
manuscript submitted to Geophysical Research Letters

Subseasonal Forecasts of Opportunity Identified by an1

Interpretable Neural Network2

Kirsten J. Mayer 1and Elizabeth A. Barnes 1
3

1Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA4

Key Points:5

• Neural networks can be used to identify forecasts of opportunity for subseasonal6

prediction7

• Neural network interpretability techniques pinpoint relevant tropical regions for8

predictions over the North Atlantic9

• Clustering of neural network relevance heat maps reveals a potential new forecast10

of opportunity for the North Atlantic11

Corresponding author: Kirsten J. Mayer, kjmayer@rams.colostate.edu

–1–



manuscript submitted to Geophysical Research Letters

Abstract12

Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature13

of the atmosphere and often requires the identification of favorable atmospheric condi-14

tions that may lead to enhanced skill (“forecasts of opportunity”). Here, we demonstrate15

that an artificial neural network can identify such opportunities for tropical-extratropical16

teleconnections to the North Atlantic circulation at a lead of 22 days using the network’s17

confidence in a given prediction. Furthermore, layer-wise relevance propagation, an ANN18

interpretability technique, pinpoints the relevant tropical features the ANN uses to make19

accurate predictions. We find that layer-wise relevance propagation identifies tropical20

hot spots that correspond to known favorable regions for midlatitude teleconnections and21

reveals a potential new pattern for prediction over the North Atlantic on subseasonal timescales.22

Plain Language Summary23

Weather forecasting on 2 week to 2 month timescales is known for its lack of pre-24

dictability due to the chaotic nature of the atmosphere. One way to improve prediction25

skill on these timescales involves the identification of periods of atmospheric conditions26

that lead to enhanced predictability (“forecasts of opportunities”). Here, we show that27

a neural network can accurately identify these opportunities when trying to predict the28

atmospheric circulation over the North Atlantic Ocean 4 weeks in advance. A neural net-29

work interpretability technique is then used to uncover what the network has “learned”30

to make these accurate predictions. We show that the network identifies known patterns31

of storminess ideal for midlatitude prediction and uncovers a possible new favorable re-32

gion for enhanced prediction.33

1 Introduction34

Subseasonal timescales (2 weeks - 2 months) are known for their lack of predictabil-35

ity (Mariotti et al., 2018), yet reliable and actionable information on these timescales36

are required for decision making in many sectors such as public health and water man-37

agement (e.g. Vitart et al., 2012; White et al., 2017). Over the past decade, there has38

been a substantial research effort to improve prediction on these timescales (e.g. Vitart39

et al., 2012; Robertson et al., 2015; Vitart et al., 2017; Pegion et al., 2019). One area of40

subseasonal prediction research focuses on forecasts of opportunity, the idea that cer-41

tain earth system conditions provide opportunities for enhanced subseasonal prediction42

skill (Mariotti et al. 2020). When these opportunities arise, the information provided43

by the earth system’s state can then be leveraged to improve forecast skill. For exam-44

ple, when the Madden-Julian Oscillation (MJO; Madden and Julian (1971, 1972)), a prop-45

agating tropical convective phenomenon, is active, its convective heating can lead to the46

excitation of quasi-stationary rossby waves (Hoskins and Ambrizzi 1993) that subsequently47

modulate the midlatitude circulation over the first few weeks following MJO activity (e.g.,48

Hoskins and Karoly, 1981; Sardeshmukh and Hoskins, 1988; Henderson et al., 2016; Baggett49

et al., 2017; Zheng et al., 2018). When opposing convective anomalies are located over50

the Indian Ocean and western Pacific (defined as phases 2, 3, 6, and 7), the MJO has51

been shown to lead to more coherent and consistent modulations of midlatitude weather52

on subseasonal timescales and consequently, enhanced prediction skill (Tseng et al., 2018).53

The MJO is an example of forecast of opportunity identification that uses the strength54

and location of tropical activity to identify periods of enhanced midlatitude prediction55

skill.56

Albers and Newman (2019) demonstrate a technique for forecast of opportunity57

identification through the utilization of expected skill from a linear inverse model. The58

study demonstrates the ability of the linear statistical model to identify forecasts of op-59

portunity, and raises the question of whether other statistical models, such as artificial60

neural networks (ANNs), can identify forecasts of opportunity for subseasonal predic-61
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tion. ANNs are very good at nonlinear function estimation (Chen & Chen, 1995), and62

thus, may be able to identify both linear and nonlinear relationships that lend predictabil-63

ity. Recently, ANNs have been successfully applied to climate prediction such as surface64

temperature (Toms et al., 2019) and the El Nino Southern Oscillation (Ham et al., 2019),65

suggesting ANNs may be useful for indentifying subseasonal forecasts of opportunity as66

well.67

To test the efficacy of an ANN for subseasonal forecast of opportunity identifica-68

tion, here we input outgoing longwave radiation (OLR) anomalies into an ANN and task69

the network to predict the sign of 500 hPa geopotential height (z500) anomalies over the70

North Atlantic 22 days later (e.g. Week 4). OLR is used to explore the ability of an ANN71

to identify known relationships between the MJO and the North Atlantic via tropical-72

extratropical teleconnections (e.g. Cassou, 2008; Henderson et al., 2016). We demonstrate73

that an ANN can identify subseasonal forecasts of opportunity related to tropical OLR,74

and through an ANN interpretability technique, can further identify relevant features75

for these enhanced subseasonal predictions. Specifically, we demonstrate the ability of76

an ANN to identify known MJO-like OLR patterns as well as a possible new tropical OLR77

pattern associated with predictable behavior of the North Atlantic circulation on sub-78

seasonal timescales.79

2 Data and Methods80

2.1 Data81

We use daily mean OLR (1980-2019) from the National Center for Atmospheric82

Research/National Oceanic and Atmospheric Administration (NCAR/NOAA; Liebmann83

and Smith (1996)) and daily mean z500 (1980-2019) from the European Centre for Medium-84

Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-I; Dee et al. (2011)). MJO85

teleconnections tend to be stronger during boreal winter (Madden, 1986), and therefore,86

the extended boreal winter months (November-February) are used for the OLR fields.87

Since we task the network to predict the sign of the z500 anomaly 22 days following a88

given OLR field, March is also included in the z500 analysis.89

The annual cycle is removed from both the z500 and OLR data. For z500, the an-90

nual cycle is removed by subtracting the daily climatology over the record (1979-2019).91

A Fast Fourier Transform high-pass filter is then applied to the anomalies to remove sea-92

sonal oscillations (frequencies smaller than 1
120days ) to ensure the network focuses on sub-93

seasonal anomalies. The median of the z500 anomalies for the training data (see 2.2.1)94

is then subtracted to obtain an equal number of positive and negative values. These anoma-95

lies are then converted into 0s and 1s depending on the sign (negative or positive, respec-96

tively). For OLR, the annual cycle is removed by subtracting the first 3 harmonics of97

the daily climatology from the raw field. The first 3 harmonics are used instead of the98

daily mean because OLR is a noisier field than z500.99

2.2 Methods100

2.2.1 Artificial Neural Network Architecture101

A two layer ANN (Figure 1) is tasked to ingest tropical OLR and predict the sign102

of the z500 anomaly over the North Atlantic (40◦N, 325◦E; red dot in Figure 1) 22 days103

later. The North Atlantic is chosen for this analysis since the MJO is known to force cir-104

culation anomalies over this region on subseasonal timescales and thus allows us to ex-105

plore the utility of an ANN in the context of a well known problem (e.g. Cassou, 2008;106

Roundy et al., 2010; Henderson et al., 2016). Each input sample to the ANN consists107

of vectorized daily anomalous OLR from 30◦N to 20◦S and 45 to 210◦E, where the num-108

ber of input nodes is equal to the number of OLR grid points (N = 1407). The ANN then109

outputs two values that describe the categorical prediction, positive or negative sign of110

z500, given the initial OLR input image. The softmax activation function is applied to111
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this final layer and transforms the two output values such that they sum to 1. The out-112

put then represents an estimation of the likelihood that an input belongs to a particu-113

lar category. We refer to this estimation of likelihood as “model confidence”. A more con-114

fident prediction will, therefore, have a predicted category value closer to 1. We define115

forecasts of opportunities as the top 10% most confident predictions by the network, al-116

though we explore alternative percentages as well.117

The ANN architecture consists of two hidden layers of 128 and 8 nodes, respectively,118

and both use the rectified linear activation function. The final layer includes 2 nodes and119

uses the softmax activation function. The batch size is set to 256 samples (i.e. OLR vec-120

torized images) and the ANN is trained for 50 epochs unless the validation loss increases121

for two epochs in a row. If this occurs, the ANN stops training early and restores the122

model’s best weights to reduce overfitting. It is found that 50 epochs is sufficient for train-123

ing as the ANN rarely completes all 50 epochs.124

The data used to train and test the ANN is composed of three groups: training,125

validation, and testing. Training and validation data are used during training, where train-126

ing data is used to update the weights and biases of the ANN and the validation data127

is used to evaluate the model. The testing data is data that has never been “seen” by128

the ANN to evaluate the ability of the ANN to generalize to new data. For this anal-129

ysis, the ANN validation data is from November 2007 through February 2011 (N = 481)130

and the testing data is from November 2017 through February 2019 (N = 240). The re-131

maining extended boreal winter (NDJF) data are used for training (November 1979 - Febru-132

ary 2007 and November 2011 - February 2016; N = 4450; see Figure 3). To choose a model133

for the following analysis, ANN training is repeated for a variety of validation years. Dif-134

ferent four year chucks are removed from the training data and set aside to use as val-135

idation. For each four year chunk, the ANN was trained 20 times with random initial-136

ized weights. We find that our conclusions remain the same when a different trained ANN137

is used. We present one model with reasonably high accuracy here and using the train-138

ing, validation, and testing groups outlined above.139

… …

Input	Layer
[number	of	grid	points] Hidden	Layers

[128	Nodes]		 [8	Nodes] Output	Layer
[2	Nodes]

Confidence	that	Z500	>	0

Confidence	that	Z500	<	0

Softmax Output

…

Figure 1. Artificial neural network architecture for prediction of the sign of z500 anomalies

over the North Atlantic 22 days following tropical OLR anomalies. The neural network consists

of two hidden layers of 128 and 8 nodes, respectively, and an output layer of two nodes (one node

for each sign). The output layer uses the softmax activation function.

2.2.2 Layer-Wise Relevance Propagation (LRP)140

While ANNs are a useful tool for making predictions, in doing so, they are learn-141

ing how to make accurate predictions. Therefore, understanding the inner workings of142

an ANN can provide valuable information for improving prediction skill and understand-143

ing, as well as increasing user confidence in the results. Here, we utilize a relatively new144
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neural network interpretability technique to the geosciences called layer-wise relevance145

propagation (LRP; Montavon et al. (2019); Bach et al. (2015)) to extract and visualize146

the features the ANN learns to make accurate predictions. While Toms et al. (2020) de-147

scribe the use of LRP for geoscience applications in detail, we briefly provide a high-level148

description here. After network training is completed, a single sample is passed through149

the network and a prediction is made (in our case, two output values are predicted). Our150

implementation of LRP then takes the highest of these values (i.e. the winning category)151

and back-propagates this value through the network via a series of predefined rules, ul-152

timately distributing it across the input nodes (i.e. input gridpoints). What results is153

a heat map of “relevance” across the input space, where input nodes that are more rel-154

evant for the network’s specific prediction for that sample are given higher relevance. This155

process is then repeated for every sample of interest, resulting in a unique relevance heat156

map for each sample. In our study, since the input layer consists of maps of OLR anoma-157

lies, the LRP heat maps are maps of the relevant tropical OLR patterns for each pre-158

diction of the circulation over the North Atlantic. These maps are discussed in detail in159

Section 3.2.160

3 Results161

3.1 Identifying Forecasts of Opportunity162

ANNs with the architecture shown in Figure 1 are trained 100 times with random163

initialized weights to predict the sign of the z500 anomalies 22 days following the trop-164

ical OLR anomalies. Figure 2a shows the distribution of the testing prediction accuracy165

for all 100 models, where dark teal represents the distribution of all predictions and light166

teal represents the distribution of the 10% most confident predictions. The correspond-167

ing colored vertical dashed lines indicate a threshold for what is expected by random chance.168

To calculate the random chance accuracy threshold, 100,000 randomly generated groups169

(N=240 for all and N=24 for 10% most confident predictions) of zeros and ones are used170

to create a distribution of accuracies, and the 90th percentile of this distribution is used171

as the random chance threshold. In Figure 2a, the top 10% most confident prediction172

accuracies (light teal) are shifted towards higher accuracies compared to the distribu-173

tion with all predictions (dark teal). This shift in the distributions demonstrates that174

in general, higher model confidence leads to substantially enhanced prediction accuracy.175

Figure 2. (a) Histograms of testing prediction accuracy for 100 trained ANNs. The dark teal

represents the histogram of all prediction accuracies and the light teal represents the histogram

for the 10% most confident prediction accuracies. The dark teal and light teal dashed lines in

(a) are the maximum accuracies expected by random chance at the 90% confidence level for the

corresponding colored histogram (see text for details). (b) Accuracy of one particular model as a

function of the percent most confident predictions for training and validation (black) and testing

(light teal) data. The dashed lines indicate the maximum accuracies expected by random chance

at the 90% confidence level for the corresponding colored lines (see text for details).
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We chose one model from Figure 2a to further understand how accuracy varies when176

a different percent model confidence is used (Figure 2b). The solid lines represent the177

accuracy across various model confidence values for training and validation (black) and178

testing (light teal) data sets. Together, Figure 2a and b illustrate that model confidence179

and prediction accuracy generally increase together and therefore, can be used to iden-180

tify forecasts of opportunities, or periods of enhanced prediction skill. From this anal-181

ysis, the 10% most confident predictions are chosen to define FOOs since this threshold182

has one of the largest accuracy differences from random chance while still retaining 10%183

of the samples.184

Validation Testing

Figure 3. Timeseries of z500 anomalies shaded by the sign of the ANN predictions. Blue dots

represent correct negative predictions, red dots represent correct positive predictions, and dark

colored dots indicate forecasts of opportunities (i.e. 10% most confident predictions). Grey dots

represent incorrect predictions. The vertical grey shading from 2007-2011 highlights the time pe-

riod used for validation and the vertical grey shading from 2017-2019 highlights the time period

used for testing. The accuracies for training and validation as well as testing data for forecasts of

opportunities and all predictions are given in the top left and right, respectively.

Continuing with the trained ANN from Figure 2b, Figure 3 shows the predictions185

made by the ANN as a function of time. When evaluating the network with the train-186

ing and validation data, the prediction accuracy for all predictions is 58% and for the187

top 10% most confident predictions is 70%. For the testing data, the prediction accu-188

racy for all predictions is 55% and for the top 10% most confident predictions is 75%.189

In addition, Figure 3 shows that the forecast of opportunities (dark colored dots) are not190

clustered over specific time periods or years, and generally do not favor a particular sign.191

Furthermore, the ANN not only accurately predicts large anomalies but can also pre-192
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dict days with smaller anomalies. This figure, therefore, illustrates that the ANN is suc-193

cessfully identifying forecasts of opportunities over the record.194

3.2 Tropical Sources of Predictability195

We have shown that ANNs can identify forecasts of opportunities using model con-196

fidence; however, understanding where this enhanced skill originates is critical for im-197

proving physical understanding as well as gaining trust in the network’s predictions. To198

do so, layer-wise relevance propagation is used to identify the OLR patterns that lead199

the ANN to make correct predictions (see Section 2.2.2). The shading in Figure 4 shows200

the regions the network found relevant, on average, to make confident and correct pos-201

itive (Figure 4a-d) or negative (Figure 4e-h) z500 predictions. The contours correspond202

to the average OLR anomalies for these confident and correct predictions. The correct203

10% most confident predictions from the training, validation and testing data sets are204

combined for this LRP analysis. All three sets of data are used instead of only testing205

data because all data sets have similar accuracies and LRP values (not shown). Thus,206

including all the data increases the sample sizes for the analysis.207

The average LRP heat map for the correct forecasts of opportunity of positive sign208

predictions (Figure 4a) indicates two hot spots, one over the southern Indian Ocean into209

the southern Maritime Continent and the other over the western Pacific. The average210

LRP heat map for the correct forecasts of opportunity of negative sign predictions (Fig-211

ure 4b) indicates five hot spots, one over the southern Maritime Continent, another over212

the western Pacific Ocean, the third into the central Pacific and the fourth and fifth over213

Vietnam and into the South China Sea as well as Saudi Arabia. For both sign predic-214

tions, the hot spots near the southern Maritime Continent and over the western Pacific215

have opposing signed OLR anomalies (contours) and straddle 140◦E. These dipoles of216

convection over the Indian Ocean through the Maritime Continent and over the west-217

ern Pacific have similar structures to phase 4-5 and phase 1,7-8 of the MJO (Wheeler218

& Hendon, 2004). This structure of OLR is consistent with previous research of MJO219

teleconnections over the North Atlantic for average lead times of 10-14 and 15-19 days220

(e.g. Henderson et al., 2016; Henderson & Maloney, 2018; Tseng et al., 2018). In addi-221

tion, this dipole structure is known to lead to higher pattern consistency of teleconnec-222

tions in the midlatitudes (Tseng et al., 2019), which has been shown to lead to enhanced223

prediction skill (Tseng et al., 2018). Rossby waves initiated by the MJO tend to be quasi-224

stationary, which suggests that these OLR anomalies may also correspond to 22 day leads225

as well. This Maritime Continent and western Pacific Ocean dipole highlighted by LRP226

is therefore consistent with previous research and demonstrates that the ANN has learned227

physically relevant structures.228

Negative sign predictions also have three more hot spots that are not seen for the229

positive sign predictions. In the next section, it is shown that the central Pacific hot spot230

is just an eastward shifted version of the one in the western Pacific and therefore, is also231

likely associated with the MJO. In addition, the hot spot over Saudi Arabia is hypoth-232

esized to be associated with the two-way relationship between the North Atlantic Os-233

cillation (NAO) and the MJO. On the other hand, the hot spot over Vietnam and the234

South China Sea is discussed as a possible new region relevant for enhanced subseasonal235

prediction.236

3.2.1 K-means Clustering of LRP Maps237

To further distinguish the relevant regions for the ANN’s predictions, k-means clus-238

tering (Hartigan & Wong, 1979) is applied to the LRP maps (Figure 4b-d, f-h). This anal-239

ysis reveals that the composite LRP maps for each sign (Figure 4a,e) actually consist240

of multiple distinct patterns used by the ANN. For positive sign predictions (Figure 4b,c,d),241

each cluster is associated with a hot spot located between the central Indian ocean and242

the maritime continent. Cluster 1 and 2 (Figure 4b,c), have hot spots around the east-243
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Figure 4. Shading denotes smoothed composites of layer-wise relevance propagation fields for

all correct forecasts of opportunities for (a) positive sign and (e) negative sign predictions across

training, validation and testing periods. The associated three k-means clusters of LRP for (b-d)

positive sign predictions and (f-h) negative sign predictions are also shown. Contours represent

the corresponding smoothed OLR anomalies where solid lines are positive values (0.3−1.5 W
m2 )

and dashed lines are negative values (-1.5− -0.3 W
m2 ) and the contour interval is 0.2 W

m2 .

ern and central maritime continent which are both associated with negative OLR anoma-244

lies. While not highlighted by LRP, each negative OLR anomaly region is accompanied245

by a region of positive OLR anomalies over the western Pacific. This suggests the model246

is identifying an MJO-like pattern, but focuses exclusively on the enhanced convection247

region. This is consistent with recent research that suggests that convection over the In-248

dian Ocean dominates the formation of a positive NAO anomaly (Shao et al., 2020). On249

the other hand, cluster 3 (Figure 4d) has two main hot spots that highlight a convec-250

tive dipole. One is located over the south-central Indian ocean and associated with a neg-251

ative OLR anomaly, and the other is located in the western Pacific and is associated with252

a positive OLR anomaly. As previously mentioned, these regions lead to more consis-253

tent midlatitude teleconnections (Tseng et al., 2018), and therefore, this cluster supports254

previously identified tropical OLR regions and patterns ideal for enhanced prediction skill255

on subseasonal timescales.256

For cluster 1 and 2 of the negative sign predictions (Figure 4f,g), there are two hot257

spots, one east of the Maritime Continent and the other over the Pacific Ocean, where258

cluster 2 is shifted slightly east of cluster 1. As with the positive sign predictions, each259

hot spot is associated with negative OLR anomalies, except the regions of positive OLR260

anomalies are also weakly highlighted by the LRP analysis. Even so, the LRP analysis261

mainly highlights the western Pacific region, and suggests that the network largely finds262
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the regions of enhanced convection most relevant. Unexpectedly, there is also a hot spot263

located over Saudi Arabia in both cluster 1 and 2. This hot spot appears to only be im-264

portant when this MJO-like dipole structure is present. To the authors’ knowledge, this265

region has not been shown to be important for tropical-extratropical teleconnections to266

the North Atlantic. However, previous research has shown that there is a two-way re-267

lationship between the MJO and NAO. Following the NAO, there tends to be a signif-268

icant modulation of the tropical upper troposphere zonal wind over the Atlantic-Africa269

region (Lin et al., 2009). This modulation has been hypothesized to play a role in MJO270

initialization (Lin et al., 2009; Lin & Brunet, 2011). Since the NAO can persist over many271

weeks, the network may be identifying an influence of the NAO on the MJO and back272

to the NAO. We leave a deeper exploration of this possible mechanism to future work.273

Unlike the other clusters, the third cluster (Figure 4h) has one hot spot over Viet-274

nam and the South China Sea. We hypothesize that this region is physically important275

as it is located south of the subtropical jet entrance region and is associated with large276

negative OLR anomalies. Rossby waves can be generated through advection of vortic-277

ity by upper level divergence associated with negative OLR anomalies (Sardeshmukh &278

Hoskins, 1988), and since this hot spot region is close to the entrance region of the jet,279

these waves can more easily become trapped within the jet and directed east before ex-280

iting (Hoskins & Karoly, 1981; Hoskins & Ambrizzi, 1993). Based on these known tropical-281

extratropical teleconnection dynamics, it is likely that this hot spot over Vietnam and282

the South China Sea is a new pattern identified by the ANN.283

4 Conclusions284

Improving subseasonal prediction accuracy and understanding requires identify-285

ing opportunities that can lead to enhanced predictability (e.g. Mariotti et al., 2020).286

Here, we show that an artificial neural network can identify forecasts of opportunity for287

subseasonal prediction using the network’s confidence in its prediction. In addition, we288

demonstrate that layer-wise relevance propagation can extract knowledge gained by the289

ANN to identify relevant physical tropical features important for the predictions. K-means290

clustering of the LRP maps further provides insight into multiple distinct patterns used291

by the ANN for enhanced prediction and reveals a possible new forecast of opportunity292

for prediction over the North Atlantic.293

The hot spots identified by the ANN provide a stepping stone to further our un-294

derstanding of tropical-extratropical teleconnections. For example, lagged composite anal-295

ysis or simplified models can be used to further explore the physical mechanisms behind296

enhanced midlatitude predictability associated with these regions. In addition, analy-297

sis of the incorrect predictions made by the ANN may also be useful for improving our298

understanding of ideal tropical patterns for enhanced subseasonal prediction. Finally,299

while our application is focused on subseasonal prediction, the approach outlined here300

should be applicable to predictions across timescales. Ultimately, this paper demonstrates301

that ANNs are not only a useful tool for prediction, but can also be used to gain phys-302

ical insight into predictability and subsequently, improve prediction skill.303

Acknowledgments304

This research is partially funded by the National Science Foundation Graduate Research305

Fellowship under the grant number 006784 supporting Kirsten J. Mayer and partially306

funded by the National Science Foundation Harnessing the Data Revolution through sup-307

porting Elizabeth A. Barnes with grant 1934668.308

The authors declare that they have no conflict of interest.309

Data availability: ERA-I reanalysis data are provided by the European Centre for Medium-310

Range Forecasts (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/ era-311

–9–



manuscript submitted to Geophysical Research Letters

interim; Dee et al., 2011). The interpolated OLR data is provided by the NOAA/OAR/ESRL312

PSL, Boulder, CO, USA (https://psl.noaa.gov/data/gridded/data.interp OLR.html;313

Liebmann and Smith, 1996).314

References315

Albers, J. R., & Newman, M. (2019, November). A priori identification of skillful ex-316

tratropical subseasonal forecasts. Geophys. Res. Lett., 46 (21), 12527–12536.317

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W.318

(2015, July). On Pixel-Wise explanations for Non-Linear classifier decisions by319

Layer-Wise relevance propagation. PLoS One, 10 (7), e0130140.320

Cassou, C. (2008, September). Intraseasonal interaction between the Madden-Julian321

oscillation and the north atlantic oscillation. Nature, 455 (7212), 523–527.322

Chen, T., & Chen, H. (1995). Universal approximation to nonlinear operators323

by neural networks with arbitrary activation functions and its application to324

dynamical systems. IEEE Trans. Neural Netw., 6 (4), 911–917.325

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., . . .326

Others (2011). The ERA-Interim reanalysis: Configuration and performance of327

the data assimilation system. Quart. J. Roy. Meteor. Soc., 137 (656), 553–597.328

Ham, Y.-G., Kim, J.-H., & Luo, J.-J. (2019, September). Deep learning for multi-329

year ENSO forecasts. Nature, 573 (7775), 568–572.330

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means clustering331

algorithm. J. R. Stat. Soc. Ser. C Appl. Stat., 28 (1), 100–108.332

Henderson, S. A., & Maloney, E. D. (2018, July). The impact of the Madden–Julian333

oscillation on High-Latitude winter blocking during el niño–southern oscillation334

events. J. Clim., 31 (13), 5293–5318.335

Henderson, S. A., Maloney, E. D., & Barnes, E. A. (2016, June). The influence336

of the Madden–Julian oscillation on northern hemisphere winter blocking. J.337

Clim., 29 (12), 4597–4616.338

Hoskins, B. J., & Ambrizzi, T. (1993, June). Rossby wave propagation on a realistic339

longitudinally varying flow. J. Atmos. Sci., 50 (12), 1661–1671.340

Hoskins, B. J., & Karoly, D. J. (1981, June). The steady linear response of a spheri-341

cal atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 (6), 1179–342

1196.343

Liebmann, B., & Smith, C. (1996). Description of a complete (interpolated) outgo-344

ing longwave radiation dataset. Bull. Am. Meteorol. Soc., 77 , 1275–1277.345

Lin, H., & Brunet, G. (2011, January). Impact of the north atlantic oscillation346

on the forecast skill of the Madden-Julian oscillation: IMPACT OF NAO ON347

MJO FORECAST. Geophys. Res. Lett., 38 (2).348

Lin, H., Brunet, G., & Derome, J. (2009, January). An observed connection between349

the north atlantic oscillation and the Madden–Julian oscillation. J. Clim.,350

22 (2), 364–380.351

Madden, R. A. (1986). Seasonal variations of the 40-50 day oscillation in the tropics.352

J. Atmos. Sci., 43 (24), 3138–3158.353

Madden, R. A., & Julian, P. R. (1971, July). Detection of a 40–50 day oscillation in354

the zonal wind in the tropical pacific. J. Atmos. Sci., 28 (5), 702–708.355

Madden, R. A., & Julian, P. R. (1972, September). Description of Global-Scale356

circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 (6),357

1109–1123.358

Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., . . .359

Albers, J. (2020, January). Windows of opportunity for skillful forecasts360

subseasonal to seasonal and beyond. Bull. Am. Meteorol. Soc..361

Mariotti, A., Ruti, P. M., & Rixen, M. (2018, March). Progress in subseasonal to362

seasonal prediction through a joint weather and climate community effort. npj363

Climate and Atmospheric Science, 1 (1), 1–4.364

–10–



manuscript submitted to Geophysical Research Letters

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K.-R. (2019).365

Layer-Wise relevance propagation: An overview. In W. Samek, G. Montavon,366

A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpret-367

ing, explaining and visualizing deep learning (pp. 193–209). Cham: Springer368

International Publishing.369

Pegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie, E., Burgman, R.,370

. . . Kim, H. (2019, October). The subseasonal experiment (SubX): A multi-371

model subseasonal prediction experiment. Bull. Am. Meteorol. Soc., 100 (10),372

2043–2060.373

Robertson, A. W., Kumar, A., Peña, M., & Vitart, F. (2015, March). Improving and374

promoting subseasonal to seasonal prediction. Bull. Am. Meteorol. Soc., 96 (3),375

ES49–ES53.376

Roundy, P. E., MacRitchie, K., Asuma, J., & Melino, T. (2010, August). Modula-377

tion of the global atmospheric circulation by combined activity in the Madden–378

Julian oscillation and the el niño–southern oscillation during boreal winter. J.379

Clim., 23 (15), 4045–4059.380

Sardeshmukh, P. D., & Hoskins, B. J. (1988, April). The generation of global ro-381

tational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 (7),382

1228–1251.383

Shao, X., Straus, D. M., Li, S., Swenson, E., Yadav, P., & Song, J. (2020). Forcing384

of the MJO-related indian ocean heating on the intraseasonal lagged NAO.385

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2019, December). Physically in-386

terpretable neural networks for the geosciences: Applications to earth system387

variability.388

Toms, B. A., Barnes, E. A., Maloney, E. D., & Heever, S. C. (2020, April). The389

global teleconnection signature of the Madden-Julian oscillation and its modu-390

lation by the Quasi-Biennial oscillation. J. Geophys. Res. D: Atmos., 125 (7),391

1.392

Tseng, K.-C., Barnes, E. A., & Maloney, E. D. (2018, January). Prediction of the393

midlatitude response to strong Madden-Julian oscillation events on S2S time394

scales: PREDICTION OF Z500 AT S2S TIME SCALES. Geophys. Res. Lett.,395

45 (1), 463–470.396

Tseng, K.-C., Maloney, E., & Barnes, E. (2019, January). The consistency of MJO397

teleconnection patterns: An explanation using linear rossby wave theory. J.398

Clim., 32 (2), 531–548.399

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., . . .400

Zhang, L. (2017, January). The subseasonal to seasonal (S2S) prediction401

project database. Bull. Am. Meteorol. Soc., 98 (1), 163–173.402

Vitart, F., Robertson, A. W., & Anderson, D. L. T. (2012, January). Subseasonal403

to seasonal prediction project: Bridging the gap between weather and climate.404

WMO Bull., 61 (61).405

Wheeler, M. C., & Hendon, H. H. (2004, August). An All-Season Real-Time mul-406

tivariate MJO index: Development of an index for monitoring and prediction.407

Mon. Weather Rev., 132 (8), 1917–1932.408

White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J. K., Kumar,409

A., . . . Zebiak, S. E. (2017, July). Potential applications of subseasonal-to-410

seasonal (S2S) predictions. Met. Apps, 24 (3), 315–325.411

–11–


