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Abstract 9 

In this study, we offer a significant improvement over previous results that identified the 10 

Matuyama-Brunhes magnetic reversal in cave sediments in Central Europe, Czech Republic. 11 

We collected discrete samples from the sedimentary profile in the Za Hajovnou cave located in 12 

the eastern part of the Czech Republic. Novel use of characteristic remanent magnetization 13 

(ChRM) directions and VGP (Virtual Geomagnetic Pole) path of the data revealed the 14 

Matuyama-Brunhes transition boundary within 5.7 cm located in the upper part of the sampled 15 

sedimentary section of the cave. This result showed a new, more detailed behavior of the 16 

polarity transition from the central European location. The migration of the paleopole between 17 

east of Africa and west of North America is a significant marker for the central European 18 

paleomagnetic record in terms of global magnetic data. The precursor of the reversal occurred 19 

4±0.2 kyr before the transition. The rock magnetism measurements showed that the magnetic 20 

carrier of most of the samples is maghemite. Also, we estimated the sedimentation rate of the 21 

studied section (~35 cm) in the cave as 0.7±0.2 cm/kyr. 22 
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1. Introduction 26 

Matuyama-Brunhes magnetic reversal occurred approximately 773 kyr ago (Cohen and 27 

Gibbard, 2019) as several recent studies have shown (Channell et al., 2010 (773 ± 0.4 ka); 28 

Suganuma et al., 2015 (770.2 ± 7.3 ka); Singer et al., 2019 (773 ± 2 ka); Valet et al., 2019 29 

(772.4 ± 6.6 ka); Haneda et al., 2020 (772.9 ± 5.4 ka)). Published studies (Channel et al., 2010; 30 

Sagnotti et al., 2010, 2014; Suganuma et al., 2010; Jin and Liu, 2011; Giaccio et al., 2013; 31 

Kitaba et al., 2013; Pares et al., 2013; Valet et al., 2014; Liu et al., 2016; Okada et al., 2017; 32 

Bella et al., 2019) reported that this event is well recorded by sediments that had sufficient 33 

sedimentation rate and could be analyzed, in detail, by paleomagnetism. 34 

Sediments acquire remanent magnetization during their deposition. The alignment of magnetic 35 

moments of the grains occurs in the direction of the Earth’s magnetic field, and acquisition of 36 

primary magnetization due to this sedimentation process is called depositional or detrital 37 

remanent magnetization (DRM) (Gubbins and Herrero, 2017). Remanent magnetization 38 

protected by potential energy barriers can last over geologic time scales. Nevertheless, due to 39 

thermal and/or chemical processes such as reheating, oxidation, and iron hydroxide formation 40 

during time, secondary magnetizations can be acquired by crossing potential energy barriers or 41 

the generation of chemical remanences. The new secondary magnetization has an orientation 42 

in the direction of the Earth’s field at the time of alteration rather than the time of original 43 

deposition. Then rocks can acquire a viscous remanent magnetization (VRM) a long time after 44 

their formation due to exposure to the geomagnetic field. VRM contributes to noise in 45 

paleomagnetic data (Butler, 1992; Lanza and Meloni, 2006). 46 

Lock-in-depth affects the nature of the paleomagnetic recording process in sediments. It is 47 

defined as the depth at which the remanent magnetization is stabilized. Lithology, grain-size 48 

distribution of the sediment matrix, sedimentation rate, and bioturbation influence the position 49 

of the lock-in-depth in the sediments (Bleil and von Dobeneck, 1999; Sagnotti et al., 2005). 50 
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When assuming the steady sedimentation rate, the result of lock-in-depth is a delay of 51 

magnetization that corresponds to the time required to accumulate a sediment layer equal to the 52 

lock-in-depth. For example, if the sediment has an accumulation speed of 1 mm/kyr and lock-53 

in-depth is 10 mm, the magnetization age is 10 kyr younger than the sediment itself (Sagnotti 54 

et al., 2005). 55 

Paleomagnetic analysis of magnetic reversals from cave sediments was carried out in different 56 

locations around the world such as in Western Europe (Parés et al., 2018), South Africa (Nami 57 

et al., 2016), South America (Jaqueto et al., 2016), North America (Stock et al., 2005), Southern 58 

Europe (Pruner et al., 2010), and Eastern Asia (Morinaga et al., 1992). Kadlec et al. (2005, 59 

2014) already reported that the Central European cave (local name “Za Hajovnou”) in the 60 

Moravia region of the Czech Republic records the Matuyama-Brunhes transition. The aim of 61 

the present study is to analyze the reversal using more detailed paleomagnetic methods and to 62 

identify the magnetic carrier of the cave sediment. Here, we obtained a new paleomagnetic 63 

dataset from three vertical sediment profiles in this cave. Contribution of the central European 64 

paleomagnetic record from the cave sediment will be valuable for investigating the 65 

characteristic behavior of the Earth’s magnetic field during the Matuyama-Brunhes magnetic 66 

reversal. Because the sedimentation rate in the cave is not well understood, details of the timing 67 

of the transition are not yet known. It makes our estimation even more crucial in this study.  68 

 69 

1.1 Geology of the Cave  70 

The Za Hájovnou Cave (49° 40´ N, 16° 55´E) is a former sinkhole located in Javoricko Karst, 71 

Moravia Region of the Czech Republic (Lundberg et al., 2014; Musil, 2014) (Fig. 1). The 72 

Javoricko Karst is formed by light-grey-colored massive Devonian limestone that overlies Pre-73 

Cambrian phyllite (Lundberg et al., 2014; Musil, 2014). Spranek and Javoricka are two rivers 74 

that flow through the karst. While the Za Hájovnou Cave is situated on the north-western bank 75 
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of the Javoříčka river, on the southern slope of the Pani Hora hill (Lundberg et al., 2014; Žák 76 

et al., 2018), both Spranek and Javoricka watershed may have contributed to the sediment 77 

development in this cave (Fig. 1). 78 

The Za Hajovnou cave is approximately a 500 m long system (Musil, 2005; Bábek et al., 2015). 79 

The cave was explored previously in a total length of ~200 m and currently consists of two 80 

main parallel corridors with a slightly different sedimentological record (Musil, 2014; Musil et 81 

al., 2014) (Fig. 2). The first corridor (local name is “Excavated Corridor” which used to be a 82 

sinkhole entrance) and the other corridor (local name is “Birthday Corridor”) have a separate 83 

entrance, and are connected by the Connecting Passage Corridor (Fig. 2). Sediments from the 84 

Excavated Corridor continue to the Birthday Corridor and partially fill the Connecting Passage 85 

Corridor (Musil et al., 2014) (Fig. 2).  86 

Upper sediments of the cave were dated by U/Th dating of flowstones from 118 ± 1 to 267 ± 3 87 

ka, and the sediment spans the time of the Cromerian Interglacial Complex in north-western 88 

Europe, which begins with the interglacial period of the marine isotope stage (MIS 19; 773 ka; 89 

Cohen and Gibbard, 2019), and the Matuyama-Brunhes reversal (Kadlec et al., 2005, 2014; 90 

Musil, 2005, 2014; Musil et al., 2014; Lundberg et al., 2014; Bábek et al., 2015; Žák et al., 91 

2018).  92 

The Matuyama-Brunhes boundary (773 ka) was identified (by Kadlec et al., 2005, 2014) in the 93 

upper part of the backwater fine sediments, deposited from suspension (total thickness up to 4.3 94 

m) in the flooded cave. These sediments underlay mostly non-fluvial deposits that entered the 95 

cave through a steep passage and fill the Connecting Passage Corridor (Kadlec et al., 2014; 96 

Lundberg et al., 2014; Musil et al., 2014).  97 

Sedimentary sections studied by Kadlec et al. (2005, 2014) in the Excavated Corridor of the Za 98 

Hajovnou cave were composed of two parts. The first part, 0.8 m thick (Section No. 1, in Fig. 99 

2), about 28 m from the cave entrance, was interpreted to contain the Matuyama-Brunhes 100 
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transition from reversed to normal polarity by Kadlec et al. (2014). Section No. 2 (Fig. 2), ~3.3 101 

m thick, underlays Section No. 1. Kadlec et al. (2014) indicated that this section had sediment 102 

with just reversed polarity except for the upper part of the sediment where the magnetization 103 

was difficult to interpret, because the sediments had weak magnetization for which the 104 

sensitivity of the Agico JR-5A spinner magnetometer was insufficient.  This difficulty was the 105 

motivation for the present research. Here we collected new 44 oriented discrete sedimentary 106 

samples from the Excavated Corridor near the upper backwater sedimentary Section No. 1 (Fig. 107 

2, 3).  108 

 109 

2. Materials and Methods 110 

2.1. Preparation of the Samples 111 

We had prior indication where the reversed polarity is from Kadlec et al. (2014). Our sample 112 

collection took the larger part before the transition and the smaller part above the transition. We 113 

chose three sets of overlapping boxes (Fig. 3) to characterize the transition completely. The 114 

35.1 cm of exposed sediment at the base of Section No. 1 was planed to a clean vertical face, 115 

and the samples for the paleomagnetism measurements were taken by pushing the plastic boxes 116 

(2x2x2 cm; 8cc) into the sediment (Fig. 3). We used a Brunton geological compass to measure 117 

the azimuth and tilt of the boxes. In addition, another 4 samples were collected for rock 118 

magnetism measurements (Fig. 3c), which corresponded with the paleomagnetic samples 119 

(13_0P, 7_7P, 17_2M, 22_0M).  The upper part of the section, from 0 cm to ~12 cm (Fig. 3), 120 

called Bed No. 1 (Kadlec et al. 2014), is made up of fine backwater sediment of brown clayey 121 

silt with white angular clasts of weathered limestone and bone fragments (Bed No. 1) (Kadlec 122 

et al., 2014). The lower part of the section, from ~12 to ~35 cm, consisted of the brown silty 123 

clay without white clasts (Bed No. 2) (Kadlec et al., 2014). Although our “Section 2” is the 124 

same as “Profile 2” of Kadlec et al. (2005) and “Section 2” of Kadlec et al. (2014), our “Section 125 
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1” is not the same as “Profile 1” of Kadlec et al. (2005) but is the same as “Section 1” of Kadlec 126 

et al. (2014). The depths in the present study are not the same as those in Kadlec et al. (2014). 127 

We examined the sediment structure near the walls of the plastic sediment holder and observed 128 

that the process of pushing the box into the sediment caused deformation structures along the 129 

walls of the boxes. The structure was on the order of 0.05 mm thick. Providing the volume of 130 

the box is 8000 mm3 (20x20x20 mm), and the volume of the structurally modified layers is 80 131 

mm3 (4x 0.05x20x20 mm), we have a volume that may be modified by the pushing as 1/100 132 

fraction of the unmodified volume. Even if this moment would be organized in (e.g., 133 

perpendicular direction), it would only deflect the magnetic remanence by <5%. 134 

 135 

2.2. Demagnetization Measurements 136 

To clean the secondary magnetizations from the sedimentary samples, we applied a stepwise 137 

alternative field (AF) demagnetization method in the Pruhonice Paleomagnetism Laboratory of 138 

the Czech Academy of Sciences. This method was carried out using a 2G Enterprises Cryogenic 139 

Magnetometer on 44 samples divided into 3 different sequences. The first sequence of 17 140 

samples (shown in the leftmost column of Fig. 3c) were demagnetized at 1 mT intervals from 141 

0 to 49 mT and 10 mT intervals from 50 to 100 mT. The second sequence of 14 samples (shown 142 

in the middle column of Fig. 3c) were demagnetized at 2 mT intervals from 0 to 48 mT and 10 143 

mT intervals from 50 to 100 mT. The third sequence of 13 samples (shown in the rightmost 144 

column of Fig. 3c) were demagnetized at 0.5 mT intervals from 0 to 39.5 mT and 10 mT 145 

intervals from 40 to 100 mT. Demagnetization data were interpreted with Remasoft software 146 

(Agico Company; Martin Chadima and Frantisek Hrouda). 147 

ChRM directions and maximum angular deviation (MAD) values were determined from 148 

principal component analysis (PCA) (Kirschvink, 1980) on the Zijderveld diagram (Zijderveld, 149 

1967). Virtual geomagnetic pole’s (VGP’s) latitudes and longitudes were calculated using 150 
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PMGSC software (Randy Enkin). Table 1 shows the data of alternative field demagnetization 151 

for each sample. Examples of AF demagnetization results for the Matuyama and Brunhes 152 

intervals (two examples each) are shown in Fig. 4. The rest of the samples are in the Supporting 153 

Information Tables S1 and Supporting Information Figs S2. 154 

 155 

2.3. Rock Magnetism Measurements 156 

To determine the magnetic minerals in the samples, High Temperature Magnetic Susceptibility 157 

measurements ((χ) mass normalized) were done up to 635 °C using an Agico Kappabridge 158 

MFK1-FA susceptibility meter. Isothermal remanent magnetization (IRM) acquisition was 159 

done at 25 mT intervals from 0 to 100 mT, 50 mT intervals from 100 to 400 mT, and 100 mT 160 

intervals from 400 to 1000 mT using a Magnetic Measurements MMPM10 pulse magnetizer. 161 

Stepwise AF demagnetization of IRM was done at 5 mT intervals from 0 to 40 mT and 10 mT 162 

intervals from 40 to 50 mT using an Agico LDA 5 AF demagnetizer. All the remanent 163 

magnetizations were measured using an Agico JR-6 spinner magnetometer after each step. The 164 

samples for the rock magnetism measurements were chosen according to the paleomagnetic 165 

data.  166 

 167 

3. Results 168 

3.1. Paleomagnetic Results  169 

The samples were generally demagnetized up to 20 mT (for details, see Supporting Information 170 

Figs S2), which removed the VRM component causing a change in the direction of remanent 171 

magnetization. This soft VRM component has a mean D: 13.8° and I: 56.8° value, which is 172 

close to the present day’s Earth’s magnetic field direction for the Czech Republic (D: 4.4° and 173 

I: 66.8°) (see Supporting Information Figs S3). Some samples (01_8M, 04_2M, 17_2M, 174 

17_9M, 22_0M) could not be demagnetized even to 100mT. 175 
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The intensity of the natural remanent magnetization (NRM) of the samples varies between 8.5e-176 

3 and 34.1e-3 A/m. Median destructive field (MDF) values where samples lost half of their 177 

magnetization range between 5 and 8 mT. NRM intensity and MDF values of the samples are 178 

shown in Supporting Information Figs S3. MAD values for the Matuyama and Brunhes sections 179 

are between 0.3° and 5.4° (Fig. 5a). These values for the transition section are between 0.7° and 180 

5.3°, which is relatively reliable for detecting the migration of the paleomagnetic vector from 181 

reversed to normal polarity (Fig. 5a). The trend of the MAD values in our data increases before 182 

and during the transition (shown with dashed lines in Fig. 5a-c) between 23.1 and 7.1 cm depth. 183 

This increase can also be seen in other studies (Muttoni et al., 2017 (Bulgaria, cave sediments, 184 

1 cm/kyr sedimentation rate); Ge et al., 2021 (China, cave sediments, 0.2 cm/kyr sedimentation 185 

rate); Sagnotti et al., 2014 (Italy, lacustrine sediments, 20 cm/kyr sedimentation rate); Okada et 186 

al., 2017 (Japan, marine sediments, 61 cm/kyr sedimentation rate)) while these values are higher 187 

than those in our study. (Fig. 5b,c). 188 

Fig. 6 shows the data in comparison with published studies that consisted of cave sediments 189 

(brownish silty clay) (Bella et al., 2019 (Slovakia, 0.6 cm/kyr sedimentation rate); Ge et al., 190 

2021 (China, 0.2 cm/kyr sedimentation rate); Shaar et al., 2021 (South Africa, 0.13 cm/kyr 191 

sedimentation rate)), marine sediments (Liu et al., 2016 (China, 9 cm/kyr sedimentation rate); 192 

Okada et al., 2017 (Japan, 61 cm/kyr sedimentation rate); Valet et al., 2014 (Indian Ocean, 193 

5cm/kyr sedimentation rate)), and other types of sediments (Giaccio et al., 2013 (Italy, 194 

lacustrine sediments, 26 cm/kyr sedimentation rate); Sagnotti et al., 2014 (Italy, lacustrine 195 

sediments, 20 cm/kyr sedimentation rate); Jin and Liu, 2011 (China, loess sediments, 100 196 

cm/kyr sedimentation rate)). Depth of the datasets was normalized considering the transition 197 

zone and differences of sedimentation rate for each study and is not given in Fig. 5, 6. Our 198 

paleomagnetic data showed inclination values changing by approximately 90° (shown with 199 

empty and full arrows in Fig. 6a-d) from 12.8 to 7.1 cm depth (Fig. 6a). This revealed the 200 
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transition nature of the Matuyama-Brunhes magnetic reversal in the Za Hajovnou cave. The 201 

change can be seen in other datasets from negative to positive inclination (Fig. 6b-d). Between 202 

12.8 and 11.8 cm depth, inclination gets a positive value (shown with circle arrows in Fig. 6a-203 

d) just before the transition in our data. It is also observed in other studies, even though the 204 

change is larger in other types of sediments (Fig. 6d) than cave and marine sediments (Fig. 205 

6b,c). Below this depth, the Matuyama section has inclination fluctuations (shown with dashed 206 

lines in Fig. 6a-d) between -6.3° and -89.3°. These fluctuations in other datasets (Fig. 6b-d) have 207 

less frequency in other types of sediments (Fig. 6d). Above the transition, inclination angle 208 

changes between 25.2° and 65.9° for the Brunhes section in our data (Fig. 6a).  209 

Our declination data show more frequent fluctuations for the whole sediment section (Fig. 6e). 210 

The change between 3.0 and 9.2 cm depth (shown with empty and full arrows in Fig. 6e-h) can 211 

be seen in other studies with a larger difference. Below the transition, the frequent fluctuations 212 

(shown with dashed lines in Fig. 6e-h) with a large declination change (shown with square 213 

arrows in Fig. 6e-h) between 25.3 and 23.1 cm depth are observed in other studies. These 214 

fluctuations in cave sediments (Fig. 6b) are more frequent than marine and other types of 215 

sediments (Fig. 6c,d).  216 

Despite the fluctuations, the intensity values of ChRM, which can depend on the concentration 217 

variation of magnetic carriers of every individual sample, were decreasing for the Matuyama 218 

section from the bottom to the transition between 35.1 and ~15 cm depth in our data (Fig. 6i). 219 

After the transition from reversed to normal polarity, these values increased in the Brunhes 220 

section between 7.1 and 0 cm depth (Fig. 6i). Even though there are some differences in absolute 221 

values due to the changes of the paleomagnetic data depending on the location and sediment 222 

type, comparisons of this dataset with other studies showed that fluctuations and frequency of 223 

fluctuations in our data are consistent with other datasets and serves as a supporting argument 224 

for the Matuyama-Brunhes magnetic reversal in the Za Hajovnou cave. 225 
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3.2. VGP’s and Pole Migration 226 

VGP shows the position of the geomagnetic paleopole (Lanza and Meloni, 2006). VGP’s 227 

latitudes from this dataset show fluctuations ranging from -64° to -1° before the transition in 228 

the Matuyama section, which are similar to the data from Haneda et al. (2020) (Japan, marine 229 

sediments, 89 cm/kyr sedimentation rate) having fluctuations from -85° to -32° (Fig. 7a, b).  230 

These values indicate a 90° change between 7.1 and 12.8 cm depth (5.7 cm thickness) during 231 

the transition due to pole migration (Fig. 7a). 75° change in VGP values at 11.8 cm depth (Fig. 232 

7a) shows the precursor of the reversal according to Valet et al. (2012) (Fig. 7c). In addition, 233 

we plotted the VGP path using VGP latitudes and longitudes based on ChRM directions of our 234 

data (Fig. 8). VGP locations for the Matuyama section are in the southern hemisphere (Fig. 8). 235 

During the transition from reversed to normal polarity, the magnetic pole fluctuates east of 236 

Africa in the southern hemisphere and then migrates to the west of North America in the 237 

northern hemisphere (Fig 8a).  The same occurrence of this migration of the paleopole compares 238 

well with the M/B transition section from Okada et al. (2017) recorded in marine sediments 239 

near Japan (Fig. 8b). After the geomagnetic transition, paleopoles fluctuate around the 240 

geographic north pole (Fig. 8a). 241 

 242 

3.3. Rock Magnetism Results 243 

According to the High Temperature Magnetic Susceptibility measurements, the transition of 244 

maghemite to magnetite can be seen with an increase in susceptibility values at approximately 245 

250-350 °C (Fig. 9). The samples have Curie temperatures between 530 and 550 °C, which may 246 

be a sign of titanium in the minerals and a new sulphite phase created from decomposing the 247 

maghemite and incorporation of the sulfur from the surrounding clay. The increase of 248 

susceptibility values in the cooling curves corresponds to the percentage of maghemite decrease 249 

after the heating (Fig. 9a, c, d). Two different drops in susceptibility values at 410 °C and 530 °C 250 
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in Fig. 9c show the existence of maghemite and magnetite together in the sample. IRM results 251 

show that samples in Fig. 10a-d were saturated at 400-500 mT and demagnetized at 50-60 mT, 252 

indicating low coercivity. Samples in Fig. 10e-h are those that could not be AF demagnetized 253 

up to 100 mT in section 2.2.  These samples did not reach saturation up to 1000 mT and were 254 

not demagnetized up to 100 mT, indicating high coercivity (e.g., hematite). Two of them 255 

(17_2M and 22_0M) have a Curie temperature of about 540° (Fig. 9c,d) that shows the presence 256 

of low and high coercivity minerals together in these samples. 257 

 258 

3.4. Sedimentation Rate Estimation 259 

To estimate the sedimentation rate of the studied part (~35 cm) of Section No. 1, we compared 260 

the thickness of the transition section of our study (cm) (5.7 cm section from 7.1 cm to 12.8 cm 261 

depth) with the duration of the transition of published studies (kyr) from European cave 262 

sediments (Pares et al., 2013, Spain, brownish silty clay; Muttoni et al., 2017, Bulgaria, 263 

brownish clayey sand; Bella et al., 2019, Slovakia, brownish silty clay; Zupan Hajna et al., 264 

2021, Slovenia, brownish silty clay and speleothem; Gibert et al., 2016, Spain, reddish clay, 265 

and speleothem). In equation 1.1, tso is the transition section thickness from our study (in cm), 266 

tsd is the transition duration of the published study (in kyr), and sro is the sedimentation rate of 267 

our study (in cm/kyr). 268 

Equation; 269 

𝑡𝑠𝑜 (𝑐𝑚) / 𝑡𝑠𝑑 (𝑘𝑦𝑟)  =  𝑠𝑟𝑜 (𝑐𝑚)                                                                                  (1.1) 270 

 271 

Then, the sedimentation rate ranges between 0.5 and 1.1 cm/kyr. Thus, the average 272 

sedimentation rate is 0.7±0.2 cm/kyr. Sedimentation rate estimates compared with other studies 273 

are shown in Table 2. 274 

 275 
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4. Discussion 276 

Our data indicate that the Matuyama-Brunhes transition boundary constitutes 5.7 cm between 277 

7.1 and 12.8 cm depth of the sampled sedimentary section of the Za Hajovnou cave. The 278 

magnetic reversal is characterized and represented by frequent fluctuations of inclination angle 279 

(Fig. 6a) and VGP latitude (Fig. 7a). We think that fluctuations in declination data indicate the 280 

instability in the Earth’s magnetic field and remanent magnetization. On the other hand, 281 

similarities seen in the previous studies (Fig. 6) show the reliability of the data.  282 

Even though some samples could not be demagnetized up to 100 mT, the data show that 283 

minerals with low coercivity are responsible for the magnetization of the cave sediment in our 284 

study. This is supported with rock magnetism results that indicate the behavior of maghemite 285 

for most of the samples. 286 

The migration of the magnetic North pole from the east of Africa to the west of North America 287 

is a key point for the behavior of the magnetic field during the transition. Although the data in 288 

this study and Okada et al. (2017) belong to geographically different locations and sediment 289 

types, the similarity during polar migration (Fig. 8) shows that the reversal was a dipole 290 

transition, and the non-dipole field component was less significant (Oda et al., 2000; Mochizuki 291 

et al., 2011; Simon et al., 2019).  292 

 293 

Note that most of the sediment section contains samples from the polarity transition. The data 294 

shows that the magnetic field was already unstable for our oldest sample in reversed polarity. 295 

This observation goes well with Haneda et al. (2020), where they show the magnetic pole was 296 

unstable a long time before the reversal boundary (Fig. 7b), and the magnetic field started to 297 

fluctuate almost 20 kyr before the actual transition (Fig. 11). We think that our data illustrate 298 

the same instability, and this is why no paleomagnetic samples have VGP latitudes that deviate 299 

less than 25° from the reversed position. We provide a more detailed explanation of the reversed 300 
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VGP behavior in our data showing reversed polarity unrest well before the actual magnetic 301 

reversal. 302 

 303 

4.1. Precursor Event 304 

Valet et al. (2012) showed a 90° change in VGP during reversed polarity before the transition 305 

(Fig. 7c). According to this model, the precursor prior to the magnetic reversal has a 2.5 kyr 306 

duration, and it occurs ~3.5 kyr before the actual transition (mid-point) which has a 1 kyr 307 

duration (Fig. 7c). The model showed another 90° change as the rebound with 2.5 kyr duration 308 

after the transition (Fig. 7c). Sagnotti et al. (2014) reported Valet et al. (2012)’s precursor with 309 

140° change in VGP, 0.7 kyr duration, and 5 kyr prior to the actual transition. In our VGP data 310 

(Fig. 7a), ~75° change between 13.6 and 11.8 cm depth shows 2.6±0.2 kyr duration (according 311 

to 0.7±0.2 cm/kyr average sedimentation rate estimation) that can be interpreted as the 312 

precursor of the Matuyama-Brunhes magnetic reversal. The pick point of the precursor (11.8 313 

cm depth) is 4±0.2 kyr before the actual transition (9.0 cm depth). The actual transition duration 314 

is 0.6±0.2 kyr between 9.2 and 8.8 cm. These values are consistent with Valet et al. (2012)’s 315 

model and show the unique behavior of the Earth’s magnetic field during the reversal time. The 316 

rebound after the transition in the model is not seen in our study since VGP change between 317 

7.1 and 3.2 cm is not enough to interpret it as the rebound. 318 

 319 

4.2. Sediment Deposition and Sedimentation Rate 320 

The M/B event has occurred during the interglacial period (MIS 19) following the glacial period 321 

(MIS 20) (Cohen and Gibbard, 2019). In the case of the cave sediment, we see coarser grains 322 

deeper (below 12 cm depth; Bed No. 2 in Fig. 3; Matuyama section) and finer grains at a 323 

shallower depth. Since the cave sedimentation was taking place at the time of glaciation, the 324 

cave itself was not frozen solid. This means that seasonal variation was inducing thaw-freeze 325 
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cycle that generally generates physical weathering and source of coarser sediment. This 326 

phenomenon is observed in our cave. The change from glacial to interglacial is supported by 327 

finer grain size sediment due to the smaller influence of the thaw-freeze cycle. Therefore, our 328 

observations support frozen surface and later warming with smaller sediment availability for 329 

sedimentation, supporting the transition from glacial to interglacial period. 330 

According to Lundberg et al. (2014), the cave was filled with water during the sedimentation, 331 

which was continuously active without any significant color change or hiatus with the exception 332 

of a slight change towards finer grains. This provides the continuous magnetic record of the 333 

reversal in the cave sediment and allows the sediment to acquire and keep the primary 334 

magnetization without the possibility of secondary mineralization. Furthermore, there are no 335 

obvious signs of breaks in deposition (e.g., lithological boundaries, desiccation cracks) in the 336 

studied sediment section, other than a slight change in grain size. 337 

Our sedimentation rate estimation (0.7±0.2 cm/kyr) seems to be similar to the sediments from 338 

other European cave studies (Table 2). While the duration of the M/B transition was reported 339 

to last between 4 and 13 kyr (Suganuma et al., 2010; Valet et al., 2014; Okada et al., 2017), the 340 

average sedimentation rate of 0.7±0.2 cm/kyr in this study suggests a transition duration of 341 

8.1±0.2 kyr (7.1-12.8 cm transition section) and thus supports the reliability of our 342 

sedimentation rate and paleomagnetic record estimates.  King and Channell (1991) suggested 343 

that large "lock-in" depths are associated with interparticle rigidity and strength, characteristic 344 

of clayey low accumulation rate sediments (<1 cm/kyr), which results in delays of magnetic 345 

acquisition. This shows that magnetic polarity reversal could have a large (25 kyr) apparent age 346 

offset between sediments with high and very low accumulation rates (King and Channell, 347 

1991). 348 

 349 

 350 
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5. Conclusions 351 

We compared our paleomagnetic data with the published magnetic reversal record, used the 352 

detailed magnetic characteristic of the cave sediment, and inferred the specific magnetic 353 

reversal (Matuyama-Brunhes).  This is possible due to the nature of the magnetic reversal. Note 354 

that the paleopole was residing east of Africa and then quickly reappeared west of North 355 

America. We consider this an important marker signature for dating the central European 356 

paleomagnetic record from this time period. 357 

The precursor event in our data is a significant anomaly to identify the behavior of the 358 

Matuyama-Brunhes magnetic reversal. Additionally, we were able to estimate the accumulation 359 

rate of the studied section (~35 cm) in the Za Hajovnou cave.  360 
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List of Figure/Table Captions 535 

Fig. 1. Location of the study area in (a) Central Europe, (b) in the Czech Republic. Map in (c) 536 

shows regional detail of the Za Hajovnou cave placement (modified after Lundberg et al., 2014; 537 

Musil, 2014).  538 

Fig. 2. Map of the Za Hajovnou cave (modified after Kadlec et al., 2014; Lundberg et al., 2014; 539 

Musil, 2014) (m a.s.l.: meter above sea level). 540 

Fig. 3. The Za Hajovnou cave sediments. (a) Age diagram of the Za Hajovnou cave, (b) sampled 541 

sedimentary Section No. 1,  and (c) discrete samples for the paleomagnetism measurements and 542 

the rock magnetism samples (numbers show the sample name) (orange dashed lines show the 543 

boundary between Bed No. 1 and 2). 544 

Fig. 4. Changes of magnetization directions on the Zijderveld diagram and Wulf stereonet 545 

during AF demagnetization method and demagnetization curve for typical samples (see 546 

Supporting Information Figs S2 for all other samples); (a) normal polarity from the Brunhes 547 

section (12_0P, 13_0P) and (b) reversed polarity from the Matuyama section (08_0M, 21_5M). 548 

Fig. 5. MAD changes during the Matuyama-Brunhes magnetic reversal (a) from this data, (b,c) 549 

from published studies in cave and other types of sediments, respectively. Note: MAD values 550 
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are not available for two of the studies on cave sediments (Bella et al., 2019; Shaar et al., 2021) 551 

presented in Fig. 6. 552 

Fig. 6. Comparisons of inclination and declination data with previous studies. Data shows 553 

inclination (a) from this study, (b-d) from published studies in cave, marine, and other types of 554 

sediments, respectively. Declination data is from (e) this study and (f-h) published studies in 555 

cave, marine, and other types of sediments. (i) shows intensity of ChRM of the samples from 556 

this study. Note: declination data from Giaccio et al. (2013) and Liu et al. (2016) are not 557 

available. Also, declination and inclination data are not available for one of the studies on cave 558 

sediments (Muttoni et al., 2017) presented in Fig. 5b. 559 

Fig. 7. VGP latitudes of a) this study, b) Haneda et al. (2020) and c) shows the precursor model 560 

of Valet et al. (2012).  561 

Fig. 8. VGP path of (a) this study and (b) VGP path of transition section from Okada et al. 562 

(2017) (dashed lines show the migration of the paleopole from east of Africa to west of North 563 

America for both of the studies). 564 

Fig. 9. High Temperature Magnetic Susceptibility measurement results (χ: mass normalized 565 

magnetic susceptibility, T: temperature in Celcius).  566 

Fig. 10. Acquisition (purple dots) and AF demagnetization (black dots) of IRM results of the 567 

samples. 568 

Fig. 11. NRM/ARM data (relative paleointensity (RPI)) from Haneda et al. (2020). Dashed 569 

lines show the M/B reversal. 570 

Table 1. AF demagnetization, VGP data, and the Matuyama-Brunhes magnetic reversal scale 571 

for this study. Minus (-) values for VGP latitudes and longitudes indicate the southern and 572 

western hemispheres. MAD: maximum angular deviation, φp: VGP latitude, λp: VGP longitude. 573 

Table 2. Sedimentation rate estimations for Za Hajovnou from the previous studies.  574 
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Supplementary data are available online. 577 

Supporting Information Tables S1: Demagnetization data for the samples. 578 

Supporting Information Figures S2: Zijderveld diagrams, Wulf stereonets, and demagnetization 579 

curves of the rest of the samples for the AF demagnetization method. 580 

Supporting Information Figures S3: NRM intensity, MDF values, and VRM data 581 


