References
Bábek, O., Briestenský, M., Přecechtělová, G., Štěpančíková, P.,
Hellstrom, J.C., Drysdale, R.N., 2015. Pleistocene speleothem fracturing
in the Western Carpathian orogenic foreland: A case study from
transtensional setting at the eastern margin of the Bohemian Massif.
Geol. Q. 59(3), 491-506. https://doi.org/10.7306/gq.1225.
Bella, P., Bosák, P., Braucher, R., Pruner, P., Hercman, H., Minár, J.,
Veselský, M., Holec, J., Léanni, L., 2019. Multi-level Domica–Baradla
cave system (Slovakia, Hungary): Middle Pliocene–Pleistocene evolution
and implications for the denudation chronology of the Western
Carpathians. Geomorphology 327, 62–79.
https://doi.org/10.1016/j.geomorph.2018.10.002.
Bleil, U., von Dobeneck, T., 1999. Geomagnetic Events and Relative
Paleointensity Records — Clues to High-Resolution Paleomagnetic
Chronostratigraphies of Late Quaternary Marine Sediments?, in: Fischer,
G., Wefer, G. (Eds.), Use of Proxies in Paleoceanography. Springer,
Berlin Heidelberg, pp. 635-654.
https://doi.org/10.1007/978-3-642-58646-0_26.
Butler, R.F., 1992. Paleomagnetism: magnetic domains to geologic
terranes. Blackwell Scientific Publications, Boston.
Channell, J.E.T., Hodell, D.A., Singer, B.S., Xuan, C., 2010.
Reconciling astrochronological and 40Ar/39Ar ages for the
Matuyama-Brunhes boundary and late Matuyama Chron. Geochem Geophy Geosy.
11(12), Q0AA12. https://doi.org/10.1029/2010GC003203.
Cohen, K.M., Gibbard, P.L., 2019. Global chronostratigraphical
correlation table for the last 2.7 million years, version 2019 QI-500,
Quat. Int. 500, 20-31. https://doi.org/10.1016/j.quaint.2019.03.009.
Ge, J., Deng, C., Shao, Q., Wang, Y., Tang, R., Zhao, B., Cheng, X.,
Jin, C., Olsen, J.W., 2021. Magnetostratigraphic and uranium-series
dating of fossiliferous cave sediments in Jinyuan Cave, Liaoning
Province, northeast China. Quat. Int. 591, 5-14.
https://doi.org/10.1016/j.quaint.2020.11.031
Giaccio, B., Castorina, F., Nomade, S., Scardia, G., Voltaggio, M.,
Sagnotti, L., 2013. Revised Chronology of the Sulmona Lacustrine
Succession, Central Italy. J. Quat. Sci. 28(6). 545–551.
https://doi.org/10.1002/jqs.2647.
Gibert, L., Scott, G.R., Scholz, D., Budsky, A., Ferràndez, C., Ribot,
F., Martin, R.A., Lería, M., 2016. Chronology for the cueva victoria
fossil site (se spain): Evidence for early pleistocene afro-iberian
dispersals. J. Hum. Evol. 90, 183-197.
https://doi.org/10.1016/j.jhevol.2015.08.002.
Gubbins, D., Herrero-Bervera, E., 2007. Encyclopedia of Geomagnetism and
Paleomagnetism. Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-4423-6.
Haneda, Y., Okada, M., Suganuma, Y., Kitamura, T., 2020. A full sequence
of the Matuyama–Brunhes geomagnetic reversal in the Chiba composite
section, Central Japan. Prog. Earth Planet. Sci. 7, 44.
https://doi.org/10.1186/s40645-020-00354-y.
Jaqueto, P., Trindade, R.I.F., Hartmann, G.A., Novello, V.F., Cruz,
F.W., Karmann, I., Strauss, B.E., Feinberg, J.M., 2016. Linking
speleothem and soil magnetism in the Pau d’Alho cave (central South
America). J. Geophys. Res. Solid Earth.. 121(10), 7024-7039.
https://doi.org/10.1002/2016JB013541.
Jin, C., Liu, Q., 2011. Revisiting the stratigraphic position of the
Matuyama-Brunhes geomagnetic polarity boundary in Chinese loess.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(1), 309–317.
https://doi.org/10.1016/j.palaeo.2010.11.011.
Kadlec, J., Chadima, M., Pruner, P., Schnabl, P., 2005. Paleomagnetické
datování sedimentů v jeskyni “Za Hájovnou” v Javoříčku - předběžné
výsledky. Přírodovědné studie Muzea Prostějovska 8, 75–82.
Kadlec, J., Čížková, K., Šlechta, S., 2014. New updated results of
paleomagnetic dating of cave deposits exposed in Za Hájovnou Cave,
Javoříčko Karst. Acta Musei Natl. Pragae, Ser. B - Hist. Nat. 70, 27-34.
https://doi.org/10.14446/AMNP.2014.27.
King, J.W., Channell, J.E.T., 1991. Sedimentary Magnetism, Environmental
Magnetism, and Magnetostratigraphy. Rev. Geophys. 29, 358-370.
https://doi.org/10.1002/rog.1991.29.s1.358.
Kirschvink, J.L., 1980. The least‐squares line and plane and the
analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc. 62(3),
699-718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x.
Kitaba, I., Hyodo, M., Katoh, S., Dettman, D.L., Sato, H., 2013.
Midlatitude cooling caused by geomagnetic field minimum during polarity
reversal. Proc. Natl. Acad. Sci. 110(4), 1215–1220.
https://doi.org/10.1073/pnas.1213389110.
Lanza, R., Meloni, A., 2006. The Earth’s magnetism: An introduction for
geologists. Springer, Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-27980-8.
Liu, J., Liu, Q., Zhang, X., Liu, J., Wu, Z., Mei, X., Shi, X., Zhao,
Q., 2016. Magnetostratigraphy of a long Quaternary sediment core in the
South Yellow Sea. Quat. Sci. Rev., 144, 1–15.
https://doi.org/10.1016/j.quascirev.2016.05.025.
Lundberg, J., Musil, R., Sabol, M., 2014. Sedimentary history of Za
Hájovnou Cave (Moravia, Czech Republic): A unique Middle Pleistocene
palaeontological site. Quat. Int., 339, 11-24.
https://doi.org/10.1016/j.quaint.2013.04.006.
Mochizuki, N., Oda, H., Ishizuka, O., Yamazaki, T., Tsunakawa, H., 2011.
Paleointensity variation across the Matuyama-Brunhes polarity
transition: Observations from lavas at Punaruu Valley, Tahiti J.
Geophys. Res. Solid Earth 116, B06103.
https://doi.org/10.1029/2010JB008093.
Morinaga, H., Yaskawa, K., Horie, I., 1992. A geomagnetic reversal
recorded in a stalagmite collected in western japan. J. Geomagn.
Geoelectr. 44(8), 661-675. https://doi.org/10.5636/jgg.44.661.
Musil, R., 2005. Jeskyně “Za Hájovnou”, výjimečná lokalita
Javoříšského krasu. Přírodovědné studie Muzea Prostějovska 8,
9–42.Musil, R., 2014. The unique record of Za Hájovnou Cave. Acta Musei
Natl. Pragae, Ser. B - Hist. Nat. 70, 7-26.
https://doi.org/10.14446/AMNP.2014.7.
Musil, R., Sabol, M., Ivanov, M., Doláková, N., 2014. Middle pleistocene
stratigraphy of the deposits in Za Hájovnou Cave (Javořičko Karst,
Northern Moravia, Czech Republic). Acta Musei Natl. Pragae, Ser. B -
Hist. Nat. 70, 107-119. https://doi.org/10.14446/AMNP.2014.107.
Muttoni, G., Sirakov, N., Guadelli, J.L., Kent, D.V., Scardia, G.,
Monesi, E., Zerboni, A., Ferrara, E., 2017. An early Brunhes
(< 0.78 Ma) age for the Lower Paleolithic tool-bearing
Kozarnika cave sediments, Bulgaria. Quat. Sci. Rev. 178, 1-13.
https://doi.org/10.1016/j.quascirev.2017.10.034.
Nami, H.G., De La Peña, P., Vásquez, C.A., Feathers, J., Wurz, S., 2016.
Palaeomagnetic results and new dates of sedimentary deposits from
Klasies River Cave 1, South Africa. S. Afr. J. Sci. 112(11-12), 1-12.
https://doi.org/10.17159/sajs.2016/20160051.
Oda, H., Shibuya, H., Hsu, V., 2000. Palaeomagnetic records of the
Brunhes/Matuyama polarity transition from ODP Leg 124 (Celebes and Sulu
seas). Geophys. J. Int. 142(2), 319–338.
https://doi.org/10.1046/j.1365-246X.2000.00130.x.
Okada, M., Suganuma, Y., Haneda, Y., Kazaoka, O., 2017. Paleomagnetic
direction and paleointensity variations during the Matuyama-Brunhes
polarity transition from a marine succession in the Chiba composite
section of the Boso Peninsula, central Japan. Earth, Planets Sp. 69, 45.
https://doi.org/10.1186/s40623-017-0627-1.
Pares, J.M., Arnold, L., Duval, M., Demuro, M., Pérez-González, A.,
Bermúdez de Castro, J. M., Carbonell, E., Arsuaga, J.L., 2013.
Reassessing the age of Atapuerca-TD6 (Spain): New paleomagnetic results.
J. Archaeol. Sci. 40(12), 4586–4595.
https://doi.org/10.1016/j.jas.2013.06.013.
Pares, J.M., Álvarez, C., Sier, M., Moreno, D., Duval, M., Woodhead,
J.D., Ortega, A.I., Campaña, I., Rosell, J., de Castro, J.B., Carbonell,
E., 2018. Chronology of the cave interior sediments at Gran Dolina
archaeological site, Atapuerca (Spain). Quat. Sci. Rev. 186, 1–16.
https://doi.org/10.1016/j.quascirev.2018.02.004.
Pruner, P., Hajna, N.Z., Mihevc, A., Bosák, P., Man, O., Schnabl, P.,
Venhodová, D., 2010. Magnetostratigraphy and fold tests from Račiška
pečina and pečina v Borštu caves (classical karst, Slovenia). Stud.
Geophys. Geod. 54, 27–48. https://doi.org/10.1007/s11200-010-0002-1.
Sagnotti, L., Budillon, F., Dinarès-Turell, J., Iorio, M., MacRì, P.,
2005. Evidence for a variable paleomagnetic lock-in depth in the
Holocene sequence from the Salerno Gulf (Italy): Implications for
“high- resolution” paleomagnetic dating, Geochemistry. Geophys.
Geosyst. 6, Q11013. https://doi.org/10.1029/2005GC001043.
Sagnotti, L., Cascella, A., Ciaranfi, N., Macrì, P., Maiorano, P.,
Marino, M., Taddeucci, J., 2010. Rock magnetism and palaeomagnetism of
the montalbano jonico section (Italy): Evidence for late diagenetic
growth of greigite and implications for magnetostratigraphy. Geophys. J.
Int. 180(3), 1049–1066.
https://doi.org/10.1111/j.1365-246X.2009.04480.x.
Sagnotti, L., Scardia, G., Giaccio, B., Liddicoat, J.C., Nomade, S.,
Renne, P.R., Sprain, C. J., 2014. Extremely rapid directional change
during Matuyama-Brunhes geomagnetic polarity reversal. Geophys. J. Int.
199(2), 1110–1124. https://doi.org/10.1093/gji/ggu287.
Shaar, R., Matmon, A., Horwitz, L.K., Ebert, Y., Chazan, M., Arnold, M.,
Aumaître, G., Bourlès, D., Keddadouche, K., 2021. Magnetostratigraphy
and cosmogenic dating of Wonderwerk Cave: New constraints for the
chronology of the South African Earlier Stone Age. Quat. Sci. Rev. 259,
106907. https://doi.org/10.1016/j.quascirev.2021.106907.
Simon, Q., Suganuma, Y., Okada, M., Haneda, Y., 2019. High-resolution
10Be and paleomagnetic recording of the last polarity reversal in the
Chiba composite section: Age and dynamics of the Matuyama–Brunhes
transition. Earth Planet. Sci. Lett. 519, 92-100.
https://doi.org/10.1016/j.epsl.2019.05.004.
Singer, B.S., Jicha, B.R., Mochizuki, N., Coe, R.S., 2019. Synchronizing
volcanic, sedimentary, and ice core records of Earth’s last magnetic
polarity reversal. Sci. Adv. 5(8), eaaw4621.
https://doi.org/10.1126/sciadv.aaw4621.
Stock, G.M., Granger, D.E., Sasowsky, I.D., Anderson, R.S., Finkel,
R.C., 2005. Comparison of U-Th, paleomagnetism, and cosmogenic burial
methods for dating caves: Implications for landscape evolution studies.
Earth Planet. Sci. Lett. 236(1), 388–403.
https://doi.org/10.1016/j.epsl.2005.04.024.
Suganuma, Y., Yokoyama, Y., Yamazaki, T., Kawamura, K., Horng, C. S.,
Matsuzaki, H., 2010. 10Be evidence for delayed acquisition of remanent
magnetization in marine sediments: Implication for a new age for the
Matuyama-Brunhes boundary. Earth Planet. Sci. Lett. 296(3), 443–450.
https://doi.org/10.1016/j.epsl.2010.05.031.
Suganuma, Y., Okada, M., Horie, K., Kaiden, H., Takehara, M., Senda, R.,
Kimura, J.I., Kawamura, K., Haneda, Y., Kazaoka, O., Head, M.J., 2015.
Age of Matuyama-Brunhes boundary constrained by U-Pb zircon dating of a
widespread tephra. Geology 43(6), 491-494.
https://doi.org/10.1130/G36625.1.
Valet, J.P., Fournier, A., Courtillot, V., Herrero-Bervera, E., 2012.
Dynamical similarity of geomagnetic field reversals. Nature 490, 89-93.
https://doi.org/10.1038/nature11491.
Valet, J.P., Bassinot, F., Bouilloux, A., Bourlès, D., Nomade, S.,
Guillou, V., Lopes, F., Thouveny, N., Dewilde, F., 2014. Geomagnetic,
cosmogenic and climatic changes across the last geomagnetic reversal
from Equatorial Indian Ocean sediments. Earth Planet. Sci. Lett. 397,
67–79. https://doi.org/10.1016/j.epsl.2014.03.053.
Valet, J.P., Bassinot, F., Simon, Q., Savranskaia, T., Thouveny, N.,
Bourlés, D.L., Villedieu, A., 2019. Constraining the age of the last
geomagnetic reversal from geochemical and magnetic analyses of Atlantic,
Indian, and Pacific Ocean sediments. Earth Planet. Sci. Lett. 506,
323-331. https://doi.org/10.1016/j.epsl.2018.11.012
Žák, K., Lipták, V., Filippi, M., Orvošová, M., Hercman, H., Matoušková,
Š., 2018. Cryogenic carbonates and cryogenic speleothem damage in the za
hájovnou cave (Javoříčko karst, Czech Republic). Geol. Q. 62(4),
829-839. https://doi.org/10.7306/gq.1441.
Zijderveld, J.D.A., 1967. AC demagnetization of rocks: analysis of
results, in: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods
in Paleomagnetism. Elsevier, Amsterdam, pp. 254–286.
Zupan Hajna, N., Mihevc, A., Bosák, P., Pruner, P., Hercman, H.,
Horáček, I., Wagner, J., Čermák, S., Pawlak, J., Sierpień, P., Kdýr, Š.,
Juřičková, L., Švara, A., 2021. Pliocene to Holocene chronostratigraphy
and palaeoenvironmental records from cave sediments: Račiška pečina
section (SW Slovenia). Quat. Int. in press.
https://doi.org/10.1016/j.quaint.2021.02.035.