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Key Points: 12 

• Minimally trained U-Net models can perform multiphase segmentation of variable-13 
contrast X-ray CT images of methane-bearing sand. 14 

• U-Net models trained on low-contrast images can accurately segment different, higher 15 
contrast data sets without additional training. 16 

• U-Net segmentations deliver accurate 3D visualizations of the soil fabric and 17 
porosity/methane saturation profiles. 18 
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Abstract 20 

Methane (CH4) hydrate dissociation and CH4 release are potential geohazards currently 21 
investigated using X-ray computed tomography (XCT) imaging in laboratory experiments. 22 
Image segmentation constitutes an important data processing step for this type of research, but it 23 
is often time consuming, computing resource-intensive and operator-dependent. Furthermore, 24 
segmentation procedures are frequently tailored for each XCT data set due to differences in 25 
image characteristics, such as greyscale contrast variations. To address these issues, an 26 
investigation has been carried out using U-Nets, a novel class of Convolutional Neural Network, 27 
to segment synchrotron radiation XCT (SRXCT) images of CH4-bearing sand during hydrate 28 
formation. Three U-Net deployment methodologies previously untried for this task were 29 
assessed: (1) 3D hierarchical, (2) 2D multilabel and (3) RootPainter, a 2D application that 30 
implements interactive corrections. Results show high segmentation accuracy, with RootPainter 31 
slightly outperforming the alternative approaches. Greyscale contrast between material phases 32 
was found to affect segmentation performance, with the lowest metrics corresponding to data 33 
exhibiting the lowest contrast. Segmentation accuracy affected derived parameters such as CH4-34 
saturation and porosity, but errors were small compared with gravimetric methods. It was also 35 
found that U-Net models trained on low greyscale contrast images could be used to segment 36 
higher-contrast data sets and produce accurate 3D visualizations of CH4 distribution, 37 
demonstrating model portability. Such portability is anticipated to be advantageous when the 38 
segmentation of large XCT data sets needs to be delivered over short timespans. 39 

 40 

Plain Language Summary 41 

Methane hydrates are ice-like solids present in deep ocean sediments and frozen ground and 42 
contain large volumes of methane gas. Recently, geoscientists have used X-ray computer 43 
tomography to produce 3D images of hydrate formation and melting in controlled experiments. 44 
They then classify the images into the soil grains, water and methane that composed the sample 45 
to measure changes in soil structure. This process is called segmentation, and often needs to be 46 
tailored for each image depending on the difference in tone between the features being classified, 47 
known as contrast. Therefore, segmentation can be time-consuming, and results might vary 48 
depending on the person who performs it. Looking to overcome this, we evaluated the use of a 49 
class of machine learning algorithm called U-Net to perform segmentations. U-Nets use a set of 50 
verified segmented images as training data to ‘learn’ how to segment similar images. We 51 
investigated three ways of implementing U-Nets and found that they all produced accurate 52 
segmentations, but accuracy diminished for low contrast images. U-Net segmentations were then 53 
used to accurately calculate parameters like porosity and methane saturation. Finally, we 54 
discovered that U-Net algorithms trained on low-contrast images could be used to segment 55 
higher-contrast images without additional training. 56 

 57 

 58 

 59 
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1 Introduction 60 

Deep sea sediments and permafrost host large quantities of methane (CH4), an energy 61 
source and potent greenhouse gas that may be a contributor to climate change (Dean et al., 2018; 62 
IPCC, 2013). Much of this CH4 is present as hydrates (clathrates), that is, crystalline lattices of 63 
frozen water that enclose CH4 molecules. 164 m3 of CH4 gas at normal temperature and pressure 64 
can be stored in one m3 of hydrate (Kvenvolden, 1993). However, the extent of the world-wide 65 
CH4 hydrate inventory is subject to considerable uncertainty (James et al., 2016; Ruppel & 66 
Kessler, 2017). This is in part due to discrepancies between measurements produced by 67 
geophysical and electrical resistivity methods (Sahoo, Marín-Moreno et al., 2018; Yokohama et 68 
al., 2011), which are potentially associated with hydrate heterogeneity in the host soils (Sahoo, 69 
Madhusudhan et al., 2018). Uncertainties on the global CH4 hydrate inventory affect resource 70 
estimation and CH4 emission prediction models (Moridis et al., 2011; Ruppel & Kessler, 2017; 71 
Saunois et al., 2020). 72 

In addition to hydrocarbon resource and greenhouse gas emission prediction challenges, 73 
CH4 hydrate formation and dissociation has also been associated with changes in the mechanical 74 
characteristics of the host sediment, which may result in geohazards. For instance, hydrates may 75 
strengthen and stiffen the sediment by creating inter-grain cementation bonds (Madhusudhan et 76 
al., 2019; Song et al., 2019). Hydrate dissociation may then reverse these gains and is thus 77 
speculated to lead to, for example, underwater slides that may trigger tsunami or damage seabed 78 
infrastructure such as cables and pipelines, which are vital for communications and energy 79 
transport (Maslin et al., 2010; Mienert, 2009; Vanneste et al., 2014). 80 

Recently, researchers have shown that X-ray computed tomography (XCT) can be used 81 
to successfully detect hydrate heterogeneity and characterize changes in sediment microstructure 82 
associated with hydrate formation and dissociation (Holland & Schultheiss, 2014; Kerkar et al., 83 
2014; Lei et al., 2018; Sahoo, Madhusudhan et al., 2018). This has been possible in great part 84 
due to advancements in image segmentation techniques. Segmentation is the process of 85 
classifying 2D pixels or 3D voxels into regions, for example, the solids (e.g. soil grains and 86 
cement bonds), liquids (e.g. water or brine) and gases (e.g. air or CH4) present in an image. 87 
Microstructural parameters such as porosity (or void ratio) and grain and pore size, shape and 88 
orientation can then be derived from the segmented image, as well as volumetric quantities like 89 
CH4 gas and hydrate saturation ratios. 90 

Some of the most common segmentation techniques used in geomechanics and 91 
geoscience are greyscale thresholding and watershed algorithms (Fonseca et al., 2009; Iassonov 92 
et al., 2009). The former involves the selection of a greyscale range to classify pixels or voxels 93 
into regions of interest. Watershed algorithms redefine the image as a geographical map, were 94 
greyscale intensities form topographical elevations and catchment basins. Pixel/voxel markers 95 
within these basins are used to define the materials or ‘labels’ present in the image, and the 96 
algorithm then morphologically dilates these markers until they ‘fill’ their catchment basins 97 
(Rogowska, 2000; Zhang et al., 2014). Greyscale range determination in thresholding techniques 98 
and marker grey value and location in watershed techniques are operator and/or method 99 
dependent (Baveye et al., 2010; Fonseca et al., 2009; Koyuncu et al., 2012). The values assigned 100 
to these parameters also depend on the recorded greyscale contrast, which is highly reliant on the 101 
X-ray imaging instrument used and how it was optimized. For example, Brunke et al. (2008) 102 
showed that for the same sample, a significant difference in image contrast can be present 103 
between data taken using laboratory-based X-ray tube sources and synchrotron radiation sources. 104 
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 139 

This paper examines the use of U-Nets to segment synchrotron radiation XCT (SRXCT) 140 
images of CH4-bearing sand. The SRXCT data was obtained from in-situ imaging of hydrate 141 
formation and dissociation experiments. The reconstructed volumes exhibited different greyscale 142 
contrast amongst them. Furthermore, contrast between the three main material phases present in 143 
the images was low, as shown in the example image histogram for a reconstructed slice in 144 
Figure 1(a). This rendered the use of ‘standard’ thresholding or watershed techniques unsuitable. 145 
Instead, three different U-Net implementation strategies, previously untried for this purpose, 146 
have been developed and applied. The U-Net segmentation procedures targeted the three main 147 
material phases present in the images: (1) sand, (2) CH4 gas bubbles and (3) brine combined with 148 
hydrates, since the contrast between these two materials was minimal. Special focus has been 149 
given to the CH4 gas phase, as it not only exhibited low contrast with regards to the brine-hydrate 150 
phase but was also uncommon in the data compared to the other materials, as evidenced in 151 
Figure 1(a). The aim of the investigation was to determine if U-Nets can accurately segment 152 
XCT images of soil samples with varying greyscale contrast between material phases using only 153 
a small number of training and validation images, thus reducing operator/computing time and 154 
allowing objective comparison of data. The starting hypotheses were (1) that U-Net models 155 
trained on a small portion of the reconstructed SRXCT 3D image can be used to accurately 156 
segment the entire volume, (2) that segmentation accuracy is directly linked to greyscale contrast 157 
between materials, and (3) that accurate U-Net segmentation models produced from training on a 158 
given SRXCT data set can deliver accurate segmentations for similar data sets without additional 159 
training (model portability). 160 

 161 

 162 
Figure 2. Cross-section sketch of hydrate test rig. Monolithic PEEK element denoted by hatched 163 
area. All units mm. 164 
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2 Materials and Methods 165 

2.1 Methane gas hydrate formation and dissociation experiments 166 

A custom rig designed and manufactured by Sahoo, Madhusudhan et al. (2018) for in-situ 167 
SRXCT imaging of gas hydrate formation and dissociation was used in the present study. The rig 168 
is made of polyether ether ketone (PEEK) and consists of a monolithic 2 mm internal diameter 169 
by 23 mm tall cylindrical vessel with 0.8 mm thick walls and an enlarged base, as shown in 170 
Figure 2. The SRXCT imaging zone in this study corresponds to a 1.755 mm section of the 10 171 
mm-tall portion of the vessel that protrudes from the enlarged base. The soil sample is placed 172 
through the bottom of the rig. The pore fluid injection pipe is connected to this inlet, as depicted 173 
in Figure 2. The rig features thermocouples at the base of the SRXCT imaging zone to measure 174 
sample temperature.  175 

Leighton Buzzard sand Fraction E (LBE) with mean grain diameter of 100 µm was used 176 
as surrogate marine sediment. LBE is an angular silica sand widely used as a standard laboratory 177 
material in geotechnical research. The sand was tamped into the PEEK vessel to a target porosity 178 
of 35%. A vacuum pressure of less than 1 Pa was applied through the injection pipe to reduce air 179 
presence in the pore space. A calculated volume of brine solution (3.5% NaCl by weight) was 180 
thereafter injected into the sample, such that approximately 90% of the pore volume became 181 
saturated. CH4 gas was then injected at 10 MPa and the valve to the sample closed. The sample 182 
was gradually cooled to a target constant temperature of 2 °C using a N2 cryostream. This 183 
thermobaric condition enabled hydrate formation in the pore space instead of ice. The target 184 
temperature was maintained for 30 hours to complete the hydrate formation process 185 
(Madhusudhan et al., 2019). 186 

 187 

2.2 Synchrotron X-ray Computed Tomography 188 

2.2.1 Set-up and Image Acquisition 189 

Data was collected on beamline I13-2 at Diamond Light Source (DLS). Scans were 190 
performed using a polychromatic ‘pink beam’ at 30 keV peak energy. The detector system used 191 
was a scintillator-coupled pco.edge 5.5 camera fitted with a 4x optic magnification lens, resulting 192 
in an effective pixel size of 0.8125 µm. The X-ray projection size was 2560×2160 pixels (width 193 
× height).  194 

 195 
Table 1. SRXCT Scan Summary. 196 

Data set Time at 2°C (h) Number of projections Exposure time per 
projection (ms) 

89062 0.00 1501 200 
89064 1.53 1501 200 
89069 5.38 3001 30 
89075 10.72 3001 30 
89090 20.77 1501 30 
89113 30.02 1501 30 
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Scans were carried out in-situ at various time intervals after reaching 2 °C. The number 197 
of projections and the exposure time per projection varied amongst scans to reduce acquisition 198 
times at specific moments of the CH4 hydrate formation process. Table 1 correlates each scan 199 
discussed in this paper with the time after the start of the 30-hour sustained 2 °C period, as well 200 
as the scan set-up used. 201 

 202 

2.2.2. Tomographic Reconstruction and Post-Processing 203 

Tomographic reconstruction was carried out using Savu 2.4 (Wadeson et al., 2019; see 204 
also Atwood et al., 2015, Wadeson & Basham, 2016). Two Savu reconstruction pipelines were 205 
used: one with and one without Paganin phase retrieval (Paganin et al., 2002). These pipelines 206 
were labelled ‘phase contrast’ (Figure 3(b)) and ‘absorption contrast’ (Figure 3(a)), 207 
respectively. The Savu plugins used and their descriptions are included in the supporting 208 
information (Text S1). To obtain a single reconstructed volume per SRXCT scan that retained 209 
both edge detail and phase contrast, the output from both reconstruction pipelines was averaged 210 
and median and unsharp masking image filters applied using Fiji (Schindelin et al., 2012; 211 
Schneider et al., 2012), as detailed in Text S2 of the supporting information. An example slice 212 
resulting from this procedure is shown in Figure 3(c). Finally, to mitigate the halo-like artefact 213 
caused by the preferential attenuation of lower-energy X-rays close to the specimen surface, 214 
known as ‘beam hardening’ (Hsieh, 2015), each slice was convolved with a bump-shaped 215 
mollifier function that flattened the horizontal (XY) grey value profile. This procedure is 216 
explained in Text S3 of the supporting information, and an example output slice is presented in 217 
Figure 3(d).  218 

Limited greyscale contrast between the CH4 gas and the brine-hydrate phase persisted 219 
after reconstruction and post-processing. Distinction between these two phases became 220 
increasingly difficult as the distance between the 3D image histogram peaks for the sand and 221 
non-sand phases reduced, as exemplified in Figure 1(b). This distance is therefore used in this 222 
paper as an overall measure for image contrast, with regards to the ease with which the material 223 
phases could be identified and segmented. Considering this, ‘intermediate contrast’ data set 224 
89062 was selected initially to investigate the suitability of U-Nets to segment the three main 225 
material phases present in the images. 226 

 227 

2.3 U-Net Segmentation 228 

Three different methodologies were used to create trained U-Net models that could 229 
classify the SRXCT data into three labels: sand, brine and hydrates, and CH4 gas. These methods 230 
were: 231 

1. A 3D hierarchical approach where two separate 3D U-Net models were trained to 232 
perform binary segmentations on the sand phase vs the others and the CH4 gas phase 233 
vs the others. 234 

2. A 2D multilabel approach where a single 2D U-Net was trained to classify the three 235 
labels. The encoder section of this U-Net implementation was pre-trained on the 236 
ImageNet data set (Russakovsky et al., 2015), meaning that the network should only 237 
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require a small amount of ‘transfer’ training in order to achieve acceptable results on 238 
new data. 239 

3. RootPainter software, which uses a graphical user interface (GUI) and human 240 
intervention by interactive corrections to train a lightweight binary 2D U-Net model. 241 

The models produced by each method were used to segment a 1554×1554×2000 voxel 242 
region of the 2560×2560×2000 reconstructed and post-processed volumes. This region was 243 
inscribed within the cylindrical FOV of the post-processed volumes and omitted the black 244 
pseudo-background generated during reconstruction. Figure 4(a) shows the 1554×1554×2000 245 
volume for data set 89062. All 1554×1554×2000 3D images discussed in this paper are available 246 
in Alvarez-Borges et al. (2021).  247 

 248 

 249 
Figure 3. Slice 1050 of data set 89062 showing the output of the reconstruction and post-250 
processing stages: (a) reconstruction through absorption contrast pipeline; (b) reconstruction 251 
through phase contrast pipeline; (c) First post-processing output (volume averaging); (d) Second  252 
post-processing output (beam hardening correction).  253 

 254 

 255 

 256 
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 257 
Figure 4. For data set 89062: (a) 1554×1554×2000 voxel central region used for U-Net 258 
segmentation; (b) Location of 384×384×384 and 256×256×256 voxel training and validation 259 
volumes, respectively; (c) 572×572×572 voxel training and validation subvolume; (d) Central 40 260 
slices used for quantitative analysis. 261 

 262 

2.3.1 Training and Validation Data 263 

U-Net training and validation data sets were created from subregions of the 264 
1554×1554×2000 volumes. The 3D hierarchical approach used a 384×384×384 voxel training 265 
sub-volume and a 256×256×256 voxel validation sub-volume selected from a different region of 266 
the 3D image. RootPainter software requires 2D images (slices) of at least 572×572 pixels in size 267 
for training and validation. Therefore, a 572×572×572 sub-volume was delimited for this 268 
purpose. The same sub-volume was used to train the 2D multilabel U-Net models. The training 269 
and validation sub-volume coordinate origins relative to the global origin of the reconstructed 270 
2560×2560×2000 data set are listed in Table 2. The global coordinate system origin is indicated 271 
in Figure 4, which also presents the location of the training and validation volumes (Figure 4b-272 
c). 273 
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The U-Net training procedures required both greyscale and label data sets. The latter was 274 
the ‘ground truth’ information used during training and validation. The label data sets were 275 
produced by manually annotating the sand, CH4 gas and brine-hydrate regions of each slice using 276 
Avizo Lite® software. All training, validation and segmented data used in this investigation are 277 
available in Alvarez-Borges et al. (2021). 278 

 279 
Table 2. Training and validation sub-volume origin voxel coordinates relative to global origin of 280 
the 2560×2560×2000 volume (shown in Figure 4). 281 

Size (voxels) X  Y Z 

256×256×256 1133 1753 50 
384×384×384 1343 943 1158 
572×572×572 1343 943 1158 

 282 

2.3.2. 3D Hierarchical 283 

The 3D hierarchical U-Net model used was implemented in the Python library PyTorch 284 
(Paszke et al., 2019) and based upon an existing implementation of a residual 3D U-Net from the 285 
literature (Lee et al., 2017; Wolny et al., 2020). The voxel datatype of the training and validation 286 
sub-volumes was rescaled from 16-bit to 8-bit depth. To mitigate the skewing effect of extreme 287 
outliers, voxel intensities were clipped to be within 2.575 standard deviations of the mean before 288 
rescaling. This cut-off incorporated 99% of all values in a normally distributed range of 289 
intensities. The ground truth label volumes (with three labels: sand, brine-hydrates and CH4 gas) 290 
were used to create separate binary label volumes, one with sand vs background and the other 291 
with CH4 gas vs background. These volumes were used as the label data for training the separate 292 
binary 3D U-Net models. 293 

Unlike the multilabel 2D U-Net implementation described later, this model had not been 294 
pre-trained on ImageNet and was therefore likely to require a larger amount of training data to 295 
reach a high segmentation accuracy. To overcome this, the TorchIO library (Pérez-García et al., 296 
2020) was used to sample 128×128×128 voxel sub-volumes from the (384)3 voxel training data. 297 
For each training epoch (i.e., a full training cycle), 48 sub-volumes were generated with random 298 
noise, flips, blurs, affine and elastic transformations. In addition, the validation volume was 299 
randomly sampled, creating 12 sub-volumes for mode validation after each training epoch. 300 
During training, parameter optimization was carried out with a variant of adaptive moment 301 
estimation with decoupled weight decay, known as AdamW (Loshchilov & Hutter, 2019). The 302 
learning rate was cycled up and down every epoch (Smith, 2017). Binary cross entropy was used 303 
as the loss function and mean Intersection Over Union (IOU) was used as the evaluation metric.  304 

Monitoring of the validation loss was used as the basis for an early stopping regime 305 
during training. If either no improvement in validation loss occurred after 40 training epochs or 306 
100 epochs were completed, the model with the lowest validation loss was saved. This was 307 
aimed at preventing overfitting. Final training metrics are given in the supporting material (Table 308 
S1). Software source code for this method is available from King & Alvarez-Borges (2021). 309 

When predicting segmentation for the 1554×1554×2000 SRXCT volumes, two binary 310 
predictions were produced for each data set, one for sand vs background and the other for CH4 311 
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gas vs background. In both cases the image data was split into blocks of 192×192×192 voxels 312 
with an overlap of 32 voxels between blocks using the TorchIO library before being fed into the 313 
U-Net for label prediction. These two volumes were then combined using a label hierarchy: first, 314 
a new 1554×1554×2000 volume was created with all voxel labels set to brine-hydrates, then the 315 
labels corresponding to CH4 gas were transferred from the CH4 vs background prediction, and 316 
lastly the labels corresponding to sand were transferred from the sand vs background prediction.  317 

 318 

2.3.3. 2D Multilabel 319 

Training of the 2D U-Net with multiple labels was performed on the (572)3 voxel sub-320 
volume using two approaches. The first mimicked that of RootPainter, with the network being 321 
trained on horizontal 2D (XY) slices through the image volume. The second, multiplane 322 
approach, utilized slices taken in the XY, XZ and YZ planes (coordinate system shown in Figure 323 
4). Prior to training, for both approaches, the voxel intensities in the selected volume were 324 
rescaled to 8-bit depth, as in the 3D hierarchical method. A 2D U-Net was used with a ResNet34 325 
encoder (He et al., 2016). This encoder was loaded with pre-trained weights from ImageNet. The 326 
model was created with Fastai (Howard & Gugger, 2020), a Python library which has a high-327 
level interface that utilizes PyTorch. During training, default Fastai image transformations and 328 
augmentations were used. The loss function used was cross entropy and the evaluation metric 329 
used was the number of correctly labelled voxels expressed as a percentage. Training was carried 330 
out for 15 epochs. 331 

For the single-plane implementation, the XY training stack and corresponding label stack 332 
of 572 images, with dimensions 572×572, were split into training (80%) and validation (20%) 333 
sets. When predicting the segmentation for the 1554×1554×2000 SRXCT volumes, data was fed 334 
into the network in the form of 2000 XY slices of size 1554×1554 pixels. 335 

For the multi-plane approach, the training data and corresponding label volume with 336 
dimensions 572×572×572 voxels were sliced into 2D images in the XY, XZ and YZ planes, 337 
resulting in 1716 training image and label pairs. These images were also split into a training 338 
(80%) and validation (20%) set. When predicting the segmentations for the 1554×1554×2000 339 
SRXCT volumes, an averaging approach for data produced from each plane was used as 340 
described by Tun et al. (2020), but with a modification to take the multiple labels into account. In 341 
short, this averaging approach consisted in slicing, segmenting, and rotating the SRXCT volume 342 
across the XY 4-fold symmetry plane and then splitting and hierarchically recombining the 12 343 
resulting segmentation volumes so that two label volumes were obtained, one containing labels 344 
for sand vs background and the other for CH4 vs background. These two binary label volumes 345 
were then combined into a multilabel volume in a similar hierarchical manner as for the data 346 
output from the 3D hierarchical method described in Section 2.3.2. The averaging approach is 347 
further described in the supporting information (Text S4). 348 

Final training metrics for both the single- and multi-plane approaches are also given in 349 
the supporting information (Table S2). Software source code for this method is available from 350 
King & Alvarez-Borges (2021). 351 

 352 
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2.3.4. RootPainter 353 

RootPainter (Smith & Ørting, 2020) is a client-server application originally developed to 354 
segment plant root features from photographs of soil profiles (Smith, Han et al., 2020; Smith, 355 
Petersen et al., 2020). The client GUI is employed to annotate 2D images from a dataset, such as 356 
a tomography image stack of horizontal (XY) slices, as in the present case. The tomography 357 
slices and corresponding annotations are then read by the server and used to train the 358 
segmentation model using a U-Net variant implemented in PyTorch and described by Smith, 359 
Petersen et al. (2020) and Smith, Han et al. (2020). To execute the training routine, the software 360 
creates a validation dataset by randomly selecting one annotation image out of every five 361 
created. The accuracy of the model produced at the end of each training epoch is evaluated using 362 
the F-score parameter described by Smith, Petersen et al. (2020). At the end of each training 363 
epoch, F-score values for the current and previous model are compared and the one with the 364 
highest value is saved. Training is stopped if 60 epochs are completed without improvements in 365 
F-score. 366 

A feature that distinguishes RootPainter is the use of human intervention via interactive 367 
corrections. These are carried out by the user by annotating slices overlaid with the 368 
segmentations produced by the best model available at that moment during the training process. 369 
The annotations are targeted to ‘correct’ erroneously labelled pixels. These corrective annotation 370 
slices are added to the training and validation datasets so that the five to one ratio is maintained. 371 

At present, RootPainter can only predict binary segmentations with one material label, 372 
termed ‘foreground’. The rest of the image is considered ‘background’. Thus, RootPainter was 373 
initially used to segment the CH4 gas phase only, which exhibited limited contrast with regards 374 
to the brine-hydrate phase (Figure 1(a)). The (572)3 voxel label sub-volume created in Avizo 375 
Lite® was used for training and validation. A procedure described in the supporting information 376 
was applied to produce arbitrarily sparsely annotated images from the label data (Text S5), as 377 
Gonda et al. (2017) and Smith, Han et al. (2020) suggest that sparse annotations produce better 378 
results than dense/intensive annotations when interactively training a U-Net. This procedure 379 
essentially converted all CH4 gas labels into foreground and enclosed them with RootPainter 380 
background labels that included brine-hydrates and sand pixels, as shown in Figure 5(a-b). The 381 
annotated slices were then copied in batches of five into the RootPainter annotations folder. One 382 
slice from each batch was copied into the validation folder as well, to maintain the five to one 383 
ratio. A user could alternatively annotate the material of interest using the GUI, as explained by 384 
Smith, Han et al. (2020). Training was initiated via GUI command after copying the first image 385 
batch. Further batches were added if a training epoch finalized without further improvements in 386 
F-score and the model could not segment most CH4 pixels, or if the erroneously segmented 387 
pixels were patently greater than the correctly segmented ones, as shown in Figure 5(c). 388 
Corrective annotation was started after a training epoch produced a model that segmented most 389 
of the CH4 regions with a roughly equivalent number of erroneously labelled pixels, as presented 390 
in Figure 5(d-e).  391 

Once a model was produced that could segment CH4 without error pixels that could be 392 
visually identified, the software was left to carry on training until the 60-epoch limit was 393 
reached. The resulting model was then used to segment the 1554×1554×2000 SRXCT volume. 394 

 395 
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 396 
Figure 5. RootPainter usage example (on data from 89062): (a) XY slice from (572)3 sub-397 
volume; (b) Slice annotations used for training and validation with CH4 (foreground) shown in 398 
red and background shown in green; (c) Initial segmentation output (blue) with a large number of 399 
erroneously labelled voxels; (d) Improved segmentation with a small number of erroneously 400 
labelled voxels; (e) Annotative corrections on mislabeled voxels. 401 

 402 
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2.3.5. Quantitative Analysis 403 

The central 40 XY slices of the U-Net-segmented 1554×1554×2000 volumes were 404 
compared with manually annotated counterparts created in Avizo Lite® and considered to 405 
represent ‘ground truth’ labels. These ground truth volumes are available in Alvarez-Borges et 406 
al. (2021). The previously mentioned IOU metric, also known as the Jaccard Index (Jaccard, 407 
1901), was used to evaluate segmentation performance. IOU is defined as: 408 
 IOU = TPTP + FN + FP  (1)

where TP refers to the number of voxels or pixels correctly predicted to correspond to the 409 
label of interest (‘true positive’), and FP and FN are the number of voxels or pixels incorrectly 410 
predicted to be part of the label of interest (‘false positive’) and voxels/pixels incorrectly 411 
predicted to belong to any of the other material phases (‘false negative’), in each case. A 412 
comparable analysis of U-Net accuracy has been done by, e.g., Karabağ et al. (2020). 413 

IOU returns a value between 0 and 1, where the latter corresponds to the scenario were 414 
the segmentation matches the validation image pixel by pixel (or voxel by voxel).  415 

 416 

3 Results and Discussion 417 

3.1. U-Net Performance Comparison 418 

Figure 6 compares the original and segmented central slice for dataset 89062, produced 419 
using each of the three methods described in Section 2.3. Training in both the 2D multilabel 420 
approach and RootPainter was carried out using XY slices only (i.e., single plane). Figure 7a 421 
presents segmentation accuracy metrics for the central 40 XY slices of dataset 89062. It may be 422 
noted that RootPainter delivered slightly higher metrics than the other two methods, but this 423 
difference in performance cannot be readily identified in Figure 6. 424 

The slightly lower performance metrics observed in Figure 7(a) for the 3D hierarchical 425 
output may be preliminary attributed to the smaller training sub-volume used ([384]3). To present 426 
a more balanced comparison, a further 3D hierarchical model was trained on a sub-volume of the 427 
same size as the one used for both 2D methods, i.e. (572)3. This comparison is presented in 428 
Figure 7(b), where it is evident that RootPainter still outperformed the 3D hierarchical approach, 429 
though the difference between methods reduced.  430 

It may also be noted from Figure 7(a) and Figure 7(b) that pre-training on the ImageNet 431 
database for the 2D multilabel method did not result in a significant segmentation performance 432 
advantage over the 3D hierarchical method. A similar outcome on the effect of transfer learning 433 
has been reported by He et al. (2019). They remarked that, ultimately, pre-training primes the U-434 
Net for feature identification, which leads to fewer training iterations rather than greater 435 
segmentation accuracy. Such appears to be the present case, as the 2D multilabel approach 436 
produced similar results to the 3D hierarchical method with up to six times fewer training epochs 437 
(Table S1 and Table S2).  438 

 439 
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 440 
Figure 6. (a) Original XY central slice of data set 89062; (b) Segmented slice using the 3D 441 
hierarchical method with the (384)3 training subvolume; (c) Segmented slice using the 2D 442 
multilabel single-plane approach; (d) RootPainter segmentation of the CH4 gas phase. CH4 gas 443 
shown in white. 444 

 445 

A disadvantage of the use of 2D U-Net segmentation methods that operate solely with 446 
XY slices, as RootPainter, is that horizontal stripe artefacts may appear in the vertical (YZ or 447 
XY) slices of the segmented volume. This occurs because training and segmentation does not 448 
account for feature continuity between slices, that is, along the vertical (Z) axis. These artefacts, 449 
though minor for the present case, may be observed in Figure S2 of the supporting information. 450 
Such artefacts are absent in the output of the 3D hierarchical implementation, which can also be 451 
observed by considering the “smoothness” of the line showing the per-slice metrics for the 3D 452 
approach in Figure 7. These artefacts are naturally also present in the output of the 2D multilabel 453 
single-plane approach, but can be mitigated if the method is applied to SRXCT data slices 454 
produced from different angular directions and the output recombined into a single volume, as 455 
described in Section 2.3.3 for the 2D multi-plane method. This also improves the algorithm 456 
segmentation performance metrics, as shown in Figure 7(b), but at the expense of greater 457 
computation times, as depicted in Figure 8. 458 

 459 
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However, a distinct poor performance for RootPainter can be observed in the profiles of Figure 536 
7(f), which resulted from a cluster of FP pixels (see Figure S3 in the supporting information). 537 
This denotes a broadly similar pattern of FP-driven model inaccuracy as for the results discussed 538 
previously in section 3.2 (Figure 9). 539 

 540 

3.4. Applications and implications 541 

The segmentation of XCT or SRXCT images of soil and rock samples is often carried out 542 
to determine parameters such as porosity or liquid/gas saturation, as discussed in Section 1. The 543 
varying performances of the U-Net methods used in the present investigation result in 544 
differences in the parameters calculated from the segmented images. This is exemplified in 545 
Figure 10, which compares porosity and CH4 gas saturation ratios derived from the segmented 546 
volumes produced with the 3D hierarchical approach ([384]3 training sub-volume) and 547 
RootPainter, which were the procedures that seemed to provide the best results with the least 548 
user time. Porosity was calculated as: 549 
 Porosity (%) = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 × 100 (2)

and CH4 gas saturation was determined as: 550 
 CHସ saturation (%) = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 CHସ𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠 × 100 (3)

where the volume of CH4 gas amounts to the total number of CH4 gas voxels, the volume 551 
of pores is the sum of CH4 gas and brine-hydrate voxels, and the total volume is the total number 552 
of voxels in the image, in all cases multiplied by the voxel volume (0.8125×0.8125×0.8125 µm). 553 
These calculations were carried out on a slice by slice basis. For the RootPainter method, the 554 
sand phase has been segmented using the same approach used for CH4 described in Section 555 
2.3.4, but using sand labels and only one quadrant of each annotation slice to produce sparsely 556 
annotated training and validation images. Results presented in Figure 10 correspond to two 557 
application cases, that is: 558 

1. U-Nets trained on sub-volumes of the data set of interest and then used to segment the 559 
entire data set, shown in Figure 10(a-d). As discussed in Section 3.5, differences in 560 
greyscale contrast affect the performance of the resulting segmentation.  561 

2. U-Nets trained on sub-volumes of a low-greyscale contrast data set and then used to 562 
segment other data sets of higher greyscale contrast (model portability). This is 563 
presented in Figure 10(e-f), corresponding to parameters derived for high-contrast 564 
data set 89090 using segmentations produced from U-Nets trained on sub-volumes of 565 
low-contrast data set 89069. 566 

 567 
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in the segmentation of the sand phase are relatively small in terms of metrics, which are in fact 598 
higher than those of the CH4 gas phase presented in Figure 7(a). However, Figure 12(b) shows 599 
that the number of FP and FN voxels is large compared to the size of the CH4 gas and brine-600 
hydrate phase, which amounts to roughly 8.75×105 voxels per slice. This, in turn, affects 601 
parameters calculated from voxel counts. This denotes that the estimation of soil parameters 602 
based on ratios between material phases from segmented images is particularly sensitive to the 603 
relative size of said phases. Nevertheless, it should be noted that the maximum absolute errors 604 
presented in Figure 11 (1.40% and 0.26% for porosity and CH4 gas saturation, respectively) are 605 
smaller than those commonly reported for laboratory methods (Matula et al., 2016; Missimer & 606 
Lopez, 2018; Péron et al., 2007). 607 

A further application for U-Net segmentations XCT/SRXCT images of soil and rock is 608 
3D data visualization, which can then be used to investigate, for instance, CH4 gas distribution 609 
within the pore matrix. Such application can greatly benefit from model portability. To 610 
exemplify this, Figure 13 compares 3D views of the CH4 gas phase produced by segmenting 611 
data sets obtained at different stages of hydrate formation using the RootPainter model trained on 612 
the low-contrast 89069 sub-volume. The model produces sensible 3D representations of the data, 613 
and changes in CH4 gas distribution as it is consumed for hydrate formation can be clearly 614 
distinguished. In a further example, a 2D multilabel U-Net, trained using the single-plane 615 
approach on a (572)3 volume from scan 89062, has been used to segment a higher-contrast 616 
SRXCT scan from a similar experiment carried out at the Swiss Light Source (SLS) originally 617 
reported by Sahoo, Madhusudhan et al. (2018). The post-processing steps described in Section 618 
2.2.2, except beam hardening correction, were applied to the reconstructed data and a 619 
1554×1554×2000 voxel region was extracted from the center of the 3D image (data is available 620 
from Alvarez-Borges et al. (2021)). Results are shown in Figure 14, where it is seen that the 621 
model delivers qualitatively accurate 3D views of the distribution of all three material phases, 622 
without any additional training or user input. 623 

Both examples demonstrate the capability of U-Net models to segment multiple SRXCT 624 
images of CH4-bearing soil, despite being obtained with different scan set-ups. The U-Net 625 
models used only a single (572)3 voxel sub-volume for training and did not require any 626 
additional training or user input to segment new images. A key implication is that training of a 627 
single U-Net model on a low greyscale contrast data set could be used to deliver insight on 628 
hydrate-induced variations in sediment morphology in other data sets. This has valuable 629 
applications. For example, segmentations are often required over a short period of time with 630 
limited operator input, like during data acquisition at a synchrotron or other X-ray facility. The 631 
availability of pre-trained U-Net models would allow to produce segmentations and sediment 632 
morphology/microstructure information within a short time after acquisition and reconstruction. 633 
Pre-trained models could also be used to segment numerous and/or large data sets with less user 634 
effort and bias and over shorter timespans.  635 

 636 

4 Conclusions 637 

The application of U-Nets, a class of Convolutional Neural Network, to segment SRXCT 638 
images of CH4-bearing sand has been investigated. The general aim was to determine if U-Nets 639 
were capable of accurately segmenting SRXCT data of different greyscale contrast, with focus 640 
on the CH4 gas phase, using a small number training images (≤ [572]3 voxels). Training images 641 
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were obtained from hand-annotated sub-volumes of the reconstructed SRXCT data. Three U-Net 642 
deployment methods were used: 3D hierarchical, 2D multilabel and RootPainter. Quantitative 643 
comparisons of image segmentation were carried out using the IOU metric. Major outcomes of 644 
this investigation are presented below. 645 

1. For a given SRXCT data set, the three U-Net deployment methodologies produced 646 
models capable of delivering segmented images of the CH4 gas phase with average 647 
IOU metrics above 0.740. This demonstrated that the U-Net methods used were 648 
reasonably capable of accurately identifying the CH4 gas phase using a small number 649 
of training images. RootPainter delivered marginally higher IOU metrics than the 650 
other methods but suffered from minor horizontal stripping artefacts and required 651 
proportionally higher computing time. 652 

2. Greyscale contrast between material phases in the different SRXCT data sets was a 653 
significant factor affecting segmentation accuracy. The lowest segmentation 654 
performance metrics corresponded to SRXCT data sets exhibiting the lowest 655 
greyscale contrast, while greater segmentation accuracy resulted from the use of 656 
higher contrast data. 657 

3. Model portability, i.e. the segmentation of a given SRXCT data set using a U-Net 658 
model trained on a sub-volume of a different data set, was explored. It was found that 659 
models trained on lower-contrast images were able to produce accurate segmentations 660 
of higher-contrast data. In comparison, U-Net models trained on higher-contrast 661 
images were found to deliver poor results when used to segment lower-contrast data. 662 

4. The effect of segmentation accuracy on image-derived material parameters was 663 
investigated by calculating porosity and CH4 gas saturation profiles using U-Net 664 
segmentations. A general trend of lower mean absolute error of the derived parameter 665 
with greater segmentation accuracy was found, but the correlation exhibited some 666 
scatter. Considering that porosity, fluid saturation and other parameters are ratios 667 
between material phases, it was proposed that errors in U-Net derived parameters are 668 
not only linked to segmentation accuracy metrics but to the number of false positive 669 
and negative voxel labels of the largest phase relative to the other phases. 670 

5. It was found that a single U-Net model could be used to segment multiple SRXCT 671 
data sets and produce qualitatively accurate 3D views of the sediment matrix and CH4 672 
gas distribution during hydrate formation without additional training, even when 673 
using independent data from other X-ray imaging facilities.  674 
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 675 
Figure 13. 3D views of the CH4 gas phase segmented using a RootPainter U-Net model trained 676 
on the low-contrast 89069 data (t denotes cooling time in minutes after reaching 2°C). 677 

 678 
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 679 
Figure 14. U-Net segmentation of independent data set from Sahoo, Madhusudhan et al. (2018) 680 
acquired at SLS, using a 2D multilabel single-plane U-Net model trained on a (572)3 sub-volume 681 
of data set 89062: (a) reconstructed SLS volume; (b) sand; (c) brine-hydrate; (d) CH4 gas. 682 
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