., 2014). 565 

 566 

Enclaves, once formed, can disaggregate. Disaggregation is shown by the presence of broken 567 

enclaves (Clynne, 1999; Tepley et al., 1999; Fomin & Plechov, 2012), host phenocrysts with 568 

resorption zones and Fe enrichment caused by previous engulfment in mafic magma (Clynne, 569 

1999; Tepley et al., 1999; Browne et al., 2006b; Humphreys et al., 2009), and small clusters 570 

of enclave-derived microlite material within the host lavas (Humphreys at al., 2009). Dis-571 
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aggregation allows for subsequent mixing of a type precluded during initial enclave for-572 

mation, but the timing of disaggregation is poorly constrained. It could occur during high-573 

shear conditions in the conduit (Humphreys et al., 2009); alternatively, disaggregation may 574 

be part of a continuous cycle of injection, enclave formation and fragmentation (Fig. 8d) that 575 

gives rise to a continuously convecting magma storage region, which is sometimes sampled 576 

during a volcanic eruption (Browne et al., 2006a). Regardless, the dispersion of mafic 577 

groundmass into the host has implications for interpreting end-member compositions from 578 

petrologic studies (Martel et al., 2006; Humphreys et al., 2009). Importantly, neglecting such 579 

transfer can lead to an under-estimate of the initial silica content of the felsic member.  580 

 581 

4 Quantitative modelling of crystal and volatile controls on mixing and mingling 582 

 583 

Many conceptual models of magma mixing (e.g. Fig. 8) have been produced based on petro-584 

logic evidence. However, quantitative models of magma mixing are limited. As described in 585 

Section 2.3, Sparks and Marshall (1986) first developed a simple model describing how ther-586 

mal equilibration of a juxtaposed mafic and silicic magma led to rapid viscosity changes that 587 

inhibited mixing after a short time. Since then, models developed to account for the role of 588 

either crystals or exsolved volatiles have produced significant insights into mingling and mix-589 

ing dynamics, but have failed to incorporate petrological data within quantitative frame-590 

works. Here, we examine three models: Andrews and Manga (2014), who use continuum 591 

modelling and suspension rheology to model mingling resulting from dyke injection into a 592 

silicic host; Bergantz et al. (2015), who model the injection of melt into a basaltic mush, re-593 

solving both fluid and granular behaviour; and Montagna et al. (2015), who simulate the ef-594 

fect of exsolved volatiles on mafic injection. We compare the model assumptions and results, 595 

as well as their implications for interpreting petrological data. 596 

 597 

4.1 The model of Andrews and Manga (2014) 598 

The model considers the instantaneous injection of a mafic dyke into a silicic host, with a 599 

prescribed initial composition and temperature, and numerically solves the 1D heat equation. 600 

Changes in the crystallinity and bulk viscosity of magmas with time are calculated using 601 

MELTS simulations (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) and viscosity models 602 

for melt (Giordano et al., 2008) and crystal-bearing suspensions (Einstein, 1906; Roscoe, 603 

1952). If the viscosity of the host immediately juxtaposed with the dyke decreases suffi-604 

ciently, then the host starts to convect (as determined by a Rayleigh number criterion), which 605 
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exerts a shear stress on the dyke. If this shear stress exceeds the yield stress of the dyke 606 

(which depends on its crystal content), the dyke deforms in a ductile fashion and the model 607 

predicts banded products. Alternatively, if the yield stress exceeds the shear stress, then the 608 

dyke fractures in a brittle fashion and enclaves form. 609 

 610 

In this model context the principal control on mingling dynamics is the development of crys-611 

tal frameworks within the dyke. Dyke crystallisation, in turn, is controlled by composition 612 

and temperature contrasts. For example, injection of hot, large and wet dykes causes the si-613 

licic host to convect before a crystal framework forms in the dyke. The resultant shear causes 614 

ductile disruption of the dyke and intimate mingling of the two magmas, producing banding 615 

and, with time, homogenisation. Small and dry dykes, in contrast, experience extensive crys-616 

tallisation before the host starts to convect and thus fracture to form enclaves. The precise ini-617 

tial conditions (temperature, dyke size and water content) that determine mingling style are 618 

sensitive to the parameterisations used (e.g. critical Rayleigh number for convection) but the 619 

qualitative results are useful. 620 

 621 

The principal limitation of the model of Andrews and Manga (2014) is that it assumes an in-622 

stantaneous injection of the mafic dyke and therefore neglects any mixing/mingling that oc-623 

curs during injection itself. Instead, the dyke is disrupted only by shear due to convection in 624 

the host. Indeed, the relative importance of shear due to injection versus shear due to convec-625 

tion remains a considerable unknown. The assumption that brittle fragmentation of the dyke 626 

produces enclaves is supported by three-dimensional tomographic observations of enclaves 627 

from Chaos Crags, which have crystal frameworks that are lacking in banded pumices from 628 

Lassen Peak (Andrews & Manga, 2014). The inference is that these crystal frameworks cre-629 

ated a yield stress such that the enclaves formed by solid-like fracturing and banded pumice 630 

by ductile deformation. However, this is in direct contradiction with the conceptual model 631 

presented above (Fig. 8), which is based on field and petrographic observations that suggest 632 

enclaves form from fluid-like deformation of the mafic magma. This contradiction highlights 633 

the extent to which conditions of enclave formation are unknown. 634 

 635 

4.2 The model of Bergantz et al., (2015) 636 

The discrete-element model, which resolves both fluid and granular physics, considers the in-637 

jection of a crystal-free magma into the base of a crystal mush at random loose packing (ap-638 

proximately 60% crystallinity). The response of the mush is governed by stress chains formed 639 
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by crystal-crystal contacts. For sufficiently slow injections, the new melt permeates through 640 

the mush, which behaves as a porous medium. Once the injection speed is large enough to 641 

disrupt the stress chains, however, part of the mush can become fluidised to form a mixing 642 

cavity, which is an isolated region where the host melt, crystals and new melt undergo over-643 

turning. The new melt then escapes from the cavity through porous flow into the rest of the 644 

mush. For still faster flow speeds, the stress chains orientate to create two fault-like surfaces 645 

at angles of about 60° to the horizontal that bound a fluidised region of the mush, within 646 

which extensive circulation occurs. 647 

 648 

Whilst this model captures granular and fluid dynamics on the crystal scale and demonstrates 649 

the impact of varying the injection velocity, there are numerous outstanding questions. 650 

Firstly, varying the crystallinity of the mush has not been addressed and will presumably af-651 

fect the values of injection velocity at which transitions between mingling styles occur. Fur-652 

thermore, temporal and spatial variations in temperature (due to heat transfer or latent heat 653 

release), and therefore in viscosity and crystallinity, have not been considered. Cooling and 654 

crystallisation of the new melt should control the dynamics of the system, as will associated 655 

latent heat release. Finally, the geometry of the modelled magma reservoir (laterally homoge-656 

nous layers) will affect the specifics of the mixing process, such as the orientation of the 657 

bounding faults, and it is not yet clear if the model scales to natural systems.  658 

 659 

4.3. The model of Montagna et al. (2015) 660 

The two-dimensional finite-element model considers two vertically-separated magma cham-661 

bers that are superliquidus and connected by a narrow conduit. The upper chamber initially 662 

contains a felsic phonolite, whilst the lower chamber and conduit are filled with a mafic sho-663 

shonite, compositions chosen to represent eruptions from Campi Flegrei. H2O and CO2 664 

exsolve as functions of temperature and pressure (Papale et al., 2006), whilst the transport of 665 

exsolved volatiles is modelled as a continuum scalar field satisfying a transport equation. 666 

Bubbles are assumed to be sufficiently small that they are undeformable and an empirical law 667 

is used to parameterise their effect on bulk viscosity (Ishii & Zuber, 1979). The shoshonite 668 

initially contains exsolved volatiles and so is lighter than the phonolite, creating an unstable 669 

density interface at the inlet to the upper chamber. 670 

 671 

Upon initiation, a Rayleigh-Taylor instability develops at the inlet to the upper chamber and a 672 

plume of light material rises into the chamber whilst the conduit is filled with a mixed, hybrid 673 
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magma. Intimate mingling within the chamber is reminiscent of that created by chaotic ad-674 

vection (Perugini & Poli, 2004). The magma entering the upper chamber is a partial hybrid, 675 

and the pure parent shoshonite never enters the upper conduit. Intensive mingling occurs on a 676 

timescale of hours, promoted by a large initial density contrast and horizontally-elongated 677 

chambers. Importantly, the reduction in density of the upper chamber can cause depressurisa-678 

tion, which has implications for interpreting ground deformation signals (Papale et al., 2017). 679 

 680 

Whilst an obvious limitation of the model is the two-dimensional domain, it seems reasonable 681 

that the results can be extrapolated to three-dimensional systems. A greater limitation is the 682 

restricted range of compositions and temperatures for which the model is valid. The end-683 

member compositions are similar and superliquidus, so that both the absolute bulk viscosities 684 

(< 3500 Pa s) and their contrast (factor of 7) are relatively low. This allows rapid mingling 685 

and ignores entirely the effect of crystals on the flow dynamics. 686 

 687 

4.4. Comparison and common limitations 688 

Both Andrews and Manga (2014) and Bergantz et al. (2015) focused on the effect of crystals, 689 

but a key difference in the two models is the initial condition. Andrews and Manga (2014) as-690 

sume the instantaneous injection of a dyke into an initial rheologically-locked host, whereas 691 

Bergantz et al. (2015) simulate the flow of new melt into a melt-crystal mixture; they show 692 

that new melt flows permeably through a rheologically-locked mush. The conditions that spa-693 

tially constrain a mafic injection (e.g. as a dyke) have not been defined. The two models also 694 

simulate the role of crystals differently. Andrews and Manga (2014) calculate the crystallinity 695 

of a magma at a given temperature and assume the presence of a crystal framework (and yield 696 

stress) above a threshold value. Bergantz et al. (2015) allow the crystals to form force chains 697 

through which stresses are transmitted (Bergantz et al., 2017), but they consider the system to 698 

be isothermal such that no crystallisation occurs, a key feature of Andrews and Manga 699 

(2014). 700 

 701 

Both models are limited in addressing the role of volatiles. Diffusion of volatiles from the 702 

mafic to felsic member can strongly influence the crystal composition and textures of the si-703 

licic member (Pistone et al., 2016a), while exsolution of volatiles leads to a reduction in bulk 704 

density that can drive convective motions in the mixing dynamics (Eichelberger, 1980; 705 

Thomas et al., 1993; Phillips & Woods, 2001; 2002; Montagna et al., 2015; Wiesmaier et al., 706 

2015). The presence of exsolved volatiles also affects the magma rheology and requires the 707 
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use of three-phase rheological models (Mader at al., 2013; Pistone et al., 2016b). One strat-708 

egy is to treat the exsolved phase as a continuum scalar field and use a suspension model for 709 

bulk rheology (Montagna et al., 2015). However, as has been shown for solid phases (Carrara 710 

et al., 2019), small scale effects can be overlooked by this approach and explicit modelling of 711 

such phases may be needed to accurately constrain mixing/mingling processes.  712 

 713 

Additional complications arise in the number of parameters required for a given model. For 714 

example, the Andrews and Manga (2014) model requires values for a maximum crystal pack-715 

ing fraction and a critical Rayleigh number for convection in the host. Constraining these pa-716 

rameters will require extensive experimental efforts involving both high-temperature/high-717 

pressure and analogue experiments. 718 

 719 

5. Conclusions and outlooks for future research 720 

We have reviewed progress in understanding magma mixing and mingling, focusing on vola-721 

tile and crystal controls on mingling processes. Whilst field and petrologic observations of 722 

mixed and mingled products are numerous, models of these processes do not yet include the 723 

full range of observed complexities. In particular, conceptual models derived from observa-724 

tions (Clynne, 1999; Tepley et al., 1999; Browne et al., 2006; Plail et al., 2014) suggest very 725 

different dynamics to those from numerical models (Andrews & Manga, 2014; Bergantz et 726 

al., 2015; Montagna et al., 2015). To resolve this discrepancy, several key questions need to 727 

be addressed: 728 

1) How do mixing and mingling occur within the framework of crystal mushes, and how 729 

does the volume fraction of crystals control the interaction dynamics?  730 

2) How do volatiles, both exsolved and dissolved, affect mixing and mingling? What is the 731 

relative importance of chemical quenching (due to volatile diffusion) vs. thermal 732 

quenching (due to heat diffusion)?  733 

3) How much mingling/mixing takes place during intrusion of the mafic magma compared 734 

to that driven by later processes such as convection in the host or the buoyant rise of 735 

vesicular mafic/hybrid magma? 736 

4) How does latent heat, released from crystallisation of the mafic component and absorbed 737 

by melting of the felsic component, affect the mixing and mingling process? Latent heat 738 
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release may have a strong local effect in a dynamic system but is not evaluated, for 739 

example, in isothermal experiments. 740 

5) To what extent are mafic injections spatially limited, e.g. dykes, and under what 741 

conditions might they affect the entire intrusion?  742 

6) If magma storage regions undergo repeated replenishments with occasional eruptions, 743 

what factors determine if a particular injection leads to an eruption? 744 

Only by combining field and analytical observations with experimental (analogue and natural 745 

materials) and numerical modelling can we start to address these challenges. 746 
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Figure 1: Examples of mafic enclaves. All are generally finer grained than their hosts but 

contain occasional large crystals (circled in red), which are xenocrysts mechanically trans-

ferred from the host. a) Large (≈ 18 cm) fine-grained enclave hosted in alkali-feldspar granite 

from Blackenstone Quarry, Dartmoor, England. b) High aspect ratio enclave from the 

Adamello Massif, Italy. c) Mafic enclave in granite of stone wall at Hiroshima Castle, Japan. 

d) Mafic enclave within the Cobo Granite, Guernsey. e) Numerous enclaves in an outcrop of 

the Northern Igneous Complex, Guernsey. The outcrop shown is about 1 m2. f) Mafic enclave 

in a granite statue in Alexander Garden, Moscow. 
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Figure 2: Examples of mingling textures from layered intrusions of the Northern Igneous 

Complex, Guernsey. Noted textures are outlined in red. a) Loose block showing intimate 

mingling between a felsic and a mafic magma. b) Diapir-like structures of felsic material ris-

ing into a mafic layer. c) Pipe of felsic material penetrating a mafic layer. d) Cross section 

through pipes similar to that seen in c). 
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Figure 3: Examples of magmatic xenocrysts. a) Plagioclase xenocryst in a mafic enclave from 

the Adamello Massif, Italy, showing a sieved core with many inclusions of hornblende. b) 

Back-scatter electron (BSE) image of an olivine xenocryst in an andesitic lava flow from 

White Island volcano, New Zealand. The crystal is surrounded by an irregular film of basaltic 

glass (bounded by red contour). Image courtesy of Geoff Kilgour. c) Alkali feldspar xeno-

crysts, up to 3 cm, within mafic rocks on Shetland, Scotland. The relation of the mafic rocks 

to the felsic rocks from which the feldspars originated in unknown since the contact is in the 

subsurface. Image courtesy of Amy Gilmer. d) A cluster of rounded and highly fractured 

quartz xenocrysts in the Cardones ignimbrite, Chile (van Zalinge et al., 2016). The surround-

ing groundmass is much finer-grained and melt-rich than the rest of the material. The cluster 

has a rim of opaque crystals. 

 

 

 

 

 

 



45 
 

 

Figure 4: Examples of enclaves from four volcanic systems. a) Mafic enclave, with fine-

grained, crenulate margin and numerous xenocrysts, from Chaos Crags. Image courtesy of 

Michael Clynne. b) Andesitic enclave from 1915 eruption of Lassen Peak, showing an 

equigranular texture and numerous partially reacted xenocrysts. Reproduced with permission 

from Clynne (1999). c) Basaltic enclave in an andesitic lava flow from the 1792 dome col-

lapse at Mt. Unzen, Japan, at about 4 ka. There is no evidence for a fine-grained margin in the 

enclave. Sample collected by Julie Oppenheimer, Karen Strehlow and Emma Liu. d) Mafic 

enclave from 1995-2010 eruption of Soufrière Hills volcano. Image courtesy of Steve Sparks. 
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Figure 5: BSE images of plagioclase phenocrysts and xenocrysts from Mt. Unzen (a, b, d) 

and Lassen Peak (c). a) Host-rock plagioclase phenocryst with a wide heterogeneous zone 

and many mineral and glass inclusions. b) Plagioclase xenocryst in an enclave with a sieved 

core. c) Heavily reacted plagioclase xenocryst with a clear overgrowth rim within an ande-

sitic enclave. Reproduced with permission from Clynne (1999). d) Plagioclase xenocryst in a 

mafic enclave with an oscillatory zoned core surrounded by a patchily zoned and inclusing-

rich mantle bounded by a normally-zoned rim. 
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Figure 6: Plots of FeO versus An from transects across plagioclase for a,d) host phenocrysts, 

b,e) enclave microphenocrysts from and c,f) xenocrysts in enclaves. Data shown for Mt. Un-

zen sample in Fig. 4c and for rocks from Soufrière Hills (Humphreys et al., 2009). a,d) Most 

host phenocrysts lie on a shallow, linear trend with slight positive correlation in the range An 

= 33-88 mol% for Mt. Unzen and An = 45 – 80 mol% for Soufrière Hills. Some analyses 

show much greater FeO enrichment and correspond to resorbed zones. b,e) Enclave micro-

phenocrysts show FeO enrichment compared to host phenocrysts, up to 0.65 wt% for Mt. Un-

zen and 1.3 wt% for Soufrière Hills. c,f) The preserved cores of xenocrysts plot on the same 

shallow trend as host phenocrysts whilst rim compositions overlap with enclave micropheno-

cryst compositions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

 

Figure 7: a) Image of a quartz phenocryst in the dacitic lava dome from the 1915 Lassen Peak 

eruption. It appears unreacted but has rounded edges and embayments. Image courtesy of Mi-

chael Clynne. b) BSE image of a cluster of quartz xenocrysts in an enclave from the 1991-

1995 Mt. Unzen eruption. They are rounded and surrounded by an extended region of horn-

blende microphenocrysts (very bright), glass (light grey) and vesicle (black). 
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Figure 8: Conceptual model of the different stages of magma mixing and mingling following 

injection of a mafic magma into a partially crystallised silicic host. The processes shown fol-

low similar diagrams from Clynne (1999), Tepley et al. (1999), Browne et al. (2006) and 

Plail et al. (2014). a) Mafic magma is injected into a partially crystallised host. Injected 

magma is initially denser and so ponds beneath the silicic host, although the momentum of 

the injection may produce a collapsing fountain. b) Disaggregation of the collapsing fountain 

produces quenched enclaves with chilled margins. These enclaves contain xenocrysts cap-

tured from the host, which became entrained during the injection. Heat transfer from the 

mafic to the silicic magma produces partial melting of the silicic member, reducing the crys-

tallinity and creating convective motions that disperse the enclaves. Additionally, a hybrid 

layer forms at the interface between the mafic and silicic magmas. Crystallisation in this layer 

leads to exsolution of volatile phases. c) The presence of exsolved volatiles in the interface 

layer leads to a reduction in density and the hybrid layer destabilises due to a Rayleigh-Tay-

lor instability. This leads to the formation of enclaves without chilled margins that are dis-

persed within the silicic host. d) Continued convective motions in the host lead to brittle dis-

aggregation of enclaves creating angular enclave fragments, and dispersing mafic ground-

mass and resorbed host crystals into the host. 


