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Abstract12

A convolutional neural network (CNN) was found to skillfully classify potentially severe13

convection of a future climate based on learned thermodynamic and kinematic thunder-14

storm features. The CNN was trained to classify strongly rotating storms from a cur-15

rent climate, then evaluated against storms from a future climate (end of 21st century),16

and found to perform with skill and comparatively in both climates. Strongly rotating17

storms were of interest because they are more likely to be supercells, a thunderstorm type18

that has a greater likelihood of producing tornadoes and large hail, which cause billions19

of losses and dozens of fatalities every year. Despite training with labels derived from20

a threshold value of a severe thunderstorm diagnostic (updraft helicity), the CNN learned21

physical characteristics of organized convection and environments that are not captured22

by the diagnostic heuristic. Interpretability techniques revealed that strongly rotating23

storms are associated with rotation signatures and thunderstorm updrafts penetrating24

comparatively drier vertical mid-levels. Results show that simple heuristics can yield skill-25

ful results with CNNs and can be used to generate labeled data for supervised learning26

frameworks. Most importantly, results from this study show that deep learning is capa-27

ble of generalizing to future climate extremes and can exhibit out-of-sample robustness28

with proper hyperparameter tuning. As the climate continues to change, and machine29

learning techniques continue to proliferate in the physical sciences, it is important to en-30

sure that techniques perform skillfully with unseen outliers and climate signals. This study31

offers evidence that this objective is possible and based on physical signals.32

Plain Language Summary33

As temperatures and water vapor continue increasing due to climate change, mod-34

els that were trained using past data may no longer perform with skill. Here we explored35

whether the performance of a machine learning model was sensitive to a changing cli-36

mate. The purpose of the machine learning model was to classify thunderstorms into two37

groups: potentially severe and potentially non-severe thunderstorms. Potentially severe38

thunderstorms have a greater likelihood of producing tornadoes and large hail, which are39

a threat to society. Results show that the model was able to classify thunderstorms with40

skill in both the current and future climate partly due to the architecture of the model.41

We also explored the reasons behind the model’s skill and found that the model learned42

thunderstorm features and meteorological information. These results provide us with added43

confidence that machine learning models can learn physical relationships from weather44

and climate data and remain skillful in a future climate.45

1 Introduction46

The recent success of convolutional neural networks (CNNs; Fukushima & Miyake,47

1982) in Earth science applications is largely due to their ability to capture nonlinear48

and spatially invariant details among input variables. This class of deep learning mod-49

els (LeCun et al., 2015) has proven skillful in various atmospheric science tasks, includ-50

ing detection of weather and climate features (Y. Liu et al., 2016; Lagerquist et al., 2019;51

Biard & Kunkel, 2019; Toms et al., 2019), emulation of complex model processes (Rasp52

et al., 2018), and prediction of extreme weather and climate phenomena (Gagne II et53

al., 2019; Zhou et al., 2019; Ham et al., 2019; Sobash et al., 2020). This study focuses54

on convection over the central and eastern contiguous United States (CONUS), which55

at extremes can produce severe hazards (e.g., hail and tornadoes) that pose societal dan-56

ger. CNNs have already proven skillful for classification and prediction of convective storms57

in the present climate (Gagne II et al., 2019; Jergensen et al., 2020; Lagerquist et al.,58

2020). However, as the climate continues to warm, some future thunderstorms may be59

outliers in the baseline climate (Trapp & Hoogewind, 2016), and these extreme events60

may be more difficult for CNNs to identify. This article explores the ability of CNNs to61
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classify convection of a future climate, along with the physical reasons for the resultant62

performance.63

Climate change is altering the large-scale atmospheric landscape over North Amer-64

ica, resulting in changes to the frequency and intensity of organized convection (K. L. Ras-65

mussen et al., 2017; Prein et al., 2017). Future changes to thermodynamic and kinematic66

fields can impact climatological distributions of convection morphology and associated67

severe hazards (e.g., tornadoes and large hail; Trapp et al., 2007, 2009; Diffenbaugh et68

al., 2013). Studies have shown a climate change imprint on various aspects of severe thun-69

derstorms and associated environments (Allen, 2018), including increases in thermody-70

namic buoyancy and storm frequency (Brooks, 2013; Hoogewind et al., 2017), increases71

in convective inhibition (Taszarek et al., 2020), more societal exposure (Ashley & Strader,72

2016), and an eastward geographic shift of environments over the U.S. favorable for se-73

vere hazards (Gensini & Brooks, 2018). However, discerning the interplay between ther-74

modynamic and kinematic components on future convection has been more challenging75

(Brooks, 2013), given that subtle changes to either field can alter the potential of a thun-76

derstorm to produce severe hazards (Doswell et al., 1996). This complex interplay, and77

varying seasonal and geographical trends, limit the broader conclusions that can be de-78

rived from climate studies of severe convective storms (e.g., Brooks, 2013).79

In current forecasting applications, advancements in delineating storms capable of80

producing specific hazards have included the development of environmental proxies and81

composite indices that take kinematic and thermodynamic factors into account (E. N. Ras-82

mussen, 2003; R. L. Thompson et al., 2003, 2007, 2012; Gropp & Davenport, 2018). Up-83

draft helicity (UH) is an example of a diagnostic parameter, which estimates the mag-84

nitude of rotation within a storm’s updraft using vertical wind speeds and vorticity (Kain85

et al., 2008). Strongly-rotating storms with high magnitudes of UH (e.g., ≥ 75 m2 s−2)86

have a greater likelihood to be of supercell morphology (Clark et al., 2013; Sobash et al.,87

2016), a type of thunderstorm that observations have shown to be more likely to pro-88

duce severe hazards (Bunkers et al., 2006; Duda & Gallus Jr, 2010). Scalar thresholds89

for UH have been used to classify model simulated convection, with storms that exceed90

the predetermined threshold classified as severe (Sobash et al., 2011; Molina, Allen, &91

Prein, 2020). These dichotomous assignments derived from UH have been used in kilometer-92

scale climate simulations to estimate changes to severe hazards in a future climate (Trapp93

et al., 2011; Gensini & Mote, 2015). However, the use of a heuristic to delineate non-severe94

and severe convection can result in incorrect categorizations of storms that fall near the95

predetermined threshold. UH values representative of severe convection also vary sea-96

sonally and regionally, based on the climatological environments that drive severe con-97

vection activity (Sobash & Kain, 2017; Molina, Allen, & Prein, 2020). Recently, Sobash98

et al. (2020) trained a CNN to forecast severe hazard potential using severe thunderstorm99

parameters, showing that a CNN can learn from diagnostics. The focus herein lies on100

evaluating a CNN’s ability to classify convection and its out-of-sample robustness to a101

future climate.102

CNNs are a class of deep learning models canonically used for computer vision tasks103

because of the capability of processing multiple layers of information to detect nonlin-104

earities and spatial invariances of features (LeCun et al., 1998; Krizhevsky et al., 2012).105

Various techniques have been developed to prevent deep learning models from overfit-106

ting and to improve training stability, such as dropout and batch normalization (Srivastava107

et al., 2014; Ioffe & Szegedy, 2015), which help CNNs generalize relationships among in-108

put features and increase prediction accuracy. However, explaining the reasons for model109

skill has been challenging, due to the complex architecture of CNNs that include many110

trained weights and biases within hidden layers and feature maps. Various CNN tech-111

niques have been recently developed to increase interpretability of machine learning (Barnes112

et al., 2019; McGovern et al., 2019). These techniques include saliency maps (Simonyan113

et al., 2013) and permutation feature importance (Breiman, 2001; Lakshmanan et al.,114
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2015), which have been shown to help explain skillful CNN predictions of convective haz-115

ards (Gagne II et al., 2019). Identifying reliable reasons for model performance can in-116

crease the trust of atmospheric scientists in machine learning and foster further discov-117

ery of the physical processes driving societally impactful weather and climate extremes.118

Using deep learning and interpretation techniques, the following questions will be119

analyzed in this paper:120

1. Are future strongly rotating storms correctly classified by a CNN that was trained121

under current climate conditions?122

2. Which input features and spatial patterns are identified to be most important by123

the deep CNN for correct classifications?124

3. What are the reasons for incorrect classifications?125

2 Data and Methods126

2.1 Storm Identification in Current and Future Climate Simulations127

A set of two convection-permitting model simulations created by the Water Sys-128

tem Program of the National Center for Atmospheric Research were used to extract storm129

objects for this study (C. Liu et al., 2017). The two simulations were created using the130

Weather Research and Forecasting model (WRF; Skamarock & Klemp, 2008) at 4 km131

grid spacing over the CONUS. The WRF simulations cover 13 years each and represent132

a retrospective climate period (October 2000–September 2013) and a future climate pe-133

riod (end of the 21st century). Initial and boundary conditions for both simulations were134

driven by the 6-hourly and 0.7◦ ERA-Interim (Dee et al., 2011), which is a global cli-135

mate reanalysis data set produced by the European Centre for Medium-Range Weather136

Forecasts. A pseudo-global warming (PGW) perturbation signal (Schär et al., 1996), rep-137

resentative of an end of the 21st century business as usual climate scenario, was added138

to state variables of the future climate simulation. The PGW signal was derived from139

a set of 19 Coupled Model Intercomparison Project Phase 5 (CMIP5) models (Taylor140

et al., 2012) generated with a Representative Concentration Pathway of 8.5 W m−2 (RCP8.5)141

radiative forcing, which is a very high greenhouse gas concentration pathway (Moss et142

al., 2010). To prevent drifting of the 4 km regional simulation from the reanalysis bound-143

ary conditions, large-scale spectral nudging of moderate strength was applied above the144

planetary boundary layer (von Storch et al., 2000), which provided synoptic-scale fidelity145

to past weather events yet allowed the mesoscale to evolve with some freedom. These146

model simulations allow us to isolate thermodynamic signals from kinematic influences147

on the future climate. Simulation details are available in Table 1 and additional spec-148

ifications can be found in C. Liu et al. (2017).149

The watershed transform (Lakshmanan et al., 2009) was used to identify high-intensity150

updrafts that constitute thunderstorms from the convection-permitting climate simula-151

tions. The watershed transform, as employed herein, identified storms using a simulated152

radar reflectivity minimum threshold of 40 dBZ, which is a quantity proportional to the153

number of drops per unit volume and provides an estimate of convective precipitation154

(Trapp et al., 2011). Grid cells adjacent to the detected local maxima that also exceeded155

a minimum threshold of 20 dBZ were then treated as a part of the storm patch. This156

process was repeated iteratively and surrounding grid cells were continually associated157

with a storm until values were either below a minimum threshold of 20 dBZ or exceeded158

a predetermined storm patch spatial extent of 128 km (32 grid cells x 4 km grid spac-159

ing). Each storm was saved as a patch spanning 128 x 128 km containing the storm and160

the adjacent environment, which influences storm characteristics (R. L. Thompson et al.,161

2012). Storms were extracted over land and east of the Rocky Mountains (Fig. 1), where162

severe thunderstorms have a greater climatological likelihood of occurrence (Brooks et163

al., 2003). The temporal focus of this study was limited to winter (December, January,164
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Table 1. WRF simulation parameterization schemesa and settings, as detailed in C. Liu et al.

(2017).

Model specifications

Domain grid points 1,360 x 1,016 grid points
Domain size (East-West, North-South) 5,440-km, 4,064-km
Vertical levels 51 stretched vertical levels, topped at 50-hPa
Microphysics scheme Thompson aerosol-aware (G. Thompson & Eidhammer, 2014)
Planetary boundary layer scheme Yonsei University (Hong et al., 2006)
Shortwave and longwave radiation scheme RRTMG (Iacono et al., 2008)
Land surface scheme Improved Noah-MP land-surface model (Niu et al., 2011)

aNo sub-grid cloud cover, shallow, or deep cumulus parameterizations were employed.

Figure 1. Storm objects for this study were extracted from areas east of the Rocky Moun-

tains (over land) within the dashed-line polygon. An example storm object is shown over the

CONUS for scale, with the inset displaying a larger version, and corresponding state variables are

shown on the right. State variables listed from top-to-bottom are water vapor mixing ratio (qw;

g kg−1), temperature (T; K), pressure (P; hPa), and zonal (u) and meridional (v) winds (m s−1).

The four layers for each state variable indicate the four levels (1, 3, 5, and 7 km above ground) at

which variables were derived.

and February; DJF) and spring months (March, April, May; MAM). Other seasons were165

omitted due to a simulated dry bias during summer months across the central CONUS,166

which was partly associated with land-surface feedbacks (Barlage et al., 2018).167

Similar to Gagne II et al. (2019), meteorological state variables were extracted from168

the WRF simulations to train a CNN after creating the storm patches. The variables169

are pressure (P; hPa), temperature (T; K), water vapor mixing ratio (qw; g kg−1), and170

zonal (u) and meridional (v) winds (m s−1). Variables were then interpolated onto the171

following heights above ground level (AGL): 1, 3, 5, and 7 km. AGL heights were pre-172

ferred over constant pressure surfaces because pressure surfaces might be below ground173

across portions of the High Plains and AGL heights are more likely to sample similar parts174

of a storm updraft. UH (m2 s−2) was also extracted and is quantified as175
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UH =

∫ 5km

2km

w ζ dz ,

where the integral of the product of vertical velocity (w) and vertical vorticity (ζ) is com-176

puted from 2 km to 5 km AGL (Kain et al., 2008). A 1D vector containing labels for CNN177

training and testing was created using binary assignment (i.e., one-hot encoding) derived178

from UH. A high-magnitude UH threshold (e.g., 75 m2 s−2) was used to delineate con-179

vection more likely to be of supercell morphology (Sobash et al., 2011). Values exceed-180

ing the UH threshold were assigned a label of 1, whereas values below the threshold were181

assigned a label of 0. Storm objects were then split into two subsets prior to CNN train-182

ing: 60% for training and 40% for testing. Since the meteorological variables contain dif-183

ferent dynamic ranges, the training data was standardized by subtracting the training184

set variable’s mean and then dividing by its standard deviation.185

2.2 CNN Architecture and Interpretation186

The deep learning model used in this study was a CNN (LeCun et al., 1990) that187

consisted of three convolutional layers (similar to Gagne II et al., 2019), which allowed188

the model to learn features of various spatial scales to then perform a classification task189

(Fig. 2). At each convolutional layer, a 2D filter window was slid across each input map,190

which then outputted a “feature map”. The input maps received by the first layer were191

the storm patches that contained standardized state variables and the maps received by192

deeper layers were the previous layer feature maps (Fig. 2). Each filter pass contained193

a set of weights that were randomly initialized before the first training pass. The filter194

window was slid across the input map one grid cell at a time in this study (stride length195

of 1), with this computation performed iteratively until spanning the full map space (more196

details available in Goodfellow et al., 2016, and others). The dimensions of the filter win-197

dow were 5 x 5 grid cells (20 x 20 km), with zero padding also applied to the edges of198

each map in order to obtain an output map of the same size after the convolution op-199

eration. A nonlinear activation function was then applied to each feature map to enable200

the conditional passage of relevant signals for a particular example. The rectified linear201

unit (ReLU; max(0, x )) activation function was used for each feature map, which pre-202

served the magnitude of positive signals and negated negative signals during training,203

when signals were propagated backward through the network (LeCun et al., 2015).204

The spatial dimensions of feature maps were reduced after each convolutional layer205

via maximum (max) pooling, which downsampled each feature map’s spatial extent by206

half (Fig. 2). Max pooling was performed by extracting maximum values of the feature207

maps within a sliding filter window, which was of 2 x 2 dimension (grid cell). Max pool-208

ing added spatial invariance and allowed the model to learn higher level features in deeper209

layers. After the three convolution and dimensionality reduction operations, the resul-210

tant data was flattened into a 1D vector and passed through a densely connected layer211

(Fig. 2), with a ReLU activation function applied to the output. The 1D vector was then212

passed through a final dense layer, with a sigmoid activation function applied to produce213

the model’s classification result as a value between 0 and 1, which was interpreted as the214

probability that the input state variables contained a strongly rotating thunderstorm.215

The weights of the deep CNN were trained to minimize mean squared error (MSE) us-216

ing the Adam optimization algorithm (Kingma & Ba, 2014) via backpropagation. Dur-217

ing training, a set of 128 examples (i.e., batch) were randomly pulled from the training218

data population, and passed forward through the deep CNN to generate storm classi-219

fication probabilities. During backpropagation, partial derivatives of the error with re-220

spect to the weights for all hidden layers were calculated, and weights were updated to-221

wards values that reduced MSE. A learning rate of 0.0001 was used, which controlled222

the magnitude of the weight updates.223
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Figure 2. The architecture of the deep convolutional neural network (CNN). The model con-

sists of three 2D convolutional layers and maximum (max) pooling layers. The dimensions of the

feature maps (shown in parentheses) decrease in spatial extent and increase in depth as inputs

travel deeper into the model, allowing the CNN to learn relationships of coarser spatial resolu-

tions. 2D filter windows are also depicted in blue, of dimension 5 x 5 for each convolutional layer

and 2 x 2 for each max pooling layer.

To prevent overfitting of weights during training, various techniques were employed.224

Ridge (L2 norm; 0.001) regularization was added as a penalty term to reduce the mag-225

nitude of the weights at each convolutional layer. Batch normalization was applied af-226

ter each convolutional layer and the first dense layer (Ioffe & Szegedy, 2015), which in-227

volves standardizing layer outputs by subtracting the batch mean and dividing by the228

batch standard deviation, in effect reducing covariance shift. This re-centering of fea-229

ture maps also increases independence among convolutional layers and reduces the to-230

tal training time of the model. 2D spatial dropout (Srivastava et al., 2014) was also em-231

ployed after batch normalization, which probabilistically removes feature maps (30% in232

this study), reducing the number of features learned and increasing the robustness of in-233

dividual maps and weights. A validation data set was used during training, consisting234

of 10% of the available training data, which provided insight into the skill of the model235

during weight optimization (training). These model settings were selected based on the236

lowest resultant test data MSE from a hyperparameter grid search that resulted in over237

128 independently trained CNNs. All CNNs were trained with 20 epochs. The classi-238

fication output of the lowest MSE CNN was evaluated using probabilistic and nonprob-239

abilistic skill metrics that will be further detailed within the results.240

To explore the relative importance of specific meteorological variables on CNN clas-241

sification performance, we used the permutation feature importance (PFI; Breiman, 2001)242

analysis. PFI ranks variables based on how much randomizing them impacts error dur-243

ing testing, with larger magnitude decreases in skill associated with greater importance.244

Higher relative importance suggests that the respective variables have greater relevance245

to the classification due to the larger magnitude weights associated with them within the246

CNN architecture. 500 permutations were completed for each of the 20 variables to cap-247

ture uncertainty associated with shuffling order in PFI. Permuted fields for a set of ex-248

amples were also visualized to further explain variable importance results. The chosen249

examples consist of cases that were originally classified correctly by the CNN, but switched250

to incorrect classifications due to PFI. Certain classified storms that were switched to251

incorrect classifications also consistently appeared in larger skill reductions, and these252
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were used to narrow down the subset of storms for visualization. To explain model rea-253

soning within a spatial context, image-specific class saliency visualization was used (Simonyan254

et al., 2013). Saliency maps were computed using gradients of the CNN output with re-255

spect to the input features. Examples from the test data were chosen to explore pixels256

that have high saliency with respect to the model probability output.257

3 Results258

3.1 Storm Classification in a Future Climate259

Storms identified within the future climate model simulation contain warmer tem-260

peratures and higher moisture content than storms identified within the current climate261

model simulation at all vertical levels (1, 3, 5 and 7 km; Table 2), which is consistent with262

the applied PGW signal (C. Liu et al., 2017). Table 2 shows that future storms contain263

about 1.3 g kg−1 more low-level (1 km) water vapor mixing ratio and are about 2.4 K264

warmer (1 km) than storms of the current climate (both statistically significant at the265

95th percentile confidence level). These results are also consistent with the Clausius-Clapeyron266

equation that estimates a 7% increase in saturation vapor pressure per +1◦C. Using the267

Clausius-Clapeyron equation, water vapor mixing ratio of future storms should be about268

8.76 g kg−1 at 1 km, which is comparable to the 8.9 g kg−1 contained in storms extracted269

from the future climate model simulation (Table 2). Added low-level moisture and warmth270

provide additional thermodynamic buoyancy and vertical instability that could lead to271

more intense convection in the future (K. L. Rasmussen et al., 2017; Prein et al., 2017).272

The increased moisture and warmth could also pose the CNN with added difficulty in273

performing the storm classification task. Table 2 shows little change in zonal (u) and merid-274

ional (v) storm winds between the current and future climate model simulations. Since275

the classification task being performed by the CNN is related to winds, the relative con-276

sistency in wind magnitude may result in little change in classification skill between the277

current and future climate model simulations.278

Here we evaluate probabilistic forecasts generated by the CNN, which are prob-279

abilities that the storm patches contain a strongly rotating or non-strongly rotating storm.280

Strongly rotating storms are associated with a higher probability magnitude and non-281

strongly rotating storms are associated with a lower probability magnitude. The large282

imbalance between the majority and minority classes was important to consider during283

evaluation of the CNN classification skill (Table 3). Therefore, the performance diagram284

and metrics that are more useful for evaluating correct forecasts of rare events were used285

for evaluation (Roebber, 2009). The minority class in this case consists of strongly ro-286

tating storms, which are rare events that comprise approximately 3% of all storms in the287

convection-permitting model simulations. Performance diagrams summarize the prob-288

ability of detection (POD; ratio of hits to the total of hits and false alarms), critical suc-289

cess index (CSI; ratio of hits to the total of hits, false alarms, and misses), and bias (ra-290

tio of false alarms to misses). Success ratio (SR) is also summarized, which is 1−false291

alarm ratio (FAR; ratio of false alarms to the total of hits and false alarms). The curves292

shown on the performance diagrams were created by varying the probability threshold293

between 0 and 1 to convert probabilistic forecasts into binary forecasts and show how294

skill changes based on the probability threshold used (Fig. 3a,c,e).295

The performance diagrams (Fig. 3a,c,e) show that despite being trained with storm296

patches extracted from the current climate model simulation, CNN skill remains con-297

sistent and high (0.71 max CSI) when classifying storms of the future climate model sim-298

ulation (Fig. 3c). These results suggest that a CNN is capable of learning spatial rep-299

resentations and variable relationships that are transferable to a warmer and more moist300

climate. Figure 4a shows that correctly classified storms of the future climate contained301

approximately 4 g kg−1 more low-level moisture (1 km) than correctly classified storms302

of the current climate. The consistency in CNN skill could be partly related to bulk wind303
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Table 2. Median of storm variables extracted from the current and future climate simula-

tions. Environments surrounding the storms were omitted for these statistics. Future storms with

higher low-level moisture content than most cases in the future climate (i.e., outlier cases with

≥99th percentile of 1 km water vapor mixing ratio in the future climate), are also shown. Statis-

tically significant values of the future climate and future outliers are indicated in boldface and

computed using confidence intervals of 2.5th and 97.5th percentile of a 1,000-member bootstrap

from a total sample of 454,242 storm objects extracted from the current climate simulation.

Current Climate 1-km 3-km 5-km 7-km

Temperature (K) 283.7 272.7 261.0 247.4
v-winds (m s−1) 5.3 7.8 9.7 11.2
u-winds (m s−1) 3.1 9.9 14.1 17.2
Water vapor mixing ratio (g kg−1) 7.6 4.8 2.1 0.7
Pressure (hPa) 868.7 679.9 526.4 402.3

Future Climate 1-km 3-km 5-km 7-km

Temperature (K) 286.2 275.6 264.6 251.9
v-winds (m s−1) 5.1 7.4 9.5 11.3
u-winds (m s−1) 2.8 10.0 14.4 17.8
Water vapor mixing ratio (g kg−1) 8.9 5.7 2.8 1.0
Pressure (hPa) 869.0 681.7 529.5 406.3

Future Outliers 1-km 3-km 5-km 7-km

Temperature (K) 295.7 284.7 272.5 260.5
v-winds (m s−1) 4.8 4.0 3.8 4.2
u-winds (m s−1) 2.6 7.0 9.8 12.0
Water vapor mixing ratio (g kg−1) 17.2 8.0 3.5 1.4
Pressure (hPa) 889.2 704.1 551.5 427.0

Table 3. Table contains various skill metrics used for evaluation of CNN performance during

the current and future climate. Also shown are the total number of true positive (i.e., hits), false

positive (i.e., false alarms), false negative (i.e., misses), and true negative predictions made by the

CNN. Future storms that have higher low-level moisture content than most cases in the future

climate (i.e., outlier cases with ≥99th percentile of 1 km water vapor mixing ratio in the future

climate), are also shown. Metrics were computed using a 0.5 forecast probability threshold.

Climate Current Future Outlier

True positives 9,089 9,654 569
False positives 1,633 1,149 114
False negatives 2,250 3,284 66
True negatives 441,270 442,380 3,818

AUC 0.90 0.87 0.93
CSI 0.70 0.69 0.76
Hit Rate 0.80 0.75 0.90
Bias 0.95 0.84 1.08

BSS 0.74 0.72 0.76
Resolution 0.02 0.02 0.09
Uncertainty 0.02 0.03 0.12
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Figure 3. Performance diagrams (a,c,e) show curves that represent CNN skill as a function

of the probability of detection (POD) and success ratio (1-FAR [false alarm ratio]) across various

probability thresholds. The grayscale filled contours show the critical success index (CSI), the

dashed lines display the bias, and circles along the curves display probability thresholds (a,c,e).

Attributes diagrams are also displayed, which show forecast probabilities against observed rela-

tive frequency, using a forecast probability bin size of 0.05 (b,d) and 0.1 (f). Inset panels in the

top left show the frequency of forecast probabilities and the grey-shading shows regions where

resolution exceeds reliability (b,d,f). 95th percentile confidence intervals (two-tailed) computed

from a 1,000-member bootstrap shown with shading (a-f).–10–
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shear (1-5 km) distributions that remained relatively stationary between both climate304

model simulations (Fig. 4a). Despite the imbalance between the majority and minor-305

ity classes, the CNN was able to perform the classification task skillfully, suggesting that306

techniques to augment minority classes may not always be necessary (e.g., Chawla et al.,307

2002). However, model bias exhibits some sensitivity to the forecast threshold used. Max308

CSI and lower bias were achieved when using a probability threshold of approximately309

0.35 in the future climate and 0.5 in the current climate. A probability threshold of 0.5310

results in an under forecasting bias (<1) of strongly rotating storms of the future (Fig.311

3c; Table 3), which shows that the CNN generally has lower confidence in classifying strongly312

rotating storms of the warmer and more moist climate.313

Performance metrics were also computed for future storms that were characterized314

by higher low-level moisture content than most cases in the future climate in order to315

further quantify the out-of-sample robustness of the CNN (Table 2). These future storms316

were classified as “outlier cases” and were selected as storms containing 1 km water va-317

por mixing ratio exceeding the 99th-percentile of storms from the future climate (Fig.318

3e). The focus of outlier cases lies on 1 km water vapor mixing ratio because increased319

low-level moisture and thermodynamic buoyancy can result in more intense vertical winds320

related to stronger storm updrafts. Results show that CNN classification skill with out-321

lier storms of the future climate remains high (Fig. 3e) and comparable to the current322

and future climate subsets (Fig. 3a,c). These results further substantiate that a CNN323

can exhibit out-of-sample robustness in climate applications. Results also suggest that324

deep learning can sufficiently generalize relationships among input variables and remain325

skillful with extreme events. However, some over forecasting of strongly rotating out-326

lier storms was identified (bias ≥1) with a probability threshold of 0.5 (Fig. 3e; Table327

3), which implies overconfidence in classifying storms with extreme low-level moisture.328

The Brier skill score (BSS) was used as an additional evaluation metric and can329

be visualized with the attributes diagram (Fig. 3b,d,f), which show forecast probabil-330

ities against observed relative frequencies (Hsu & Murphy, 1986; Wilks, 2011). An at-331

tributes diagram provides a measure of forecast reliability (e.g., a storm should be strongly332

rotating 60% of the time that a 60% forecast is issued), where the dashed 45 degree line333

represents perfect reliability (Wandishin et al., 2005). The solid horizontal line in fig-334

ure 3b,d,f shows the climatological probability of strongly rotating storms occurring within335

the respective climate sample, which is higher in outlier cases than in the current and336

future climates. Since attributes diagrams consider climatological and forecast proba-337

bility frequency, they also show how different forecasts are from climatology (i.e., res-338

olution). The gray shading in figure 3b,d,f show areas contributing to positive BSS, which339

are areas where BSS resolution exceeds reliability (Gagne II et al., 2019). Inset plots (Fig.340

3b,d,f) show the frequency of forecast probabilities for each climate subset, which in this341

case features a bi-modal distribution, with peaks at low (≤0.05) and high (≥0.95) fore-342

cast probabilities. This bimodal distribution is most pronounced for outlier cases (Fig.343

3f). The attributes diagram curves closely parallel the dashed 45 degree dashed diag-344

onal line across all forecast probabilities for both the current and future climates (Fig.345

3b,d), which conveys high forecast reliability. However, outlier cases have lower reliabil-346

ity between the 0.2-0.7 forecast probabilities and higher reliability at low (<0.2) and high347

(>0.7) forecast probabilities (Fig. 3f). These results corroborate the performance dia-348

gram results, which show that the CNN is overconfident in classifying strongly rotating349

outlier storms.350

3.2 CNN Interpretation351

Permutation feature importance (PFI) was conducted to determine the relative im-352

portance of input variables on CNN prediction skill. The area under the receiver oper-353

ating characteristic curve (AUC; Mason, 1982) was used, which is a scalar that repre-354

sents model performance encompassing the probability of detection and false detection.355
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Figure 4. Scatter plots showing water vapor mixing ratio (1 km AGL) against bulk wind

shear (1-5 km AGL) for storm objects of the current and future climate evaluated as (a) hits, (b)

false alarms, (c) misses, and (d) correct negatives. The dots represent individual storm objects

of the current (black) and future (red) climates, while the stars show the mean of the respective

climate storm objects. Bivariate density distributions are also shown with marginal plots created

using Gaussian kernels. Random subsets of storm objects are shown for easier visualization.
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Using AUC, PFI reveals that zonal (u) and meridional (v) winds at 3 km have the high-356

est relative importance for CNN prediction (Fig. 5a,d,g). PFI results are consistent for357

predictions generated using the current climate, future climate, and future outlier storms358

(Fig. 5a,d,g), which shows that mid-level kinematic fields play an important role in the359

proper classification of rotating convective storms. This result is physically reasonable360

given that UH (computed from 2 km to 5 km AGL) was used to create the storm labels361

that were subsequently used to train the CNN. The climatological homogeneity between362

current and future climate mid-level winds (Table 2) also likely contributed to the con-363

sistency in variable importance across climate subsets. Zonal and meridional winds at364

1 km and 5 km were also identified as important (Fig. 5a,d,g). Several thermodynamic365

variables also ranked in the top 50th percentile in importance, suggesting that the CNN366

also relies on characteristics of physical variables that were not included in the UH com-367

putation. These relatively higher ranking thermodynamic variables include, tempera-368

ture at 5 km and water vapor mixing ratio at 1 km and 7 km (Fig. 5a,d,g).369

Additional skill metrics were used for PFI in order to explore the sensitivity of the370

analysis to the respective evaluation method. PFI using CSI, which is a skill evaluation371

metric that neglects true negative events (as described earlier), further emphasizes the372

relative importance of mid-level kinematic fields (Fig. 5b,e,h). BSS was also used for PFI373

(Fig. 5c,f,i) and results generally align with AUC and CSI results in regards to the rel-374

ative importance of mid-level kinematic fields. Interestingly however, moisture at 5 km375

ranked most important when evaluating the CNN classification skill for future outlier376

(Fig. 5h,i) and current climate (Fig. 5c) storms and ranked 4th for future climate storms377

(Fig. 5f). This result suggests that mid-level moisture is an important variable for cor-378

rect classification of strongly rotating storms, given the lower ranking found using AUC,379

which also takes into account correct classification of non-strongly rotating storms. In380

the case of future outliers, the consistent relative importance of water vapor mixing ra-381

tio at 5 km and 7 km across skill metrics, particularly for BSS (Fig. 5g,h,i), is surpris-382

ing because its future values are substantially above those of the current climate train-383

ing period (Fig. 6). Figure 6 shows that outlier storms contain 5 km water vapor mix-384

ing ratio that is on average 4 g kg−1 greater than current climate storms for hits, false385

alarms, misses, and correct negative cases. This result suggests that the spatial arrange-386

ment of meteorological fields likely also plays an important role in CNN prediction skill.387

PFI offers insight into the relative importance of variables based on modulations388

to the CNN prediction skill, but the method does not provide reasons for the rankings.389

For instance, it is not immediately clear why water vapor mixing ratio at 5 km has greater390

relative importance than at 1 km. To explore the reasons for PFI rankings, visualiza-391

tions were created of storms that were initially correctly classified as strongly rotating392

but incorrectly switched to a non-strongly rotating classification as a result of the per-393

muted variable (Fig. 7). Figure 7c shows an example strongly rotating storm. Its asso-394

ciated water vapor mixing ratio at 5 km (Fig. 7a) was permuted to a field that had a395

greater overall magnitude of moisture (Fig. 7b) and peak moisture values that were off-396

set from the storm locations (Fig. 7c), which resulted in the incorrect non-strongly ro-397

tating classification. Various other storms also had a similar pattern; higher overall mois-398

ture content and shifted peak value locations in the permuted field resulted in incorrect399

non-strongly rotating classifications (not shown). Supercells generally form in environ-400

ments characterized by moist low-levels and drier mid-to-upper levels, while stratiform401

precipitation or less organized convection could be characterized by higher and more ho-402

mogeneous moisture profiles (Bunkers et al., 2006; R. L. Thompson et al., 2012). These403

examples show that moisture characteristics of vertical atmospheric profiles are likely404

a learned feature by the CNN. In regards to the high importance of zonal and merid-405

ional winds, storms that were incorrectly classified as non-strongly rotating during PFI406

were due to the uniformity of zonal or meridional winds in the permuted fields (Fig. 7e,h),407

as opposed to the overall magnitude of the horizontal winds. These results show that408
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Figure 5. Permutation feature importance (PFI) analysis for the current climate (a,b,c),

future climate (d,e,f), and future outlier (g,h,i) storms shown using box and whisker plots. The

median of 500 permutations is represented by the vertical line within the box and the whiskers

represent all 500 measured changes in skill. PFI was conducted using various skill metrics, in-

cluding area under the receiver operating characteristic curve (AUC; a,d,g), critical success index

(CSI; b,e,h), and Brier skill score (BSS; c,f,i). Changes in skill were normalized by the maximum

change in the respective climate subset and skill metric.
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Figure 6. Same as 4, but for outlier storms and water vapor mixing ratio at 5 km AGL.
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the CNN learned that wind directional shifts over a small region located near the storm409

core were indicative of strong rotation.410

Visualizations were also created for storms that were initially correctly classified411

as non-strongly rotating, but incorrectly switched to a strongly rotating classification dur-412

ing PFI (Fig. 8). The permuted moisture field was drier and contained large magnitude413

gradients in space that represented isolated and intense convection (Fig. 8b). Regard-414

ing kinematic fields, the original zonal (Fig. 8d) and meridional (Fig. 8g) winds lacked415

rotational characteristics for the respective storms (Fig. 8f,i). However, the permuted416

fields contained strong rotational features (Fig. 8e,h) which likely resulted in the changed417

classification.418

Individual storms from the future climate model simulation were chosen to visu-419

alize areas of saliency for predictions made by the CNN. Simulated radar reflectivity of420

the respective examples are shown in figure 9, which contains a true positive, false pos-421

itive, false negative, and true negative case. High values of simulated radar reflectivity422

(>65) are evident near the storm core of the true positive case (Fig. 9a), which repre-423

sents a region of high precipitation intensity. The false positive and false negative ex-424

amples also contain storms with high reflectivity (>65; Fig. 9b,c), but the most intense425

region for the false negative case is located near the southern edge of the image. The true426

negative case (Fig. 9d) contains convection that is smaller in size, less organized, and427

of lower maximum reflectivity magnitude than the other examples (<65), which possi-428

bly contributed to the true negative classification by the CNN.429

Saliency maps highlight the storm patch areas of input features that contributed430

to the CNN prediction. For water vapor mixing ratio (right two columns in Fig. 10), pos-431

itive gradients demarcate the respective pixels that contributed positively to the model432

prediction. Moisture at low and mid level heights for the true positive case located near433

the storm core contributed positively to the prediction of strongly rotating storms (Fig.434

10c,d). While high moisture content may not be related to storm rotation and horizon-435

tal kinematics, it does show that the CNN identified the storm core (region of high pre-436

cipitation intensity, and thus moisture content) as relevant for the strongly rotating pre-437

diction. Non-salient regions of respective variables are zero gradients and therefore cor-438

respond to pixels that did not contribute to the model prediction. In the case of zonal439

and meridional winds (left two columns in Fig. 10), input feature values represent both440

the magnitude and direction of wind flow. For example, positive zonal wind values are441

winds pointing from west to east and negative values are winds pointing from east to west.442

Both directions are indicative of storm rotation if in close proximity to each other. Plots443

a and b in figure 10 show positive and negative gradients in close proximity to each other444

and at the storm core location, representative of counter-clockwise rotation. This rota-445

tion signature contributed to the strongly rotating prediction. Similar gradient patterns446

are present in the maps of the false positive and false negative examples at storm core447

locations (Fig. 10e-l). Saliency maps for true negative cases are substantially different448

(Fig. 10m-p)–gradients are no longer present across a small and focused region near the449

storm core, but rather across broad areas of the storm patch. Additionally, gradients from450

zonal and meridional winds generally no longer align to form an organized circulation451

(Fig. 10m,n).452

Results generated using saliency maps can be corroborated by visualizing the fre-453

quency of maximum UH for all storms. Figure 11a shows that the CNN is able to cor-454

rectly identify strongly rotating storms across a broad range of UH values that exceed455

75 m2s−2 and is therefore able to capture a variety of storm rotation intensities. Storms456

that were classified as strongly rotating, but evaluated as false alarms because the cor-457

responding UH did not exceed 75 m2s−2, are heavily skewed towards high UH values (mostly458

contained UH values that exceeded 40 m2s−2; Fig. 11b), which past studies have found459

to also be representative of supercellular convection (Trapp et al., 2011). Missed clas-460

sifications of strongly rotating storms generally do not consist of large UH magnitudes461
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Figure 7. Three example cases (c, f, i) that were incorrectly classified as non-strongly rotating

storms during the permutation feature importance (PFI) analysis. The CNN correctly classified

these future climate storms as strongly rotating prior to PFI. The top row shows the original

water vapor mixing ratio (qw) field (a) for a pair of strongly-rotating storms (c), and the qw field

that replaced the original during PFI (b). The center and bottom rows show fields for other ex-

ample storms, but for perturbed meridional (v) and zonal (u) winds respectively. Updraft helicity

exceeding 75 m2s−2 is indicated with black contours (c, f, i). Vectors show winds at 3 km corre-

sponding to the respective storm image (c, f, i). The qw fields were normalized by the maximum

value of both plots (a, b).
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Figure 8. Same as figure 7, but for a subset of storms that were incorrectly classified as

strongly rotating. The CNN correctly classified these storms as non-strongly rotating prior to

PFI. No black contours are included in the storm plots (c, f, i) because updraft helicity did not

exceed 75 m2s−2 for the shown examples.
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Figure 9. Simulated radar reflectivity for example storms extracted from the future climate

simulation, evaluated as a hit (a), false alarm (b), miss (c), and correct negative (d).
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Figure 10. Saliency maps for representative example future climate storms, including true

positive (a-d), false positive (e-h), false negative (i-l), and true negative (m-p) cases. Variables

shown include several denoted as important by the permutation feature importance analysis, such

3 km zonal (a,e,i,m) and meridional (b,f,j,n) winds, and water vapor mixing ratio (qw) at 5 km

(d,h,l,p). Mixing ratio (qw) at 1 km is also shown (c,g,k,o).
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Figure 11. Histograms show the frequency of maximum updraft helicity (UH) for future cli-

mate storms separated into four subsets: hits (a), false alarms (b), misses (c), and true negatives

(d). Frequency of true negatives (d) are x103 magnitude. For comparison, the frequencies of the

maximum UH for current climate storms are shown with blue lines and for future outlier storms

in the inset plots.

(<100 m2s−2), with most storms characterized by UH values close to 75 m2s−2 (Fig. 11c).462

Most true negative cases consist of UH values below 40 m2s−2, which is characteristic463

of less organized convective storms (Fig. 11d). These results further demonstrate that464

a CNN is able to generalize a target derived from a heuristic using learned features in465

the data that would be difficult to encode due to spatial complexity. There is sensitiv-466

ity, however, to the storm location within the storm patch, which can be visualized with467

2D histograms that contain the frequency of UH exceeding 75 m2s−2, typically located468

near the thunderstorm core (Fig. 12). Correctly classified storms contained regions of469

high rotation (UH>75 m2s−2) near the center of the storm patch (Fig. 12a,c), while missed470

classifications are located near the edges of the storm patch (Fig. 12b,d) for storms dur-471

ing both the current and future climate. This comparison shows that CNNs can strug-472

gle with correct classifications of features located near the edges of a spatial region of473

interest, resulting in missed events.474

4 Conclusions475

A CNN was trained to learn relationships and identify features among meteoro-476

logical state variables in order to classify convection types, with a focus on rotation within477

the updraft core of a thunderstorm. Strong rotation and associated storm morphology478

could result in a higher likelihood of convection producing severe hazards, such as tor-479

nadoes and large hail, which are a dangerous threat to the public. We hypothesized that480

due to climate change, a trained CNN may fail to classify and identify convection that481
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Figure 12. Spatial histograms show the frequency of updraft helicity (UH) exceeding 75

m2s−2 normalized by maximum frequency for storm objects classified as hits (a,c) and misses

(b,d) during the current (a,b) and future climates (c,d).
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lies outside of the climatological distribution of data used for training. Using a thermo-482

dynamically driven future climate model simulation, we show that a CNN can remain483

skillful in classifying rotating convective storms via learned representations of physical484

variables.485

The key results that provide answers to the questions posed in the introduction follow:486

1. A CNN trained using a current climate model simulation can skillfully classify out-487

of-sample (with regards to moisture content) storms in a thermodynamically driven488

future climate. This is likely partly due to the use of batch normalization and spa-489

tial dropout; an equivalent model trained without batch normalization and spa-490

tial dropout results in a more substantial under-forecasting bias (about 0.75) across491

climate subgroups.492

2. Kinematic fields and mid-level moisture were identified as important variables for493

skillful classification by the CNN. Spatially, wind rotation signatures with concur-494

rently overlaid sharp mid-level moisture gradients were also important.495

3. Incorrect storm classifications included cases that were near the storm patch edge496

or had a UH value that was near but on the opposite side of the predefined thresh-497

old.498

Key result 1 shows that a CNN is robust to out-of-sample cases during convection499

classification, which is a promising result given the changes already occurring to large-500

scale environments and moisture advection patterns associated with severe thunderstorms501

(Gensini & Brooks, 2018; Molina & Allen, 2020). Key results 2 and 3 also show that a502

CNN can learn complex relationships among input features using labels derived from heuris-503

tics. Physical features were not prescribed but rather learned from the data, such as the504

importance of dry air at mid-levels for intense storm development when low-level mois-505

ture is present (i.e., convective available potential energy). Unlike computer vision clas-506

sification tasks (Russakovsky et al., 2015), humans can bypass generating a large num-507

ber of hand labeled data for training models to perform atmospheric feature classifica-508

tions, which would also pose challenges given conflicting definitions of atmospheric phe-509

nomena in the scientific literature. Additionally, results show that large imbalances in510

labeled data may be overcome with sufficient hyperparameter tuning. Overall, results511

show that the CNN can classify storms as strongly rotating that were near the UH thresh-512

old and appeared supercellular, learning to generalize prescribed UH labels.513

There are several limitations that are important to acknowledge, however. The fo-514

cus in this study lies on a future climate that was thermodynamically driven in order515

to isolate competing thermodynamic and kinematic signals, but it is possible that a CNN516

may not generalize well with a future climate that accounts for both changes in the ther-517

modynamic and large-scale dynamics. We do note that there is a 14% increase in future518

strongly rotating storms as compared to the current climate, which is a substantial in-519

crease and an indication that changes in large-scale dynamics may not pose a significant520

issue to the CNN. An additional limitation is that physical interpretation methods re-521

quire substantial human interpretation, making it possible to miss important features522

or fail to discover new physical relationships. However, this is a broader issue within ma-523

chine learning interpretability, as it introduces the potential for confirmation bias from524

human scientists attempting to explain results. Future work should explore incorporat-525

ing feature uncertainty or physics within the CNN model architecture to explore the dif-526

ferences to results contained herein. Additionally, methods to ameliorate missed clas-527

sifications near the edges of study domains should be explored. As societal exposure to528

severe hazards continues to increase (e.g., Ashley & Strader, 2016), it is important to529

continue better identifying and understanding severe hazards within climate model sim-530

ulations. The use of deep learning methods that do not impose rigid thresholds or ex-531

pert systems decisions should continue to be explored, since meteorological phenomena532
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generally do not neatly fit into predefined classes. Deep learning offers a viable avenue533

to continue to better understand weather and climate extremes.534
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