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Abstract 11 

 12 

Beamforming (BF) always guides to determine the quality of received signal by an 13 

antenna array using Signal-to-Noise-Interference Ratio (SINR) in cellular base 14 

stations. This paper will help in the installation of 5G and 6G Millimeter-Wave 15 

(mm-Wave) heterogeneous wireless networks. Here, adaptive BF is designed and 16 

being implemented on the Machine Learning (ML) platform. The four ML methods 17 

having six BF properties to estimate the SINR of Multiple-Input-Multiple-Output 18 

(MIMO-mm-Wave) 5G wireless network are explored. The proposed algorithm 19 

suppresses noise plus interference and can reduce the power consumption. The 20 

python package pyArgus focusing on the BF and direction finding algorithms has 21 

been used for 20,000 simulations. The BF features namely noise variance, number of 22 

antenna elements, distance between antenna elements, azimuth angular range of 23 

receiving array, elevation angular range of receiving array and Direction of Arrival 24 

(DOA) of signal i.e. incident angle of Signal-of-Interest (SOI) are used in predicting 25 

the SINR. The 10-fold cross-validation experiment is performed to assess the 26 

robustness of the best predictive method. By conducting the rigorous simulations, it 27 

has been observed that Random Forest (RF) method outperforms over the three 28 

other ML methods such as Tree model i.e. rpart, Generalized Linear Model (glm) 29 

and Neural Network (nnet), which does the prediction inexpensive and faster. The 30 
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 31 

performance analysis parameters’ result represents that the prediction of Mean 32 

Absolute Error (MAE) by RF is lowest 70.73 in value, and its Accuracy is maximum 33 

86.40%, in value having the acceptable error on the training-testing data set. 34 

Keywords: Adaptive Beamforming, Multiple-Input-Multiple-Output, Millimeter- 35 

Wave, 5G Machine Learning, Random Forest, Maximum Signal-to-Noise- 36 

Interference Ratio. 37 

 38 

 39 

1 INTRODUCTION 40 

 41 

BF is a smart antenna technique to provide a summation of the weighted signal over K 42 

users to produce the more concentrated transmitted signal from massive MIMO antenna 43 

arrays deployed in an mm-Wave 5G heterogeneous wireless network. It is rigorously 44 

used to distinguish real-time and nearly real-time data from other predicted data. It 45 

improves the link budget of mm-Wave and is used in sensor arrays of various fields such 46 

as radar, sonar, medical imaging, 5G vehicular communication systems and audio 47 

systems [2-3]. The mm-Wave communication needs a larger number of antennas at the 48 

transceiver to minimize the significant propagation path loss specifically by atmospheric 49 

absorption and to provide higher power gain in the form of BF. Moreover, hundreds or 50 

thousands of antennas can be accommodated at the transceiver due to the small carrier 51 

wavelengths at mm-Wave frequencies for a given size of antenna array, which provide 52 

the better flexibility of BF, but increase its complexity [4]. BF can be considered as a 53 

spatial linear filtering technique in 5G heterogeneous networks [5]. It gives MIMO 54 

diversity  gain provided by coherent combining of multiple signal paths and in it, the 55 

radiation pattern of the antenna array is built in the direction of desired user while 56 

minimizing the interference for nearby users. The inter-cell interference are suppressed  57 
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 58 

using linear processing schemes in a coordinated BF fashion. The result of appropriate 59 

BF is that the links become isolated in direction, and intercellular interference plays a 60 

negligible role than in current small cellular networks. This fact implies that capacity gain 61 

in these systems is achieved by point-to-point technologies. Fixed BF is applied to the 62 

sources having fixed Angles- of-Arrival (AoAs). In adaptive BF, the weights of the array 63 

used are adapted to the changing signal environment in a continuous manner. The reliable 64 

Channel State Information (CSI) analysis is necessary in mm-Wave massive MIMO 65 

systems for near-optimal BF performance. However, acquiring this analysis becomes 66 

very cumbersome practically due to much variation in the used channel and the 67 

significant numbers of transceiver antenna elements. Since, in a currently smart antenna 68 

array structure having an interface as Digital Signal Processing (DSP), BF technique 69 

needs a fairly accurate estimate of DOA. High frequency (HF) communication signals 70 

received by the array are passed on to Receiver (RX) front end and then to Analog to 71 

Digital Converter (ADC) system. The DOA estimation algorithm is applied to analog to 72 

digital converted signal samples. The antenna array calculates and optimizes the BF 73 

weights so that the output beam will adapt itself to the DOA of SOI. Fig. 1 depicts the 74 

general block diagram of the smart antenna array system. 75 
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 93 

Fig. 1 - General Smart Antenna Array System 94 

 95 

The MIMO capability includes several techniques, falling into the categories of BF, 96 

diversity, and spatial multiplexing. BF and diversity techniques can reduce the effects of 97 

multipath fading, which benefits other communications metrics. Spatial multiplexing can 98 

allow multiple independent, parallel data streams to be transmitted, increasing the overall 99 

throughput of a system. The availability of large bandwidth in mm-Wave range provides 100 

very high frequencies for 5G mobile communication networks as a promising candidate 101 

enabler. To tackle the signal propagation challenge through various paths, mm-Wave 102 

systems employ large antenna arrays that are expected to implement highly directional 103 

BF and provide higher link-level gains. BF with an antenna array of typically 64 to 512 104 

elements per system within small form factors will reduce interference to adjacent users 105 

using a Multi-user (MU)-MIMO system and provides more directivity. In addition to 106 

more capacity in the MU-MIMO system, BF has other advantages like reduced energy 107 

consumption and the abundant mm-wave spectrum utilization. Its lower energy 108 

consumption brings a reduction in overall network operating costs by targeting individual 109 

user equipment’s with their assigned signals. Full digital baseband precoding is not 110 
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 111 

preferred as it has extremely high hardware cost, space and energy utilization in a MIMO 112 

system, for the sake of the same number of Radio Frequency (RF) chains. The hybrid 113 

analog – digital precoding is a low-cost alternative solution to minimize the number of 114 

RF chains as it divides the precoding operations between the analog and digital domains 115 

[4, 6]. The digital weights of each RF chain are controlled in digital BF. The phase of the 116 

signal transmitted at each antenna is adjusted using analog phase shifters in analog BF. 117 

Therefore, the hardware-constrained mm-Wave massive MIMO communication system 118 

exploits both multiplexing gain and spatial diversity [4]. 119 

 120 
 121 
 122 

 123 

 124 
 125 

Fig. 2 - Working Principle of Beamformer 126 

 127 

 128 

The BF adjusts the weights of the antenna elements of the array, which were employed 129 

adaptively to optimize the quality of signals under certain performance metrics [7]. From 130 

the fig. 2, the BF signal output is calculated using the following equation (1.1): 131 

 132 

 133 

𝐫𝐁(𝐭) = 𝐰 𝐇 𝐫(𝐭) (1.1) 134 
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 135 

where w = [w1 … wM]T corresponds to the vector of weights of the beamformer 136 

proportional to SINR, r(t) is the array output vector and H is the channel matrix for a 137 

MIMO system described in equation (1.1). H defines the complex channel gains between 138 

the antenna elements of the transmitter as well as of the receiver. It has dimensions 139 

NtxNr, where Nt is the number of transmit antennas, and Nr is the number of receive 140 

antennas. Each value of H represents the magnitude as well as phase of the channel gain 141 

between one pair of transmitter-receiver antenna elements. The matrix is reduced to a 142 

one- dimensional vector h, where either a single antenna is assumed on one side of the 143 

system, or when the contributions from multiple antennas were combined, such as in the 144 

case of receiver diversity techniques, where only the totals at each receiver element are 145 

considered [8]. The Quality of Service (QoS) for the receive SNR is given by equation 146 

(1.2) which is as follows: 147 

𝐐𝐨𝐒: (𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝) 𝐑𝐞𝐜𝐞𝐢𝐯𝐞 𝐒𝐍𝐑 = |𝐰𝐓𝐇|² (1.2) 148 

 149 

where temporal variations of H ∈ CN are the realization of an underlying distribution, but 150 

in stochastic approximation case, the analysis of channel distribution is not required; 151 

rather most recent channel realization is used. This approximation is well suited for 152 

Frequency-Division Duplexing (FDD) systems. 153 

For each receiver k, SINR is calculated using the equation (1.3) which is as follows: 154 

 155 
 156 

                                                       𝐒𝐈𝐍𝐑 =  
|𝒉𝒋𝒌|

𝟐
 𝒑𝒌

𝜮𝒋=𝒌|𝒉𝒋𝒌|
𝟐

 𝒑𝒌+𝝈𝟐
 157 

  158 
                159 

                                                        (𝟏. 𝟑) 160 

 161 

                                                          162 

where hjk are the elements of the channel matrix H, pk is the power allocated to the k-th link,             163 

σ2 is the noise power at the k-th receiver. 164 

https://www.sciencedirect.com/topics/engineering/output-vector
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Related Work 166 

 167 

The Multiple Signal Classification (MUSIC) technique, Estimation of Signal Parameters 168 

via Rotational Invariance Techniques (ESPRIT), and the Matrix Pencil method and its 169 

derivatives, were explained as a part of the BF technique to estimate the DOA of 170 

incoming signals based on the peaks of the spatial spectrum by Yang et al., 2010; Liao 171 

and Chan, 2011; Oumar et al., 2012; Chuang et al., 2015. However, the computational 172 

complexity of MUSIC and ESPRIT methods prevented them to be used in massive 173 

arrays. Several studies were done to classify BF techniques according to their physical 174 

characteristics especially. Gotsis and Sahalos in 2011 categorized BF techniques mainly 175 

as: switched BF and adaptive BF. Moreover, they classified these techniques into circular 176 

arrays, linear arrays, and rectangular arrays of array antennas. Hyper BF was categorized 177 

as either conventional (switched and fixed) BF or adaptive BF. Switched BF system [9, 178 

10] enhanced SINR of the received signals by choosing one pattern from a lot of 179 

predefined patterns. The Butler matrix was developed by Butler and Ralph in 1961 as the 180 

most common solution for fixed BF. It depended on a switching network, which chose a 181 

suitable beam to obtain the desired signal from a specific terminal. 182 

Various researchers such as Bae et al. in 2014, Huang and Pan in 2015, and Tiwari and 183 

Rao in 2015 discussed about the coverage area, interference suppression, capacity and 184 

complexity issues of switched BF and adaptive BF. Moreover, a beam typically served 185 

more than one Mobile Station (MS) [11]. Fixed BF used a fixed set of weights and time 186 

delays to combine the signals using the information mainly about the locations of the 187 

sensors in space and the wave direction of interest, received from the sensors employed 188 

in the array pattern [12]. Adaptive BF or phased array was based upon the maximization 189 
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of the desired signal at the main lobe provided by the maximum output SINR of 191 

beamformer and minimization of the interference signal [13-15]. It was observed that it 192 

was a flexible approach to find and estimate the SOI at the output of sensor array using 193 

data adaptive spatial or spatio-temporal filtering and interference cancellation. Its 194 

performance degradation could also take place, even if the SOI steering vector was 195 

precisely known, but the sample size during the training stage was small. Another reason 196 

for performance degradation was the environmental non-stationarities because of the fast 197 

variations of the propagation channel and rapid motion of interfering sources or antenna 198 

arrays. Fangxiao Jin et al. [16] proposed Maximum Correntropy Criterion (MCC) based 199 

vigorous cyclic array adaptive BF method to estimate DOA for cyclostationary signals to 200 

tackle against the Cycle Frequency Error (CFE) in impulsive noise as well as Gaussian 201 

noise environments. Practically, the impulsive noise often shows non-Gaussian 202 

properties. It was characterized by sudden bursts and frequently present in wireless 203 

systems [17, 18]. Due to this, a number of adaptive BF methods such as the Fractional 204 

Lower Order Moments-based Beamformer algorithms [19, 20], Linearly Constrained 205 

Minimum- ‘Normalized Variance’ based Beamformer algorithms [21, 22], MCC based 206 

Beamformer algorithms [23-25], and Correntropy based Beamformer [26, 27], were 207 

provided in the presence of impulsive noise. Taras Maksymyuk et al. discussed an 208 

iterative algorithm based on three neural networks for BF in a massive MIMO system, 209 

which required an intensive programming for its implementation [28]. Another 210 

classification of BF technique based on signal processing to increase the system capacity 211 

and performance was presented by Hur et al. in 2013 and Bogale and Le in 2014, wherein 212 

the researchers categorized the techniques into analog BF, digital BF, and hybrid BF. The 213 
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 214 

analog BF used the inexpensive phase shifters as a benefit for massive MIMO systems 215 

compared to digital BF, which has the advantage of providing a more accurate and 216 

speedy foundation results to obtain desired user signals. Vishnu V. Ratnam et al. 217 

discussed the use of Periodic Analog Channel Estimation (PACE) for designing RX 218 

beamformer in massive MIMO systems. In this technique, the channel estimates on one 219 

sub-carrier were used to perform BF on other sub-carriers and was found suitable for 220 

sparse channels with ≤ 10 multipath components in high SNR regime only. The 221 

suggested form did not support reception of multiple spatial data streams with more 222 

system mismatches. This technique had less loss in BF gain and a much lower CE 223 

overhead [29]. Kuo-Chen Ho et al. provided two weighted BF algorithms for low and 224 

high SNR regimes, which minimized the Symbol Error Rate (SER) for a given transmit 225 

power and the transmit power for a given SER. This technique of analog BF supported 226 

multiple spatial data transmission with few RF chains on the TX side in an mm-Wave 227 

channel model. This technique outperformed the conventional fully-digital zero-forcing 228 

BF scheme in terms of hardware cost and quantization effect noise [30]. However, digital 229 

BF suffers from high complexity and has an expensive design in massive MIMO systems. 230 

Hybrid BF was developed to obtain the advantages of analog as well as digital BF for 231 

massive MIMO systems and it employs small number of RF chains. Hybrid BF was 232 

classified as partially connected and fully connected. In fully connected type, additional 233 

components were used to combine RF signals and provide signal attenuation and power 234 

losses. On the other hand, partially connected type used the lesser RF chain access than 235 

number of antennas and led to serious drawbacks such as less directivity, wide beam- 236 

width and strong interference from other chains. To have a smaller beam-width, 237 
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interleaved partially connected array is used currently [31]. Mohammed A. Almagboul et 239 

al. proposed a partially connected hybrid BF inexpensive receiver based on Improved-Bat 240 

(I-BA) algorithm and robust adaptive beamformer in digital domain. I-BA was proposed 241 

to avoid the mismatch of DOA by adaptive beamformer and hence, to optimize its 242 

weights using the analog phase alignment by linear searching [32]. Hedi Khammari et al. 243 

provided an algorithm for allocating the resources as well as for designing the hybrid BF, 244 

and discussed K-mean unsupervised ML algorithm for optimal users grouping to reduce 245 

the feedback overhead. The proposed ML based analog BF along with zero–forcing 246 

digital precoding and user scheduling was used for better performance in terms of sum- 247 

rate [33]. Ahmet M. Elbir discussed the hybrid beamformer design in the mm-Wave -248 

MIMO system. It used two Convolutional Neural Networks (CNNs) using the input of 249 

channel matrix based upon an optimization problem for the joint design of precoder and 250 

combiner. This technique utilized an algorithm for generating the training data for both 251 

networks [34]. Lorenzo Combi et al. designed an efficient algorithm for hybrid BF based 252 

on the matching-pursuit for a limited-size dictionary of analog beamformers, which was 253 

built on the statistical characteristics of the users’ distribution. This dictionary was based 254 

upon the knowledge of spatial correlation of few DOAs and DODs representing the few 255 

radio front-haul channels at mm-Wave frequencies. Since the narrowband processing at 256 

the Resource Allocation Unit (RAU) was affected by the beam squint errors, the 257 

broadband analog processing with optical delay lines was adopted for HBF [35]. Susnata 258 

Mondal et al. demonstrated multi-band MIMO hybrid BF containing multi-antenna 259 

Carrier-Aggregation (CA), and RF (or hybrid) beamformer adaptation. This MMSE 260 

beam adaptation technique enabled the both main lobe and null adaption [36]. Linlin 261 
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Sun et al. proposed a robust hybrid analog-and-digital BF scheme containing Null Space 263 

Projection (NSP) in the analog BF domain and Digital Loading (DL) in digital BF 264 

domain to oppose DOA estimation errors at RX side [37]. Li Zhu et al. proposed the 265 

adaptive hybrid BF based on Dictionary Learning (DL) algorithm for an mm-Wave Line-266 

of–Sight (LoS) MIMO communication system [38]. Yanan Liu et al. discussed the 267 

hotspot prediction and beam management for the adaptive Virtual Small Cells (VSCs) in 268 

5G networks. The discussed deep learning technique improved both the cost efficiency 269 

and operational efficiency i.e. latency reduction of 5G networks and managed the beam 270 

of VSCs by the way of HBF [39]. Song Noh et al. designed a phase-shifted DFT method 271 

based multi-resolution HBF alignment sequence for channel sounding in large-scale mm-272 

Wave - MIMO systems. This sequence designed a subset of codebooks used during the 273 

training period. This adaptive design system provided the good performance of average 274 

data rate by minimizing the training overhead in the considered mm-Wave systems [40]. 275 

Adaptive BF is inconvenient to implement, the major part of present studies related to 276 

massive MIMO systems tend to choose BF technique to fixed/switched BF due to its 277 

reliability for 5G requirements. A lot of researchers had implemented the various kinds of 278 

adaptive BF algorithms. However, virtually no study was available on adaptive BF in 279 

impulsive noise environments (i.e. low SINR) and other wide range of noise 280 

environments using ML to our best belief. Conventional feature- based approaches 281 

mainly depend upon the expert’s knowledge, which may perform well on specialized 282 

solutions, but poor in generality and encounter high complexity and time- consuming. To 283 

solve these problems, ML classifiers were shown great advantages. Although ML 284 

methods have the advantage of solving classification problems efficiently and good  285 
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performance, the feature engineering still depends on expert experience to some extent, 287 

resulting in degradation of accuracy rate. Therefore, self-learning ability is very important 288 

in case of an unknown environment. Moreover, ML has a potential to solve the complex 289 

problems without explicit programming. Both the research community and industry have 290 

advocated the various applications of ML in the field of wireless communication for 291 

resource management such as beamformer design, due to its successful applications to 292 

many practical tasks like image recognition. To optimize beamformer vectors in a 293 

scenario of MIMO broadcast channel, the Weighted Minimum Mean Square Error 294 

(WMMSE) algorithm was designed, which transformed the weighted sum-rate 295 

maximization problem into a higher dimensional space to make the problem more 296 

tractable [41,42,43]. 297 

Problem Statement: 298 

 299 

The suitable BF method increases the signal strength so that it may propagate a large 300 

distance through combining various scattered beam components into a single beam in a 301 

particular direction with the least affection of environmental conditions. The various 302 

researchers had worked on various BF methods, but no one tried to implement any of 303 

these methods on the ML platform. The novelty of the proposed work is that we are 304 

designing an adaptive or phased array BF system, and implementing as well as analyzing 305 

it on the ML platform. 306 

Main Contributions of this paper: 307 

 308 

1. The proposed algorithm is implemented on a ML platform and is analyzed by the 309 

four ML methods. 310 
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2. It works in Maximum Signal-to-Noise-Interference Ratio (MSINR) sense by the 312 

way of optimal adaptive BF and is capable of reducing power consumption as 313 

well as operational cost in a mm-Wave massive MIMO heterogeneous network by 314 

deploying suitable BF method. 315 

3.  The SINR responsible for the adaptive BF under a wide range of noise 316 

environments is predicted and maximized against target SINR using the various 317 

ML models. 318 

The structure of this paper is as follows: 319 

 320 

The introduction along with the related work is presented in section 1. The types, 321 

proposed work flowchart, and data set and methodology of BF are described in section 2. 322 

The subsections 2.1.1, 2.1.2 and 2.2 explain transmit BF using Maximum Ratio 323 

Transmission (MRT), transmit precoding for BF and proposed work flowchart of 324 

adaptive BF respectively. The considered data set and its features having qualitative 325 

assessment, and methodology used are presented in subsection 2.3. The subsection 2.3.1 326 

describes the six relevant features required for the generation of target SINR. The ML 327 

methods and model evaluation are presented in section 3. The applicable four ML 328 

methods for the prediction of target SINR are discussed in subsection 3.1. Model 329 

evaluation using various performance analysis parameters is explained in the subsection 330 

3.2. Section 4 explains simulation results and discussion. The subsection 4.1 is based 331 

upon the comparison of performance analysis parameters of the used ML methods. The 332 

subsection 4.2 discusses the results of validation and cross-validation simulation 333 

experiment. In the last, the conclusion is provided in section 5. 334 
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 335 

2 Types, Proposed Work Flowchart, Data Set and Methodology of 336 

BF 337 

 2.1.1 Transmit BF using MRT 338 

 339 

There are two methods for transmitting: the first is an adaptive technique called MRT and 340 

the second technique is precoding. The first technique uses the channel matrix between 341 

the transmitting and receiving antennas to optimize power at the receiver. The BF 342 

weighting matrix between a transmitter and a particular receiver antenna element, k [44], 343 

is defined by the equation (2.1) which is given as follows: 344 

 345 

                                                              𝒘𝒌 =  
𝒉

𝒌𝑻

|𝒉𝒌|
                                                               (2.1) 346 

 347 

where hk is the Ntx1 channel vector between the transmitting array and the receiver 348 

antenna. The quantity in the denominator is the absolute magnitude of the channel vector, 349 

which is the square root of the sum of the square magnitudes of each of the complex 350 

elements of the channel vector. This weighting matrix maximizes the beam to the specific 351 

receiver antenna, which is entirely based on the channel vector, scaling both magnitude 352 

and phase to form an optimal beam. This beam will likely not represent a specific 353 

direction in an environment with a great deal of multipath, and it may include multiple 354 

lobes taking advantage of the multipath for the specific transmitter-receiver element 355 

combination. When the receiver has more than one element, MRT was applied to form an 356 

optimal beam to the first element, and receiver diversity techniques were applied to 357 

further enhance the gain using the additional receiver elements. 358 

 2.1.2 Transmit Precoding for BF 359 

 360 

This technique uses a precoding table to specify a collection of predefined beams. The 361 

model also provides a mechanism for defining a table of precoding weights that can be 362 



15 
 

 363 

applied to the H-matrix to perform transmit BF or diversity. The precoding weights 364 

provided by Alamouti and pseudo-Alamouti codes increased the probability that a 365 

receiver employing MIMO techniques will receive a signal with spatial diversity as an 366 

advantage. Precoding tables were used to define codebooks or collections of BF weights 367 

that can be used to support a BF method. When the precoding table is used to define 368 

multiple sets of precoding weights for each of a number of beams for a massive MIMO 369 

antenna array, it is attempted to use each set of weights and will select the set that 370 

provides the desired SINR. During a simulation, for each receiver, the model will attempt 371 

to use each beam and select the beam that provides the best SINR. This simulates a base 372 

station that has a fixed set of beams to choose from, which uses reference signals and 373 

feedback from each User Equipment (UE) to select the best beam for transmission to that 374 

UE. 375 

 2.2 Proposed Work Flowchart of adaptive BF 376 

 377 

The BF technique is mainly used in radar and sonar systems. Its task is to adjust the array 378 

weights to maximize SINR in its output as the source moves, while maintaining a 379 

constant gain for the SOI. In BF array, noise and interference are minimized in the output 380 

and the beam pattern is optimized by the processor incorporated by adjusting the control 381 

weights with respect to a prescribed criterion. BF algorithms were based upon certain 382 

criteria like minimizing the variance, maximizing the SINR ratio, minimizing the Mean 383 

Square Error (MSE) [45-47], and were used to optimize the smart antenna patterns. The 384 

training of the network is performed and control weights are predicted from it in real 385 

time. To follow the significant users, 2-D arrays put null values in the direction of the 386 

interfering users [48]. The highly directional channel-aware BF supports long outdoor 387 
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links. The required RF chains are usually lesser to antenna elements. The number of 389 

available RF chains helps in the realization of a number of beams from a node per time 390 

instant. The required performance of a wireless system was achieved, if a beamformer 391 

was designed and algorithm alternatives were evaluated as the first step. In the next step, 392 

the beamformer was integrated into a system-level model and evaluated over a collection 393 

of parameter, steering, and channel combinations. The beam steering helps in a 394 

significant reduction of the delayed multipath components. Another cumbersome task is 395 

system level tradeoffs between performing BF in the RF domain and/or digital baseband 396 

domain. In the proposed work flowchart, an adaptive beamformer is designed with the 397 

aims of suppression of noise plus interference and reduction of power consumption. The 398 

propagation of mm-Wave is dominated by the LOS component. Hence, the knowledge of 399 

AoA of the wave is necessary for its reception at the RX. The optimal weight coefficients 400 

of array elements corresponding to all DOA’s varying from [-120
o
; 120

o
] are 401 

calculated/predicted in MSINR sense considering autocorrelation matrix of noise plus 402 

interferences and autocorrelation matrix of SOI. These autocorrelation matrices of noise 403 

and interferences are not correlated in nature. The necessary phase changes can be carried 404 

out with the various digital ICs available today in the market. The SOI autocorrelation 405 

matrix is generated by creating the array response vector for SOI. This adaptive algorithm 406 

is used for optimal BF in massive MIMO mm-Wave systems and is capable of reducing 407 

power consumption by deploying the suitable BF method. The proposed work flowchart 408 

of adaptive BF as shown in fig. 3 is as follows: 409 
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Generate data from pyArgus antenna pattern to evaluate sample correlation matrix 

Perform data pre-processing and cleaning in the form of a vector zn 
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the array output 
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Is generalization phase over? 431 
 432 

Fig. 3 - Proposed Work Flowchart Yes 433 
 434 

of Adaptive BF  435 
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Stop 437 

Predict the control weights of the array elements {𝑤̅n; 𝑛  = 1, 2 … , N} corresponding to 

all DOA’s varying from [-120o; 120o] based on following Equation: 

𝑤̅                =    R A [A  R A] ∗ f; where 𝐴 points to the desired signals and is called 

the 

̅̅̅̅̅ −1 
xx 

H ̅̅̅̅̅ −1 −1 

xx 

array steering matrix. The term 𝑓 decides the nature of signals as either interfering or 

desired signals and updates the weights according to optimum maximum output 

Start Training Phase 

No 
Is training process over? 

Yes 

Go to generalization phase 

Employ a 6-10-1 NN to learn all sets of input–output pairs 

Generate input–output pairs {(zn;𝑤𝑛̅̅ ̅̅ )  for n = 1, 2, 3… N}, for all sources present in 

angular range of [-120o; 120o] 

Create the SOI autocorrelation matrix, interference and noise autocorrelation matrices 

{𝑅𝑛
𝑥𝑥; ̅̅ ̅̅ ̅̅ ̅̅    𝑛 = 1,2, … . 𝑁}for all DOA’s varying from [-120o; 120o] 

Generate data using pyArgus antenna array pattern, and perform data pre-processing 

and cleaning in the form of a vector zn 
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 438 

 2.3 Data Set and Methodology 439 

 440 

                           2.3.1 Data set and its features having qualitative assessment 441 

 442 

The required data is generated for the work using modeling and simulation. The python 443 

package pyArgus [1] has been used for 20,000 simulations. The noise variance, Pnoise is 444 

between 0.001 and 0.1, both are inclusive; N is the number of elements of an antenna 445 

lying between 2 and 10, both are inclusive; d is the distance between the consecutive 446 

antenna elements measured in ⅄ and lying randomly between 0 and 1(inclusive); a and b 447 

are azimuth and elevation angular ranges of receiving array respectively each lying 448 

between -120° and +120°, both are inclusive; Theta_soi is SOI lying between-120° and 449 

+120°, both are inclusive. The values of a and b provide a help in the generation of 450 

incident angles of interferences. Table 1 shows a brief description of the features, namely 451 

as Pnoise, N, d, a, b and Theta_soi using RF in terms of % Inc MSE and Inc Node Purity 452 

used for the generation of BF beam in this study. The higher value of any feature plays a 453 

more significant role in the generation of BF beams. Table 2 describes the sample dataset 454 

used containing the randomly selected values of all six features. The modeled entries are 455 

simulation of python-based signal processing algorithms applicable in antenna arrays 456 

(pyArgus). 457 
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 459 

  460 
 461 

Feature Information (% Inc MSE) Inc Node Purity 

Pnoise 148.12 
1672223101 

N 72.72 315851000 

d 39.68 
138440244 

a 0.74 112363333 

b 8.24 
115403801 

Theta_soi 10.49 134960829 

 462 
 463 
 464 
 465 

Table 2 Sample dataset 466 

 467 

Pnoise d N theta_soi a b SINR 

0.053 0.3 10 -102 117 -62 188.63 

0.018 0.2 10 4 -8 -10 2.17 

0.028 0.9 2 -67 -89 -31 67.05 

0.016 0.5 3 48 -96 -5 101.77 

0.094 0.1 8 84 117 35 59.91 

0.071 0.4 4 96 21 33 52.31 

0.09 0.9 8 102 -14 94 88.89 

0.033 0.8 10 -32 -81 10 300.77 

0.023 0.7 2 -61 -10 -18 63.82 

0.058 0.4 8 -60 -73 -89 131.47 

0.091 0.8 8 -75 -70 14 86.53 

0.061 0.6 9 -77 10 -4 147.06 

0.027 0.2 6 8 -87 -98 210.54 

0.007 0.6 5 27 -9 47 549.88 

0.042 0.7 3 -90 17 61 71.40 

0.051 0.7 3 120 -46 -65 58.52 

0.095 0.4 2 -1 -111 -30 1.52 

0.042 0.5 4 -120 -107 53 93.08 

0.07 0.7 3 61 -81 37 34.01 

Description of the features using RF Table 1 
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Data collection through 

Modeling and 

Simulation of python- 

based signal processing 

algorithms applicable in 

antenna arrays 

(pyArgus) 

Perform data 

pre-processing 

and cleaning 

Calculate 

features of 

importance 

namely, Pnoise, d, 

N, theta_soi, a 

and b. 

Model building 

on training- 

testing dataset 

 468 

2.3.2 Methodology used 469 

 470 

The methodology of the proposed system, which is used for predicting the target SINR in 471 

terms of model evaluation parameters, consists of six steps. These steps as mentioned in 472 

Fig. 4 are described as follows: 473 

In step 1, the data is collected through modeling and simulation, and its pre-processing 474 

and cleaning is carried out to enhance its accuracy, validity, completeness, consistency 475 

and uniformity in step 2. The step 3 consists of finding the features of importance as 476 

mentioned in table 1 of subsection 2.3.1, required to decide their role in the generation of 477 

BF beam. In step 4, a model building is done on the pre-processed and cleaned dataset. 478 

The step 5 consists of evaluation of the built model using 4 ML methods in terms of 479 

performance analysis parameters as mentioned in the table 4 obtained using the equations 480 

(3.2) – (3.4) of sub-section 3.2. In step 6, the result is analyzed by the validation and 481 

cross-validation simulation experiment as mentioned in sub-section 4.2. 482 

 483 

 484 
 485 
 486 

 487 

 488 

 489 

 490 

 491 

Fig. 4 - Various Steps of Methodology used 492 

Calculate evaluation 

parameters namely 

MAE, 𝑅, 𝑅2and % 

Accuracy on training- 

testing dataset 

Result analysis 

having 

Validation and 

Discussion 
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 493 

3 ML Methods and Model Evaluation 494 

 495 

                        3.1Machine Learning (ML) Methods 496 

 497 

The four ML methods (shown in Table 3) used for prediction of SINR of the received 498 

signal are present in R open source software, which is licensed under GNU GPL. 499 

 500 

Table 3 ML methods used 501 

 502 

Model Method Package Tuning Parameters and 

associated Values measured 

Decision Tree 

[49] 

 
rpart 

 
rpart 

minSplit=20, maxDepth=3, 

minBucket=7, n=14000 

Random Forest 

[50] 
RF randomForest Ntree=500, mtry=2 

LM [51] lm glm none 

NN [52] neuralnet nnet 
hlayers=10, maxNwts.=87, 

maxit=20000 

 503 

 504 

A lot of ML methods are available, but only four methods, namely as rpart, RF, lm and 505 

neuralnet are applicable because the proposed model supports only regression and 506 

classification data, and output of the proposed model is a numeric value. These methods 507 

are explained briefly as: 508 

(a) Decision Tree (rpart): This method is an extension of C4.5 classification algorithms 509 

described by Quinlan [49]. It does not support online learning and suffers from easy 510 

overfitting problem. Therefore, it is not well suited for the proposed model. 511 

(b) Random Forest (randomForest): It depends upon a dense collection of trees using 512 

the inputs of random nature [50]. It supports both types of regression and classification 513 

problems having large data sets. It also helps in the identification of most significant 514 
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 515 

variables from hundreds of input variables. It is scalable in nature to any number of 516 

dimensions and has generally quite acceptable performances. Ntree and mtry are the 517 

number of trees and number of variables tried at each split, respectively. 518 

(c) Linear Model (glm): It carries out regression, single stratum analysis of variance and 519 

analysis of covariance [51]. 520 

(d) Neural Network (nnet): Training of neural network is done using back-propagation, 521 

resilient back-propagation with or without weight or the modified globally convergent 522 

version [52]. The neural network accepts the weights of connections between neurons. 523 

When all weights are trained, it is used to predict the class or quantity. hlayers, maxNwts. 524 

and maxit are the number of hidden layers, maximum network weights and maximum 525 

number of iterations, respectively. The neuralnet used is 6-10-1 network. The tuning 526 

parameters used in each method minimize the error. 527 

3.2 Model Evaluation 528 

 529 

Adaptive beamformers are evaluated in terms of the beamformer response, the output 530 

SINR, the array gain, the array sensitivity, and the white noise gain. 531 

The output SINR is determined by the equation (3.1) which is as follows: 532 

 533 

𝐒𝐈𝐍𝐑 = (𝐰𝐇𝐑𝐒𝐒 𝐰)/ (𝐰𝐇𝐑(𝐢+𝐧)𝐰 (3.1) 534 

where Rss is sample covariance matrix of the source observed at the array beamformer, 535 

Ri+n is the covariance matrix of the interference and noise considered together. The adaptive 536 

beamformer is evaluated by the output SINR only, which provides a measure of the 537 

quality of communication, and estimates the ratio between the SOI and noise plus 538 

interference. It is optimized under wide range of noise environments by optimizing the 539 

value of spacing between elements, element tapering, lattice structure between elements 540 
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 541 

and increasing the number of elements in antenna array used. The BF model is evaluated 542 

in terms of the following 4 performance analysis parameters given by equations (3.2) – 543 

(3.4) [53], which are not derived here: 544 

 3.2.1 Mean Absolute Error (MAE) 545 

 546 

It measures the error rate of a regression model. However, it can only be compared 547 

between models having errors in the same units [53]. It is calculated by the equation 548 

(3.2): 549 

𝐌𝐀𝐄 = 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐨𝐟 𝐀𝐛𝐬𝐨𝐥𝐮𝐭𝐞 𝐯𝐚𝐥𝐮𝐞 550 

 551 

(𝐩𝐢 − 𝐚𝐢) 𝐟𝐨𝐫 𝐧 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 (𝟑. 𝟐) 552 

 553 

where 𝑎𝑖 is 𝑖𝑡ℎ actual SINR target value and 𝑝𝑖 is 𝑖𝑡ℎ predicted SINR target value. It is 554 

calculated for all ML methods, which are shown in table 4. 555 

 3.2.1Correlation (R) 556 

 557 

It provides the statistical relationships between true and predicted values. It is defined by 558 
 559 

the equation (3.3): 560 

 561 

 562 

                                                         𝐑 =  
∑ (𝒙−𝒙̅)(𝒚−𝒚̅)𝒏

𝒊=𝟏

√∑ (𝒙−𝒙̅)𝟐 ∑ (𝒚−𝒚̅)𝟐𝒏
𝒊=𝟏

𝒏
𝒊=𝟏

                                       (3.3) 563 

 564 

where x is the true value, y is the predicted value, 𝑥̅ is the average of the all true 565 

values, 𝑦̅ is the average of the all predicted values and n is the number of iterations. 566 

Correlation is present between 0 and 1, and is considered as good if its value approaches 567 

1[53]. It is calculated for all ML methods, which are shown in table 4. 568 
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 570 

 3.2.3 Coefficient of Determination (R2) 571 

 572 

It evaluates the proportion of variance of the dependent variable, provided by the 573 

regression model and provides its explanatory power [53]. For perfectness of the model 574 

R2 is 1, and for its failure, R2 is zero. It is calculated by taking the square of the R −  575 

value between the predicted and observed values for all ML methods, which are shown  576 

in table 4. 577 

 3.3.4 Accuracy 578 

 579 

Training Loss and accuracy give overall measures of the model's performance. The 580 

accuracy is improved by preprocessing the data. It is calculated by the following equation 581 

(3.4) as percentage deviation of predicted target with true target with some acceptable 582 

                              error: 583 

 584 

                                                          𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =  
𝟏𝟎𝟎

𝒏
∑ 𝒒𝒊

𝒏
𝟏=𝟏                                              (3.4) 585 

 586 

     𝒒𝒊 = {𝟏 𝐢𝐟 𝐚𝐛𝐬 (𝐚𝐢 − 𝐩𝐢) ≤ 𝐞 587 

 588 

0 elsewhere, 589 

 590 

where a is the true target, p is the predicted target, n is the total number of iterations and  591 

e is the acceptable error [53]. It is calculated for all ML methods, which are shown in 592 

table 4. 593 

 3.2.5 𝑲-Fold Cross Validation 594 

 595 

It measures the robustness of the predictive method employed. The generated dataset is 596 

randomly divided into say k equal size subsamples as a first step. Thereafter, out of the 597 
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 598 

k Sub-samples, a single subsample is retained as the validation data for testing the 599 

method, and the remaining k − 1 subsamples are used for carrying out the training of the 600 

generated data. The cross-validation process is then repeated K-fold of times, with each 601 

of the k subsamples used exactly once as the validation data. Then, all the results from K- 602 

folds can be averaged to provide a single estimation. The 10-fold validation and cross- 603 

validation in terms of true and predicted values of target SINR are shown in figs. 7 and 8. 604 

 605 

 606 

4 Simulation Results and Discussion 607 

 608 

The proposed adaptive BF system is hybrid in a sense that it is a combination of an 609 

analog part driven by a computer controlled system and a ML part. The prediction results 610 

of all employed ML methods on the training-testing data set are analyzed. All the models, 611 

which were discussed in section 4, have been run on a sample dataset (shown in Table 2) 612 

and evaluated on correlation, R2, MAE and % accuracy. The dataset is handling a smaller 613 

number of input features, which are larger in observation values. The 10-fold validation is 614 

used to assess the robustness of the best predictive method. The regression model suffers 615 

from overfitting problem as the criterion used for its training is not exactly the same as 616 

the criterion used to judge its efficacy. So, the validation experiment has been conducted 617 

on the generated dataset using best predictive model selected from training-testing 618 

experiment. The overfitting issue may have less chance, if the number of parameters in 619 

the employed network is much smaller as compared to the total number of data points in 620 

the training set. If the size of the training dataset is increased by collecting more data, 621 

techniques like regularization and early stopping are not feasible to prevent over-fitting. 622 
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 4.1 Training-Testing Simulation Experiment 624 

 625 

The generated data set is divided into two sets - one set is used for training first and 626 

thereafter; the second set is used to test the performance of the result. The generated data 627 

set is distributed to 70% and 30% respectively for all employed methods in training- 628 

testing experiment. Table 4 depicts the comparative performance of all used methods in 629 

the prediction of SINR on correlation, R2, MAE and % accuracy. The performance results 630 

as shown in figs. 5 and 6 shows that RF method outperforms over the other three ML 631 

methods employed in the prediction of target SINR as there is the closer; more positive 632 

and linear relationship between true and predicted values as compared to other three ML 633 

models. Fig. 5 (b) and fig. 6 (b) depicts the scatter plot between predicted value and 634 

observed value of target SINR on training and testing dataset respectively using the best 635 

RF model. The SINR of the received signal can be increased by BF technique. 636 
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 637 
 638 

 639 

 640 
 641 

Fig. 5 (a) Predicted vs. Observed Decision Tree Model (b) Predicted vs. 642 

Observed Random Forest Model (c) Predicted vs. Observed Linear Model (d) 643 

Predicted vs. Observed Neural Net Model on Training dataset 644 
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 645 
 646 
 647 
 648 

 649 
 650 
 651 

Fig. 6 (a) Predicted vs. Observed Decision Tree Model (b) Predicted vs. 652 

Observed Random Forest Model (c) Predicted vs. Observed Linear Model (d) 653 

Predicted vs. Observed Neural Net Model on Testing dataset 654 
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 655 

Table 4 Performance comparison of employed ML methods as 656 

shown in table 3 in the prediction of R,𝐑𝟐, MAE and % 657 

Accuracy on training-testing dataset 658 

 
Model used 

 
Performance Analysis Parameters 

R 𝐑𝟐 MAE % Accuracy 

Decision 

Tree [49] 

 
0.87 

 
0.76 

 
122.52 

 
72.97 

Random 

Forest [50] 
0.92 0.85 70.73 86.40 

LM [51] 0.42 0.18 208.18 36.12 

NN [52] 0.20 0.04 211.53 42.50 

 659 

The MAE is used to measure the average of absolute values of difference values between 660 

predicted and true values. It is computed using equation (3.2) and Table 4 depicts the 661 

MAE of four employed methods. It has been found that the RF model has the lowest 662 

MAE of 70.73 as compared to the other three models on the training-testing dataset. The 663 

R value is computed using equation (3.3) and Table 4 presents the R value of the 664 

employed methods. It has been observed that the RF model has the largest R value of 665 

0.92. The R2 parameter is computed by taking the square of correlation and Table 4 666 

presents the R2 parameter of the employed methods. It has been found that the RF model 667 

has the largest R2 of 0.85 in the prediction of target SINR on the training-testing dataset. 668 

Accuracy is computed using equation (3.4) with some acceptable error and Table 4 669 

depicts the % accuracy of the employed methods. It has been observed that the RF model 670 

has the largest accuracy of 86.40% having acceptable error in the prediction of target 671 

SINR on the training-testing dataset. 672 
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Table 5 Comparison of BF results based on ML of various researchers and our paper 674 

 675 

Paper/ 

Author(s) 
 
[49]/J. R. 

Quinlan 

(1986) 

 
[53] / 

Prashant 

Singh Rana 

et al. (2014) 

 

 
[34] Ahmet 

M. Elbir 

(2019) 

 

[54] 

Francisco 

Hugo Costa 

Neto 

et al. (2019) 

 
[55] 

Hyung 

Jun Kwon 

et al. 

(2019) 

 
Results of 

the 

proposed 

work 

 

 
Salient 

remarks 

Type of 

model/Essential 

Simulation 

Conditions/ 

Parameter(s) 

 
 

 
Type of Model used 

 
 

Complex 

decision tree 

ML based 

modeled 

protein 

structure 

which was 

based on 

RMSED- 

prediction 

model 

 
 
 

CNN 

based 

frame

work 

 
 

The downlink 

of a massive-

MIMO 

system 

 
 

 
ML model 

Using the 

best RF 

model, the 

proposed 

work is 

having the 

following 

performan 

ce analysis 

parameters 

: 

Correlation 

- 0.92, 

 
R2- 0.85, 

1. The 

dataset of 

paper [53] is 

little bit more 

correlated in 

nature, but its 

accuracy is 

much lower 

than the 

accuracy of 

the proposed 

work. 

 

Essential Simulation 

Conditions/ 

Attributes used 

Outlook, 

temperature, 

humidity and 

windy at 100% 

 

Physicoche 

mical 

properties 

𝑁𝑅 = 𝑁𝑇 = 36, 

𝑁𝑆 = 3, 

Uniform 

square arrays 

with 0.5 ⅄ 

spacing, 

𝑁𝑅𝐹=𝑁𝑅𝐹= 𝑅 𝑇 

          4, 

𝑁𝑜. 𝑜𝑓 
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 

𝑜𝑓 

Angle 

sector=600, BS 

height=10 m, 

UE height=1.5 

m, UE 

track=linear, 

UEs speed=3 

km/h, BS 

antenna 

model = 

(3GPP)- 

having 17 

input 

nodes, 

𝑀 hidden 

layers with 

𝑁 hidden 

nodes and 



31 
 

 676 
 677 

 noise  𝑐ℎ𝑎𝑛𝑛𝑒𝑙 
𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠, 𝑁 = 
𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑖𝑠𝑦 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑚𝑎𝑡𝑟𝑖𝑐𝑠, 
𝐿 = 100, all 

transmit and 
receive azimuth 
and elevation 

angles which 
were uniform 

randomly 
selected from the 

interval [−600, 
600] and [−200, 

200] respectively 

mm-Wave, 

BS vertical 

antennas=8, 

BS horizontal 

antennas=8, 

BS element 

array 

spacing=0.5 

⅄ m, UE 

antenna 

model=omni

, UE 

antennas=1, 

no. of 

simulation 

rounds=50 

4 output 

nodes 

Mean 

Absolute 

Error- 

70.73 

 
and 

% 

Accuracy- 

86.40, as 

shown in 

table 4. 

2. The 

accuracy of 

the proposed 

method 

mainly 

depends 

upon the 

type of the 

problem 

considered, 

and a way of 

dataset 

collected and 

its features of 

importance. 

 

3. No other 

researcher had 

considered all 

ML methods as 

well as no 

researcher had 

implemented 

the designed 

BF algorithm 

on ML 

platform.  

  

P
a
ra

m
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rs
 M

e
a
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y
 v

a
ri

o
u

s 
 

re
se

a
rc

h
e
rs

 

 
E
rr

o
r 

ra
te

 (
%

) 

 

Error rate of 

all  attribute 

s= 25.9% 

 

Not 

considered 

 

 
Not 

considered 

 

 
Not 

considered 

 

Not 

considered 

 A
c
c
u

ra
c
y
 (

%
) 

     

Not consider 

ed 

RMSED 

based 

78.82 % 

 
Not 

considered 

 
Not 

considered 

Not 

considered 
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S
p

e
c
tr

a
l 

e
ff

ic
ie

n
c
y
 

(b
it

s/
s/

 H
z
) 

Not consider 

ed 

 
Not 

considered 

(5 - 40) of HBF 

(Deep 

Learning) DL 

vs. SNR 

(-20 - 20) dB 

 
Not 

considered 

 
Not 

considered 

 

N
M

S
E
 

 

 

 

Not consider 

ed 

 

 

 

Not 

considered 

 

 

 

Not considered 

(approx. 10-

2.5 - less than 

10-4 ) of the 

estimated 

channel 

vector for 

pilot 

sequence 

length =128 

vs. SNR (0 - 

20) dB of the 

beam 

 

 

 

Not 

considered 

 

S
u

m
 r

a
te

 

 

 

 

Not consider 

ed 

 

 

Not 

considered 

 

 

 

Not considered 

 

 

 

Not 

considered 

(2 - approx. 

15) of the 

TXs for 

1000000 

samples vs. 

SNR (0 - 25) 

dB 
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 678 

Our accuracy result is better than the Root Mean Square Deviation (RMSD) - based result as 679 

shown in table 5 having the acceptable error on the training-testing data set of the research paper 680 

[53]. The electronically steered BF applied and the corresponding results obtained as shown in 681 

tables 4 and 5 play an important role in BS antennas providing the super-high spectrum efficiency 682 

through spatial multiplexing, data rate, energy efficiency, network capacity and throughput for 683 

near-instant and full unlimited connectivity human-like intelligent 6G wireless networks. The 684 

network throughput can be increased by providing hundreds of beams serving a large number of 685 

users at the same time in the form of massive-user MIMO in future 6G wireless networks. 686 

 4.2 Validation and Cross-Validation Simulation Experiment 687 

 688 

The 10-fold validation and cross-validation are used to measure the robustness of the RF model. 689 

Fig. 7 depicts the scatter plot between true and predicted values of target SINR for 10 folds in the 690 

validation experiment and this experiment is performed on 15% of the generated dataset. The 691 

pseudo R-square value of 0.8675 from fig. 7 is very close to the pseudo R-square value of 0.8049 692 

from fig. 6 (b). It makes sure that data set used is logical, complete and within acceptable limits. 693 

Cross-validation result as shown in fig. 8 depicts the uniform performance on all evaluation 694 

parameters of the model. This result is obtained by plotting the scatter plot between actual SINR 695 

and predicted SINR of RF model and this plot resembles the validation scatter plot as shown in 696 

fig. 7 to a much greater extent.  It has been used to better estimate the test error of any model and 697 

puts better confidence in the prediction accuracy of the model. It prevents the model over-fitting 698 

and gives our model the opportunity to train on a number of train-test splits. 699 
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 700 

 701 

 702 
 703 

 704 

Fig. 7 Predicted vs. Observed in RF model during validation 705 

phase 706 
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 729 

Fig. 8 Predicted vs. Observed in RF model during cross-validation phase 730 

 731 

The observed SINR is plotted on the horizontal axis and predicted SINR on the vertical 732 

axis of the scatter plot. The location of each point on the graph depends on both the 733 

predicted and observed SINR values in figs. 5-8. The figs. 7 and 8 validate and cross- 734 

validate the same conclusion-stronger; more linear and positive relationship between the 735 

predicted and observed SINR values using the RF model as compared to the other three 736 

ML models. The test set error is not utilized during the training phase. It is useful for 737 

comparing various models and may be plotted during the training process. If it reaches a 738 

minimum value than the validation set error for a particular iteration number, the data set 739 

is poorly divided in nature. It is very difficult to know the speed of the employed training 740 

algorithm, which depends upon various factors, such as the complexity of the problem, 741 

the number of data points used in the training set, the number of control weights and 742 

biases in the network, the target error, and whether the network is being utilized for 743 

pattern recognition or function approximation. 744 
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5 Conclusion 745 

 746 

BF is a noise mitigation scheme to improve the SINR ratio of received signals, and focus 747 

transmitted signals in desired spatial directions. The parameters of each path of multi-748 

path propagation model are cleaved into the corresponding channel gain and the DOA 749 

information in the channel matrix. Here, the adaptive BF is used under low and high 750 

SINR regime using ML in MSINR sense. The ML models, namely Decision Tree, 751 

Random Forest, Linear Model and Neural Network are used to predict the target SINR 752 

responsible for BF. The optimization of antenna combining weights is based on MSINR 753 

value. The ML models are evaluated and compared in terms of performance analysis 754 

parameters, namely correlation, R2, Mean Absolute Error and % Accuracy on a data set 755 

generated using the python package pyArgus. Random Forest ML model is the best 756 

among the four ML models used and has the best performance analysis features as 757 

follows: Correlation-0.92, R2-0.85, Mean Absolute Error-70.73 and % Accuracy-86.40. 758 

The further research is required to improve the coding to enhance the performance 759 

analysis results shown in this paper. The proposed adaptive BF system may be applied in 760 

VSCs, which is to be explored in the next research. The more advanced antenna arrays 761 

can be used to overcome the optimum half-wavelength limit of arbitrary configured 762 

planar antenna systems. 763 
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