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Highlights

1. Change in climatic statistics has resulted in a change in streamflow statis-
tical structure

2. Landscape characteristics play an important but secondary role in chang-
ing streamflow statistical structure

3. Increase in winter temperature increases (decreases) the high frequency
component of streamflow in arid (humid) regions

Abstract:

A variety of watershed responses to climate change are expected due to
non-linear interactions between various hydrologic processes acting at dif-
ferent timescales that are modulated by watershed properties. Changes in
statistical structure (spectral properties) of streamflow in the USA due to
climate change were studied for water years 1980-2013. The Fractionally
differenced Autoregressive Integrated Moving Average (FARIMA) model was
fit to the deseasonalized streamflow time-series to model its statistical structure.
FARIMA allows the separation of streamflow into low frequency (slowly
varying) and high frequency (fast varying) components. Results show that in
snow dominated watersheds, the contribution of low frequency components
to total streamflow variance has decreased over the study period, and the
contribution of high frequency components has increased. The change in snow
dominated watersheds was primarily driven by changes in rainfall statistics and
changes in snow water equivalent but also by changes in seasonal temperature
statistics. Among rain-driven watersheds, the contribution of high frequency
components generally increased in arid regions but decreased in humid regions.
In both humid and arid rain-driven watersheds, increasing winter temperature
was responsible for the change in streamflow regimes. These results have
consequences for predictability of streamflow in the presence of climate change.
We expect that changes in the high frequency component will result in poorer
predictability of streamflow.

Keywords: Streamflow, Climate change, FARIMA, Spectral analysis, snow-
dominated watersheds, Rain-driven watersheds

1. Introduction
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The global hydrologic water balance will be impacted directly by climate change
(Milly et al., 2005; Milly & Dunne, 2016; Mote et al., 2018; Manabe & Broccoli,
2020) which will alter streamflows. The extent and nature of hydrologic change
depends upon several factors including watershed geomorphological character-
istics (Lee & Delluer, 1972; Rodriguez-Iturbe & Rinaldo, 1997, Chap. 7), vege-
tation characteristics and soil properties (Eagleson, 1978), the dominant mode
of streamflow production (snowmelt or rain, quick flow, baseflow etc.), changes
in vegetation characteristics (e.g., Milly, 1997), and the pre-existing climate
against which changes occur. Thus, a rich variety of watershed responses can
be expected due to the change in climate as summarized through climate statis-
tics (Gordon et al., 2022). The hydrologic responses of watersheds to climate
change need to be understood to devise an effective adaption strategy.

Because of strong feedbacks between various components of a hydrologic sys-
tems, climate change can potentially lead to profound changes in watershed
hydrologic regime. Hydrologic regime here refers to the interaction between dif-
ferent components of hydrologic process which produce hydrologic fluxes such as
streamflow and evapotranspiration (ET). An example is the feedback between
climate, soil, and vegetation properties (Rodriguez-Iturbe et al., 1999, 2001).
Soil stores some of the precipitation as soil moisture which is taken up by the
vegetation (Porporato et al., 2001). Climate has a strong control over soil mois-
ture dynamics via precipitation frequency and depth (Laio et al., 2001). Also,
the intensity of the climatic control on soil moisture dynamics is directly affected
by soil properties such as soil texture, soil depth, and water holding capacity.
Vegetation provides feedback to the atmospheric properties via transpiration
and, at long timescales, soil properties via plant residue decomposition in soils
(Eagleson, 1982). Thus, vegetation properties influence climate through the soil
zone. These feedbacks operate at different timescales. The feedback between
climate and soil moisture dynamics is fastest, followed by the feedback between
climate and vegetation (via soil moisture dynamics). The feedback between veg-
etation and soil properties is slowest. Therefore, effects of climate change are
expected to be observable at different timescales.

Streamflow is the integrated response of a watershed’s hydrology, which is af-
fected by inherent properties such as soil depth and texture, bedrock perme-
ability, and topography that influence hydrology. Thus, studying changes in
streamflow characteristics provides the clues to understanding the changes in
watershed hydrologic regime. Hydrologists have employed various mathemati-
cal models (simulation approaches) to understand the streamflow response of
a watershed at different timescales. These models can be broadly classified
as deterministic models (Beven, 2011), stochastic models (Klemes, 1978), and
statistical models (Montanari et al., 1997). The model that is used depends
upon the spatial scale (watershed scale, regional scale, global scale, etc.) and
timescale (daily, monthly, yearly, etc.) at which simulations/predictions are
required along with the purpose of simulations/predictions (policy making, sci-
entific hypothesis testing).

2



For most of the models used, some parameters of the model need to be calibrated
against observations. The values that these parameters take depends upon
climate statistics (mean annual precipitation depth, precipitation frequency,
seasonal mean temperatures etc.) and watershed properties. Temporal non-
stationarity introduced by climate change (Milly et al., 2008) makes the cal-
ibrated parameters dependent upon observation time-period. In fact, climate
change may directly affect the physical characteristics of a watershed via change
in vegetation characteristics (Milly, 1997). This introduces additional uncer-
tainty in model projections/predictions in the presence of climate change. For
example, Stephens et al. (2020) showed that changes in rainfall statistics along
with changes in atmospheric CO2 can change the soil moisture statistics. It
may take a few years for a calibrated hydrologic model to adjust to the new
equilibrium conditions. Other examples of climate change impacting watershed
hydrologic characteristics include changes in snowpack in the western USA (e.g.,
Belmecheri et al., 2016), and change in baseflow and stormflow (e.g., Ficklin et
al., 2016). In summary, the problem is that climate non-stationarities may make
a hydrologic model calibrated and validated against historical observations un-
reliable for prediction/simulation in changed conditions.

Some strategies have been proposed to address this problem. Klemes (1986) pro-
posed differential split-sample testing to test the robustness of a model under
change, but such strategies may not be useful in case of large changes, especially
if the change in a watershed is toward a drier hydrologic regime (Stephens et
al., 2020). Singh et al., (2011) proposed a space-time symmetry approach un-
der an uncertainty framework to estimate streamflows in a watershed in the
presence of regime change. The idea behind space-time symmetry is to use
available hydrologic information across different watersheds to predict future
streamflow in another watershed. The assumption is that the spatial variability
in hydro-climatological characteristics across watersheds is a good representa-
tion of the temporal variability that can be expected due to climate change.
The idea of space-time symmetry has been demonstrated to be useful at yearly
timescale using the Budyko framework (e.g., Sivapalan et al., 2011). Success
of machine learning (ML) methods in estimating streamflows at gauged and
ungauged locations at a daily timescale (Kratzert et al., 2018) suggests that
there is a considerable amount of hydrologic information shared between differ-
ent watersheds. However, there is limited evidence of successful application of
space-time symmetry at a daily timescale (see, Singh et al., 2011), especially
under a changing climate. Therefore, there is a need to further test this idea at
daily timescale. Such a testing procedure would require identifying watersheds
that have undergone hydrologic regime change. This is the main motivation for
this work.

In this study, change in the statistical structure of streamflow time-series was
studied. We assume that a significant change in a watershed’s hydrologic regime
will result in a significant change in the statistical structure of streamflow. Re-
cently, it has been shown that streamflow statistical structure is also indicative
of streamflow dynamics to some extent (Betterle, et al., 2019) which further
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justifies studying the changes in streamflow statistical structure to understand
the effect of climate change on hydrologic regime.

The statistical structure of streamflow time-series exhibits long-term persistence
(Hurst, 1951) meaning that autocorrelations in streamflow decrease very slowly
with time-lag. Studying the statistical structure of a stationary time-series is
equivalent to studying its spectral properties. Previous work has shown that
the power spectral density (PSD) of streamflow scales linearly on log-log graph
(Tessier et al., 1996), that is, ℎ(𝜔) ∝ 𝜔−𝛼ℎ , where ℎ(𝜔) denotes PSD at angular
frequency 𝜔[𝑇 −1] and 𝛼ℎ denotes the slope of the scaling relationship. Also, a
typical streamflow time-series exhibits two scaling regimes (two different values
of 𝛼ℎ) with scale break occurring between 1-20 days (Hirpa et al., 2010). Kim
et al., (2016) analyzed the changes in streamflow PSD to study the effects of
urbanization on hydrologic regime in South Korean watersheds. Specifically,
they studied the changes in the slopes of two scaling regimes and the change in
scale break point. Bras & Rodriguez-Iturbe (1993) and Chow et al. (1978) also
illustrated the usefulness of spectral analysis in streamflow time-series analysis.
Gudmundsson et al. (2011) studied the contribution of low frequency component
(greater than 1-year timescale) to total streamflow variance in several European
watersheds, but did not examine the change in the low frequency component
over time. A systematic analysis of hydrologic regime change over time driven
by climate change has not been reported to the best of authors’ knowledge.

The objectives of this study are as follows:

1. To conduct a spectral analysis of streamflow time-series in watersheds
across USA,

2. To identify temporal changes in those spectral signatures

3. To identify the spatial patterns of changes in streamflow regimes, and

4. To investigate the cause of streamflow regime change.

Other researchers have studied the changes in hydrologic regime due to climate
change, but their focus has been toward a few of the hydrologic processes or
fluxes such as baseflow, soil moisture, annual streamflow etc. Studying the
change in spectral properties of streamflow time-series across a large number of
watersheds can provide more holistic insight into changes in hydrologic regime.

2. Modeling Description

2.1 FARIMA model

The Fractionally differenced Auto-Regressive Integrated Moving Average
(FARIMA; Montanari et al., 1997) model was used to capture the statistical
properties of streamflow time-series. FARIMA is a statistical time-series model
which is known to capture streamflow structure very well (Montanari et al.,
1997 and 2000). The general form of the FARIMA model is

Φ𝑝(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = Ψ𝑞(𝐵)𝜖𝑡, (1)
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where 𝑋𝑡 denotes streamflow at time-step 𝑡, 𝐵 denotes the backward shift op-
erator such that 𝐵𝑋𝑡 = 𝑋𝑡−1, 𝑑 denotes a parameter of the model that takes a
value between 0 and 0.5 for streamflow time-series, and 𝜖𝑡 denotes uncorrelated
white-noise. Φ𝑝(𝐵) and Ψ𝑞(B) denote 𝑝th order autoregressive and 𝑞th order
moving average polynomials, respectively,

Φ𝑝(𝐵) = ∑𝑝
𝑖=0 𝜙𝑖𝐵𝑖, �0 = 1, (2)

Ψ𝑞(𝐵) = ∑𝑞
𝑖=0 𝜓𝑖𝐵𝑖, �0 = 1, (3)

where 𝜙𝑖 and 𝜓𝑖 are AR and MA parameters. Specifically, the terms AR1, AR2,
… are reserved to refer to parameters 𝜙1, 𝜙2,…, respectively. Similarly, the terms
MA1, MA2, … are reserved to refer to parameters 𝜓1, 𝜓2 ,…, respectively. When
𝑑 = 0, the FARIMA model degenerates to an ARMA model. When 𝑑 takes a
positive integer value, it becomes classic ARIMA model promoted by Box and
Jenkins (1970).

In the case of positive integer 𝑑 values, the operator (1 − 𝐵)𝑑 is the differencing
operator as can be seen by setting 𝑑 = 1: (1 − 𝐵)𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1. Also, in
this case, the process 𝑋𝑡 is non-stationary. The interpretation of the model for
the fractional 𝑑 value is not intuitive. But its effect can be understood via the
PSD of the process 𝑋𝑡. The PSD of the FARIMA model has the analytical form
(Granger and Joyeux, 1980):

ℎ(𝜔) = |1 − 𝑧|−2𝑑 | Ψ𝑞(𝑧)∣2

∣Φ𝑝(𝑧)∣2
𝜎2

𝜖
2𝜋 , 𝑧 = 𝑒−𝜄𝜔, (4)

where | ⋅ | denotes absolute value and 𝜄 =
√

−1. For very small values of 𝜔,
ℎ(𝜔) ∝ 𝜔−2𝑑. (5)

The PSD approaches ∞ as 𝜔 approaches 0. Also, Eq. (5) tells us that as 𝑑
increases, ℎ(𝜔) increases(Granger and Joyeux, 1980) . In the time-series do-
main, it means that an increase in the parameter 𝑑 results in an increase in the
amplitude of low-frequency (long timescales) fluctuations.

The effect of different parameters of the FARIMA model on time-series charac-
teristics has been illustrated in Figure 1 with some synthetic time series. In this
illustration, the number of AR (𝑝) and the number of MA parameters (𝑞) were
fixed to 1. The value of the MA parameter was fixed at 0.5; the values of AR pa-
rameter and 𝑑 were varied. Figure1a shows the time-series generated by setting
FARIMA parameters to different values at a daily timescale. Figure 1b and 1c
show the moving average of time-series shown in Figure 1a with moving window
lengths of 1 month and 1 year, respectively. When the value of 𝑑 is increased
from 0 to 0.25 keeping the AR1 parameter fixed, the two time-series show simi-
lar qualitative behavior at daily timescale (Figure 1a). But at the monthly and
yearly timescales, the amplitudes of fluctuations are larger when 𝑑 = 0.25. It
shows that the parameter 𝑑 affects the long timescale (low frequency) behavior
of the time-series. The short timescale (high frequency) behavior is unaffected
by the parameter 𝑑. When the AR1 parameter is increased from 0.25 to 0.75
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keeping the parameter 𝑑 fixed, the amplitude of fluctuations becomes larger at
all the timescales. Change in AR1 parameter has more profound impact on the
daily timescale fluctuations than the change in parameter 𝑑. At long timescales,
the change in parameter 𝑑 has more profound impact on time-series fluctuations
than the change in AR1 parameter has.

Area under the PSD of a stationary process is equal to the variance of the
process (Priestley, 1982). PSD divided by the variance is referred to as normal-
ized power spectral density (NPSD). Also, the NPSD of a stationary process
and its autocorrelation function form a Fourier transform pair (Priestley, 1982).
Therefore, analyzing the NPSD of a stationary process is equivalent to analyz-
ing its correlation structure. Also, NPSD provides a clean way of separating
the contribution of different frequency components to the correlation structure.
Therefore, in this study, the NPSD of the fitted FARIMA models was analyzed
to detect streamflow regime changes.

Figure 2 shows the NPSD for different values of FARIMA parameters on a
log-log graph. In all three cases, increasing the parameter value increases the
NPSD values at smaller frequencies, and decreases the NPSD values at higher
frequencies. However, the differences are more profound when the value of 𝑑 is
changed. Also, NPSD of only the extremely high frequency components (>0.3
cycles per day) decreases by increasing the MA1 parameter value.

Figure 1. (a) Time-series generated by FARIMA model for different value of
AR1 parameter and 𝑑 parameter at daily timescale; (b) 1-month and (c) 1-
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year moving average time-series of time-series shown in (a). Time-series was
generated for 10000 different timesteps. In subplots (a) and (b), first 200 and
1000 timesteps are shown, respectively, for the sake of clarity.

2.2 Parameter estimation of FARIMA models

Parameters of the FARIMA models were estimated using the same method as
that of Monatanari et al. (1997). Details of the parameter estimation method
have been provided in Supporting Information (SI). Briefly, a two-step procedure
was used to the estimate the parameters. In the first step, a preliminary estimate
of the parameter 𝑑 was obtained using two heuristic methods. The average of
the two values obtained using these methods was considered as a preliminary
estimate of 𝑑. Then the AR and MA model orders 𝑝opt and 𝑞opt were determined.
In the second step, a statistical procedure (see SI) was followed to estimate the
parameter 𝑑, AR parameters, and MA parameters. In this step, number of AR
parameters were fixed to 𝑝opt and 𝑞opt as obtained in the previous step.

Figure 2. Normalized power spectral density of FARIMA processes for dif-
ferent value of the parameters. The base model has the parameter values
𝑑 = 0.1, 𝜙1 = 0.1, �1 = 0.1. In the subplot (a), (b), and (c), the values
of parameter 𝑑, 𝜙1 and 𝜓1 are changed from their base values, respectively.

To validate the FARIMA models, the autocorrelations of the obtained resid-
ual time-series were analyzed. The results are shown in SI. For most of the
models, the autocorrelations at any lag were statistically indistinguishable from
zero. For a few models, however, the autocorrelation was greater than 0.15 at
a few time-steps. These models and corresponding watersheds were removed
from the subsequent analysis. The conditions imposed in this study is typically
appropriate for model validation (see Montanari et al., 1997). The residuals,
however, did not follow the Gaussian distribution for most of the models. But,
as pointed out by Montanari et al. (1997) (and the references therein), deviation
from Normality does not affect the parameter estimation of FARIMA models.

2.3 Measurement of change in power spectral density
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To analyze the changes in hydrologic regime, a moving window approach was
taken with the window length of 10 years and with moving step of 3 years
(Table. 1). Thus, the study period (1980-2013 water years) was broken up
into 9 overlapping windows of 10 years each. The FARIMA model was fit to
deseasonalized time-series for different moving average windows as illustrated
in Table 1. Thus, as many sets of FARIMA parameters were obtained as the
number of moving windows. Each set of parameters results in an NPSD (𝑓(𝜔)
vs. 𝜔) computed by Equation (4). To detect the changes in streamflow regime,
the trend in area under 𝑓(𝜔) for different ranges of 𝜔 was computed (Figure
3). The frequency range was split into five different regions (units in cycles per
day – c.p.d.): (1) less than 1/365 c.p.d. (greater than 1-year timescales), (2)
1/365 to 1/120 c.p.d. (4-months to 1-year timescales), (3) 1/120 to 1/30 c.p.d.
(1-month to 4-months timescales), (4) 1/30 to 1/15 c.p.d. (2-weeks to 1-month
timescales), and (5) greater than 1/15 c.p.d (less than 2-weeks timescale). For
the ease of discussion, two more frequency regions were used: 1/365 to 1/30
c.p.d. (1-month to 1-year timescales) and greater than 1/30 c.p.d. (less than
1-month timescales). The area under NPSD in a given frequency region (𝜔1, 𝜔2)
is

𝐹 (𝜔1, 𝜔2) = ∫𝜔2
𝜔1

𝑓(𝜔)𝑑𝜔, (6)

which is equal to the contribution of the components with frequency between
𝜔1 and 𝜔2 to the total variance. Since the area under NPSD is equal to 1, an
increase in the contribution of high frequency contribution implies a decrease in
low frequency components as is also illustrated in Figure 3.

Let 𝐹 𝑗
𝑖 (𝜔𝑖, 𝜔𝑖+1) be the area under 𝑓(𝜔) for 𝑖th frequency region and 𝑗th time-

window. The trend in 𝐹 𝑗
𝑖 (𝜔𝑖, 𝜔𝑖+1) across time periods can be estimated with

a linear fit: 𝐹 𝑗
𝑖 (𝜔𝑖, 𝜔𝑖+1) = 𝛾𝑗 + 𝑐, where 𝛾 is the trend, and 𝑐 is the intercept.

The sign of 𝛾 indicates whether the contribution of a frequency region to total
streamflow variance is increasing (positive 𝛾) or decreasing (negative 𝛾) over
time. The magnitude of 𝛾 indicates the extent of change: larger (smaller) mag-
nitude of 𝛾 implies larger (smaller) change. A trend was considered statistically
significant if the 𝑝 value of the slope 𝛾 was less than or equal to 0.05. We refer
to this test as first significance test.

Table 1. An example of moving windows used for analysis.

Window Number Time-period (years)
1 1980-1989
2 1983-1992
3 1986-1995
4 1989-1998
5 1992-2001
6 1995-2004
7 1998-2007
8 2001-2010
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Window Number Time-period (years)
9 2004-2013

Figure 3. Normalized power spectral density over 9 different time-windows (see
Table 1). The frequency range is divided into 5 different regions as labels at the
top of the plot.

In addition, statistical significance of each trend was computed by another
method. Using the posterior probability distribution of the FARIMA parame-
ters, the posterior probability distribution of NPSD was obtained. This, in turn,
was used to compute probability distribution over area under NPSD in each fre-
quency region across the time periods. Thus, for each frequency region, we had
probability distribution of 𝐹 𝑗

𝑖 (𝜔𝑖, 𝜔𝑖+1) for the first and last time-windows. Let
these probability distributions be denoted by 𝑃1(𝐹) and 𝑃2(𝐹) with respective
mean values 𝑚1 and 𝑚2. For the trend to be significant, we imposed the condi-
tion that 𝑚1 and 𝑚2 should belong to different statistical populations. Toward
this end, a probability 𝑝𝑠 was computed:

𝑝𝑠 = {
𝑃1(𝐹≥𝑚2)+𝑃2(𝐹≤𝑚1)

2 , &𝑚1 < 𝑚2;
𝑃1(𝐹≤𝑚2)+𝑃2(𝐹≥𝑚1)

2 , &𝑚1 ≥ 𝑚2. (7)

For the trend to be significant, 𝑝𝑠 should be less than 0.05. We refer to this test
as the second significance test. In summary, a trend was deemed statistically
significant only if it came out to be significant using both first and second
statistical significance tests. This means that the change in streamflow regime
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should be consistent in time and the streamflow regime in the first and last
time-windows should be significantly different.

We note that Gudmundsson et al. (2011) studied contribution of low frequency
components (greater than 1-year timescale) to total streamflow variance in sev-
eral European watersheds. They estimated this quantity by using the LOWESS
method directly instead of using spectral decomposition as discussed above.
They did compare their results with those obtained by using the spectral method
and concluded that both the methods yield similar estimates. But they only
studied the spatial variation of this quantity, not the change in time.

In what follows, area under NPSD in the frequency region greater than 1-year
timescale will be denoted by 𝐹0. Similarly, area under NPSD in the frequency re-
gion 4-months to 1-year timescales, 1-month to 4-months timescales, 2-weeks to
1-month timescales, less than 2-weeks timescales, 1-month to 1-year timescales,
and less than 1-month timescales will be denoted by 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, and 𝐹6,
respectively.

2.4 Methodology for finding causes of changes in statistical structure of stream-
flows

To understand the changes in statistical structure of streamflows, statistical
methods were used. First, the variables related to the change in 𝐹𝑖, 𝑖 = 0, 1, … 6
were identified. Second, possible mechanisms via which each variable might have
affected the 𝐹𝑖 values were hypothesized. To carry out this analysis watersheds
were divided into two groups: snow-dominated and rain-dominated watersheds.
The analysis was carried out separately for these two groups.

The variables explored include static catchment attributes including soil proper-
ties, geological properties, topography, and climate. Change in climatic statis-
tics were also explored as possible causes of change in 𝐹𝑖s. These include change
in precipitation related variables and change in temperature related variables.
For example, change in total annual precipitation depth, change in OND (Oct-
Nov-Dec) total precipitation depth, and change in mean annual temperature.
Change in climatic variables was computed using the same moving windows
as for the case of change in streamflow statistical structure (Table 1). Addi-
tionally, variables capturing snowmelt dynamics in snow-dominated watersheds
and rainfall-runoff dynamics in rain-dominated watersheds were also used. The
details of these variables are given in section 6 and 7 and in SI. A list of all the
variables used in this study is included in Table A1.

Among all the variables, important variables explaining the change in 𝐹𝑖 were
identified using the random forest algorithm (Brieman, 2002) and simple linear
regression. A variable was considered important using simple linear regression
if the regression coefficient was statistically significantly different from 0 at 5%
significance level. Two linear fits were made for each combination of Δ𝐹𝑖 and
predictor variable: (1) using all the watersheds, and (2) using only the watershed
for which Δ𝐹𝑖 was significant according to both first and second significance test.
All the variables for which the slope of either of the two linear fits was significant
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at the 5% significance level were considered important. Random forest has the
advantage that it can identify non-linear correlations between two variables.
However, we found that both the random forest and linear regression yielded
the same variables as important.

Though linear regression yields the important predictor variables it can be mis-
leading because of large scatter in the relationship between Δ𝐹𝑖 and other vari-
ables. Essentially, the linear fit may have a statistically significant slope, but it
is possible that not all the watersheds satisfy the relationship suggested by the
line. Therefore, probability densities of important variables conditioned upon
the event that Δ𝐹𝑖 was positive or negative were plotted to understand the effect
of a variable on Δ𝐹𝑖. This procedure is similar to computing mutual information
between Δ𝐹𝑖 and a variable, but more transparent as shown in section 7.

3. Study area and data

To achieve the objectives of this study, Catchments Attributes and Meteorol-
ogy for Large Sample studies (CAMELS) dataset (Addor et al., 2017a and
2017b) was used. The CAMELS dataset was chosen because it contains hydro-
meteorological dataset for a large number of watersheds (671) across the con-
tiguous USA. Also, the CAMELS watersheds are unregulated and free of anthro-
pogenic land-use changes. The time-period of the data is water years 1980-2013.
In this study, we included watersheds that had at least 30 years of complete
data; there were a total of 614 such watersheds.

Exploratory analysis shows that significant warming has occurred in CAMELS
watersheds across USA. Figure 4 shows the trends in several climatic variables
over the study period. These trends were computed as slope of the linear fit
on the plot of climatic variable vs. year. A trend was considered statistically
significant if the 𝑝 value of the slope was less than 0.05. Mean minimum daily
temperature has increased (positive trend) for most of the watersheds with
largest increases across the western US. There exist a few watersheds where the
mean minimum daily temperature has decreased (though the trend is statisti-
cally insignificant in most of these watersheds). The majority of these cooling
watersheds lie in the Great Plains region and Florida (a reference to different
hydro-climatological regions is given in Appendix). There exists considerable
variation in the trend of mean maximum daily temperatures. Snow-dominated
watersheds located in the Rocky Mountains and High Plains have experienced
a large increase in mean maximum daily temperatures. Several rain-dominated
watersheds located in the Pacific Northwest and Pacific Coast have experienced
a decreasing trend in mean maximum daily temperatures. Many of the water-
sheds located in the eastern USA experienced a negative trend in mean maxi-
mum daily temperatures (though statistically insignificant), especially those in
the Great Plains. Further, Figures 4c and 4d show trend in OND (Oct-Nov-Dec)
and AMJ (April-May-Jun) maximum daily temperature. Maximum daily tem-
peratures in OND months increased across USA with large increases in the arid
Great Plains, High Plains, Mississippi Valley, humid Atlantic Coast, and Great
Lakes region. The OND maximum daily temperature trends are moderate in
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the Gulf and Pacific Coast, and the Pacific Northwestern watersheds. Maxi-
mum daily temperature in AMJ months has decreased across USA except in
western Gulf Coast. Most significant decreases were noted in the Pacific North-
west, Pacific Coast, and Atlantic Coast. As will be discussed below, changes in
OND and AMJ maximum temperatures have significant control over changes in
streamflow regime.

Figures 4e-4h shows changes in rainfall statistics. There is a strong north-south
gradient in the trend in number of rain days: In northern (southern) watersheds,
number of rain days have increased (decreased). The trend in number of storms
has a weak north-south gradient. In many regions, the number of rainstorms has
decreased but number of rain days have increased. This implies that more rain is
falling in fewer storms of longer duration in these regions. These regions include
the Pacific Northwest and north-eastern part of Atlantic Coast. In the north-
eastern part of Atlantic coast, total rainfall depth and mean storm depth has
increased. The trend in total rainfall depth has a strong north-south gradient,
especially in eastern USA: total rainfall increased in northern watersheds and
decreased in southern watersheds. Mean storm depth  ‑ the average rainfall depth
on rainy days - has more spatial variability compared to the other three rainfall
statistics. The only clear patterns are that mean storm depth has increased in
the Atlantic Coast region and decreased in the High Plains region.

In summary, Figure 4 convincingly shows that both temperature and rainfall
statistics have changed across the USA. Since temperature and precipitation
have strong control over hydrologic regime, at least some of the CAMELS water-
sheds are likely to have undergone a hydrologic regime change. Increase in atmo-
spheric CO2 can also result in changes in vegetation characteristics such as water
use efficiency (Donohue et al., 2013) which, in turn, may affect the hydrologic
regime. Significant increases in temperatures along with the fact that global
average CO2 has increased over the period 1980 to 2014 (from 338.91 ppm in
1980 to 397.34 ppm in 2014; Dlugokencky and Tans, gml.noaa.gov/ccgg/trends/,
accessed on 17 Mar 2022) indicates significant change in climate has occurred
between this period beyond the natural climate variability.
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Figure 4. Trends in climatic variables (a) daily minimum temperature, (b) daily
maximum temperature, (c) and (d) OND and AMJ daily maximum tempera-
tures, respectively, (e) number of rain days (in days decade-1), (f) number of
storms (in decade -1), (g) total rainfall depth (in mm decade -1), and (h) mean
storm depth (in mm day-1 decade-1). The units of all the temperature statistics
are ∘𝐶 decade -1. The red colored symbols indicate positive trend and blue
colored symbols indicate negative trend. The ‘+’ sign indicates that trend is
statistically significant at 5% level. One time-window refers to 10 years period
as indicated in Table 1.

4. Spatial distribution of streamflow regime in USA as measured by
NPSD

Figure 5 (a, b, c, d) shows the contribution of different frequency regions to
streamflow variance in CAMELS watersheds during the first time-window (1980-
1989 water years). Contribution of greater than 1-year timescales components
to total streamflow (𝐹0) was less than 10% in most of the rain dominated wa-
tersheds of eastern USA and Pacific Northwest (Figure 5c). Conversely, large
contributions from this frequency region were found in snow dominated water-
sheds in the Rocky Mountains region, the High Plains, the Sierra Mountains in
California, and the Pacific Coast.

The contribution of 1-month to 1-year timescale component (𝐹5; Figure 5b) is
very small in the Great Plains and the Mississippi Valley compared to that in
other regions. The highest value of F5 (>50%) was found in snow dominated
watersheds of the Rocky Mountains and High Plains. In the Pacific Northwest
and the Atlantic Coastal region, 𝐹5 values range from 25 to 50%. The values of
𝐹5 follow the broadscale pattern of baseflow index (BFI; see Figure 4 in Addor et
al., 2017). The BFI values are below 0.5 in Great Plains and Mississippi Valley,
greater than 0.6 in Rocky Mountains and High Plains, and between 0.40 and
0.60 in Pacific Northwest and Atlantic Coastal region. Moreover, the scatter
plot (not shown) of the BFI and 𝐹5 shows that as the BFI increases from 0 to
0.4, the contribution of this frequency region also increases. Beyond, a BFI value
of 0.4, however, there exist a few watersheds where 𝐹5 values are low. Overall,
the contribution of baseflow to total streamflow appears to be an important
factor determining the values of 𝐹5. Interflow might also be responsible for the
contribution of 1-month to 1-year frequency region.

The contribution of less than 1-month timescales component, 𝐹6, Figure (5a) to
total streamflow variance is small (<25%) in cold snow dominated watersheds
of the western USA. In the Pacific Northwest and Pacific Coast, 𝐹6 values are
between 25% and 75%, but mostly greater than 50%. In most of the eastern
USA watersheds, the contribution of this frequency component is greater than
50%. In the Great Plains and the Mississippi valley, the contribution of this
component is greater than 75% in many watersheds. These are dry watersheds
where most of the rainwater evaporates back to the atmosphere, and only the
intense storms reach the river network. Therefore, the contribution of low (high)
frequency components is very low (high) in these watersheds. Since the contribu-
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tions of low and high frequency components are one-to-one related (an increase
in one implies a decrease in other), BFI explains some of the spatial variation
in 𝐹6: lower BFI means higher 𝐹6. It is noteworthy that in snow dominated
watersheds with the fraction of snow > 0.40 (fraction of precipitation falling as
snow), the value of 𝐹6 increases with an increase in mean rainfall.

In rain driven watersheds, a linear relationship (slope = −0.054, p-value =
0.0045, 𝑅2 = 0.033) between the slope of the flow duration curve (FDC; Addor
et al., 2017) and 𝐹6 was found. Smaller slopes of FDC imply smaller variability
in streamflow. Thus, the negative correlation between FDC slope and contribu-
tion of high frequency region indicates that watersheds with less variability in
streamflow values exhibit more contributions from high frequency components.
For example, in ephemeral streams, streamflow variability is low as it stays dry
during most of the water year; therefore, the low (high) frequency component
is very small (large).

The contribution of 2-weeks to 1-month timescale component to total streamflow
variance (𝐹3) is very small for most of the watersheds. But there exist a cluster
of watersheds in the Pacific Northwest where 𝐹3 values are greater than 20%.
In fact, in most of the Pacific Northwestern watersheds, 𝐹3 values are greater
than 15%. The 𝐹3 values are also greater than 15% in several eastern snow
dominated watersheds.

It was observed that 𝐹3 was positively correlated with mean precipitation (𝑅2 =
0.206, p-value = 1.70 × 10−28), negatively correlated with potential evapotran-
spiration (PET; 𝑅2 = 0.115, p-value = 1.62 × 10−15). This indicates that 𝐹3
values are high in watersheds with high total precipitation and low ET, i.e.,
𝐹3 values are high in humid watersheds. Further, 𝐹3 was negatively correlated
with low rainfall frequency (𝑅2 = 0.157, p-value = 6.15 × 10−21) and negatively
correlated with high rainfall frequency (𝑅2 = 0.093, p-value = 1.25 × 10−12).
It indicates that watersheds where rainfall event characteristics are such that it
allows the water to stay in the soils for a long time compared to the timescale of
quick flow and percolation, the 𝐹3 values are high. These results indicate that
interflow may be responsible for creating 2-weeks to 1-month timescales com-
ponent. Wu et al., (2021) showed that lateral preferential flows are important
streamflow generation mechanism in Pacific Northwestern watersheds.

Figure 5e shows the spatial variation of the parameter 𝑑 in CAMELS watersheds.
There is a large spatial variation in the values of 𝑑, but some general patterns
can be observed. Very high value of 𝑑 (>0.30) are typically observed in western
snow-dominated watersheds where contribution of low frequency components
was significant. In most of the eastern rain-driven watersheds, the 𝑑 values were
less than 0.30. There was strong linear relationship between BFI and 𝑑 value
(slope = 0.22, 𝑝 ≈ 10−31, 𝑅2 = 0.23). Also, the linear relationship was stronger
when BFI increased from 0 to 0.25 - at very low value of BFI the 𝑑 value was close
to 0. This indicates that the baseflow is the essential factor for the existence
of long-persistence in streamflow time-series. Many of the watersheds in the
Pacific Northwest, Great Plains, Great Lakes and Atlantic Coast region had
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𝑑 values less than 0.10, despite having moderately high values of BFI (>0.40)
except in the Great Plains. The reason for such small value of 𝑑 is not clear and
further exploration is out of the scope of this paper.

The long-term persistence (high d value) in a time-series may result from ag-
gregation of short-memory processes (Granger, 1980). Muldesee (2007) argued
that long-term persistence in streamflow time-series may also be a result of ag-
gregation of several short-memory processes in a watershed. They showed that
the value of 𝑑 increases with increasing drainage area as one moves downstream
in a river network. Therefore, it is reasonable to expect that watersheds with
large drainage areas may show higher 𝑑 value in their corresponding streamflow
time-series. Such a relation between drainage area and 𝑑, however, was not
observed in this study.

It can be concluded that long-time scale fluctuations and long-term persistence
even in a deseasonalized streamflow time-series are determined by low frequency
processes such contribution of baseflow, fraction of snow, and possibly interflow.
High frequency components are determined by quick flow, interflow, and ET.
Also note that other researchers have reported higher contribution of low fre-
quency component to streamflow (e.g., Gudmundsson et al., 2011) compared
to those reported in this study. This is due to the seasonal component of the
hydrologic cycle. In this study, the seasonal component had been removed from
the streamflow time-series; therefore, 𝐹0 values came out to be smaller.
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Figure 5. (a), (b), (c) Area under NPSD in different frequency regions, and (d)
value of the parameters 𝑑 across USA. These results correspond to first 10-year
moving window.

5. Change in streamflow regime as measured by change in NPSD

Figure 6 shows the spatial distribution of trends in 𝐹(𝜔𝑖, 𝜔𝑖+1) for short
timescales: Less than 1-month (𝐹6), 2-weeks to 1-month timescales (𝐹3), and
less than 2-weeks (𝐹4). Overall, the spatial distribution of trends is patchy.
But a spatial structure, albeit weak, is still visible such that watersheds with
positive (negative) changes tend to be clustered together in small groups. This
is especially true for the watersheds located in the Pacific Northwest, Gulf coast,
Atlantic coast, and Great Lakes Region. It indicates that the process that has
caused these changes is spatially correlated: change in climate seems to be one
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of the causes. But climate change alone cannot explain these changes since the
correlation length of these trends is significantly smaller than the correlation
length of trends in climatic variables such as temperature and rainfall (Figure
4). Further, it implies that the effect of climate change on streamflow regime
is strongly modulated by watershed characteristics such as soil properties, and
geomorphological characteristics. This will be explored in subsequent sections.

Figure 6. Trend in area under NPSD for high frequency regions (a) less than
1-month timescale, (b) less than 2-weaks timescale, and (c) 2-weeks to 1-month
timescale. The watersheds with transparent symbols indicate that the trend is
statistically insignificant according to the first significance test. Larger (smaller)
sized circles represent larger (smaller) magnitude of change.

Most of the snow dominated watersheds in eastern USA (located in the northern
Atlantic Coastal region and Michigan) exhibited positive trends in 𝐹6 and 𝐹4. In
western snow dominated watersheds, both negative and positive trends in 𝐹6 and
𝐹4 were observed but most of the statistically significant trends were positive.
Watersheds with negative trends were mostly in the eastern Rocky Mountains.
The trends in 𝐹3 were positive in most of the Rocky Mountain watersheds
and negative in the eastern snow dominated watersheds, but the magnitude of
trend was very small compared to that in 𝐹4. Overall, it can be concluded
that in majority of the snow-dominated watersheds the contribution of high
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frequency components to total variance has increased over the study period,
with the exception of eastern Rocky Mountains. Several different mechanisms
are plausible that could affect this change: (1) Increase in runoff-producing
rainfall events, (2) change in temperature snow relationship (Horner et al., 2020),
(3) change in snow storage (including spatial distribution), and (4) change in
temperature regime. It is likely that the combination of these mechanisms rather
than one individual mechanism is responsible for the changes.

In rain driven watersheds, other than spatial clustering of positive trends with
positive trends and that of negative trends with negative trends, a few other pat-
terns are visible. Most of the humid watersheds located in the Pacific Northwest
region the Gulf Coast region showed a negative trend in 𝐹6. But the trend in
𝐹4 was positive in many of the watersheds in the Pacific Northwest, while in the
Gulf Coast the trend in 𝐹4 was also negative. Overall, it appears that humid wa-
tersheds are becoming drier which is possible due to change in rainfall statistics
in these watersheds. Another possibility is that change in evapotranspiration
statistics in these watersheds is caused by change in temperature which, in turn,
will change the soil moisture dynamics. A decrease in mean soil moisture in
humid watersheds will result in a decrease in the contribution of high frequency
components to streamflow. This will be discussed in subsequent sections. In the
Great Plains, both increasing and decreasing trends in 𝐹4 and 𝐹6 were observed.

The trend in 𝐹3 showed two clear patterns: (1) Most of the statistically signifi-
cant trends were negative in the watersheds in the Pacific and Atlantic coastal
regions, and (2) Most of the statistically significant trends in the Rocky Moun-
tains, Great Plains, Mississippi Valley, and Gulf Coast were positive. The trends
in 𝐹3 were of small magnitude compared to those in 𝐹4 and 𝐹5. This is because
the contribution of 𝐹3 (one month to one-year time scales) is very small in most
of the watersheds to begin with. A remarkable result is that the 𝐹3 values have
decreased in almost all the Pacific region watersheds.

Figure 7 shows the spatial distribution of trends in long timescales fluctuations:
Greater than 1-year (𝐹0), 4-months to 1-year (𝐹1), and 1-month to 4-months
(𝐹2) timescales. Similar to short-timescale trends, a weak spatial clustering of
positive trends with positive trends and negative trends with negative trends is
observed for long timescale trends. The magnitude of trends in 𝐹0 is larger in
the watersheds located in Western USA. In most of the western snow-dominated
watersheds, the value of 𝐹0 decreased, and the magnitude of decrease is rela-
tively large. But the trend was statistically significant only in three watersheds,
which might be due to the small magnitude of 𝐹0 value. There is some spa-
tial variability in the 𝐹0 in eastern USA snow-dominated watersheds. This is
explained by the fact that in eastern snow dominated watersheds, the contribu-
tion of components at greater than 1-year timescales is smaller.
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Figure 7. Trend in area under NPSD for low frequency regions (a) greater than
1-year timescale, (b) 4-months to 1-year timescale, and (c) less than 4-months
timescale. The watersheds with transparent symbols indicate that the trend is
statistically insignificant according to the first significance test. Larger (smaller)
sized circles represent larger (smaller) magnitude of change.

The values of 𝐹1 and 𝐹2 decreased in most of the eastern snow-dominated wa-
tersheds. The value of 𝐹1 increased in all the snow dominated watersheds in
the eastern Rocky Mountains while it decreased in many of the western Rocky
Mountains. The reason for difference in trends of eastern and western snow
dominated watersheds is discussed below.

Most of the rain-dominated watersheds in the Pacific Northwest exhibited pos-
itive trends in 𝐹0 and 𝐹1, and negative trends in 𝐹2. Similarly, most of the
watersheds in the Pacific Coast exhibited negative trends in 𝐹0 though trend
was statistically significant only for one watershed. The trends in 𝐹0, 𝐹1, and
𝐹2 were positive in most of the Gulf Coast watersheds. Most of rain dominated
watersheds in the Great Plains exhibited a decrease in 𝐹0, 𝐹1, and 𝐹2. But
there were several watersheds in this region where 𝐹0, 𝐹1, and 𝐹2 increased.

In summary, streamflow statistical structure has changed in many of the water-
sheds across USA. There is some spatial structure in the regime change: water-
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sheds close to each other show similar types of changes. The spatial structure of
change in snow dominated watersheds is stronger than in rain-dominated water-
sheds. Also, the western and eastern snow dominated watersheds showed some
difference in trends in long timescale components. In the western watersheds,
the negative trends were observed in 𝐹0 values. In the eastern watersheds, the
negative trends were observed in 𝐹1 and 𝐹2. Also, positive trends in 𝐹1 were
observed in western snow dominated watersheds. In the humid watersheds of
the Pacific Northwest and Gulf Coast, contribution of high frequency compo-
nents decreased. The next two sections focus on the causes of regime change in
snow and rain-dominated watersheds, respectively. The discussion of causes of
change in high frequency and low frequency effects is generally limited to the
F6 and F5, respectively.

6. Causes of streamflow regime change in snow-dominated watersheds

In this section, we explore the causes of streamflow regime changes in snow-
dominated watersheds. Most of these watersheds are in the Rocky Moun-
tains, High Plains, and the Atlantic region. There are other watersheds where
snowmelt contributes to streamflow, but rainfall is the primary driver in those
watersheds. In snow-dominated watersheds, snowmelt is the primary driver of
streamflow. Snow accumulates during the winter season during low temper-
atures and melts during spring and early summer due to rising temperatures.
The process of snowmelt is largely controlled by the amount and spatial distribu-
tion of snowpack, measured as snow water equivalent (SWE), and dynamics of
temperature. The changes in streamflow regime in snow-dominated watersheds
may occur due to change in the SWE and/or temperature dynamics. Change in
either of the two will result in the change in temperature-snowmelt relationship.
Note that precipitation falls as liquid also in these watersheds but that is the
secondary determinant of streamflow regime.

In this study, snow signatures proposed by Horner et al., (2020) were used to
identify the changes in temperature snow relationship. They defined streamflow,
temperature, and SWE regimes as a 30-day moving average of seasonal compo-
nent. Let us denote streamflow, temperature, and SWE regimes by 𝑄reg, 𝑇reg,
and SW𝐸reg, respectively. Figure 8 shows the relationship between temperature
and streamflow regimes for a hypothetical snow dominated watershed. The seg-
ment AB is the snowmelt period where both streamflow and temperature rises.
Streamflow reaches its peak at point B. After point B, temperature continues
to rise but streamflow decreases because of the lack of snow availability. During
segment CD, temperature decreases without significant change in streamflow.
During the segment DA, snow accumulates. The segments AB and CD capture
the snowmelt dynamics. Horner et al. (2020) fitted linear relationships between
temperature and streamflow regimes to model segments AB and CD and defined
the slopes of these segments as snow signatures. In the study, we found that the
linear relation was a good model for the segment AB but not for the segment
BC. Therefore, we focused only on segment AB which we refer to as the rising
limb of temperature-streamflow relationship. Let this relationship be modeled
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as

𝑄𝑟𝑒𝑔,𝑖 = 𝛿snow𝑇𝑟𝑒𝑔,𝑖 + 𝛽snow, (8)

where 𝑇reg,𝑖 and 𝑄𝑟𝑒𝑔,𝑖 denote the temperature and estimated streamflow regime
value on 𝑖th day of the water year during the first phase of snowmelt (limb AB),
𝛿snow and 𝛽snow denote the slope and intercept of the relationship. We used
both 𝛿snow and 𝛽snow as the snow signatures.

Figure 8. Relation between the temperature and streamflow regimes. 𝑇reg
is the temperature regime of the mean watershed temperature. 𝑇𝑠 denotes the
threshold mean watershed temperature at which snowmelt starts. The locations
of the points A, B, C, and D is approximate.

The slope, 𝛿snow, is a measure of rate of increase of snowmelt per unit increase
in temperature. The intercept 𝛽snow is the streamflow when the mean temper-
ature is zero and snowmelt has not started. An intuitive way of thinking about
𝛽snow is as follows. For a given value of 𝛿snow, the value of 𝛽snow determines
the point where line AB intersects with the x-axis (𝑄reg = 0). By making 𝑄reg
equal to 0 in Eq. (8), one gets 𝑇reg = 𝛽snow/𝛿snow. Thus, given 𝛿snow, the inter-
cept 𝛽snow is the measure of threshold mean watershed temperature required to
start the snowmelt. Keeping the 𝛿snow fixed, higher 𝛽snow implies smaller values
of threshold temperature and smaller values of 𝛽snow implies larger values of
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threshold temperature. But note that 𝛽snow is not equal to the threshold tem-
perature required to start the snowmelt. Along with 𝛿snow and 𝛽snow, time to
peak – number of days since the start of the water year after which streamflow
regime peaks – was also computed as a snow signature. We computed the snow
signatures for the moving time windows of 10 years each as illustrated in Table 1.
Subsequently, trends in these signatures were computed over the time-windows.
The trend values provide an estimate of change in snow signatures. The trends
in these snow signatures are discussed in SI. In the context of this paper, trends
in snow signature are related to the change in snowmelt dynamics.

Next, we look at how the change in snowmelt dynamics along with other water-
shed properties have affected the streamflow regime as obtained by the FARIMA
model. Figure 9 shows the important predictor variables that determine the
change in 𝐹6, the high frequency (< 1 𝑚𝑜𝑛𝑡ℎ) components. Blue and orange
solid are the probability densities of variables conditioned upon the positive
and negative trends for all the watersheds, respectively. Green and red dash
curves are the probability densities of variables conditioned upon the positive
and negative trend for all the watersheds where trend was statistically signifi-
cant. Several important variables were related to the change in rainfall statistics:
trend in mean storm depth, trend in JAS (July-August-September) average rain-
fall depth, trend in average high rainfall duration and depth, and trend in total
storm depth. Increase in all these statistics is associated with an increase in 𝐹6.
For example, watersheds where mean storm depth increased, positive change
in 𝐹6 was more likely. This is expected because an increase in high rainfall
duration, and depth would result in an increase in high frequency fluctuations.
The same argument applies for increase in mean and total storm depth. The
mean storm depth increased in most of the eastern snow dominated watersheds
(Figure 4). It tells us that increase in 𝐹6 in eastern snow dominated watersheds
is related to increase in the precipitation.

Mean watershed temperature is another important variable. Watersheds with
warmer temperatures were more likely to result in an increase in 𝐹6 than those
with colder temperatures. It might be related to the fact that, in western USA,
SWE is decreasing at a higher rate in warmer watersheds than that in colder
watersheds (Mote, 2006). Disappearance of snow would reduce the contribu-
tion of low frequency component of streamflow and, by implication increase the
contribution of high frequency component.

Another temperature related important variable is the trend in AMJ (Apr-May-
Jun) maximum daily temperature. This quantity has decreased in most of the
watersheds. In the watersheds with moderate (large) decrease, the 𝐹6 was likely
to increase (decrease). To investigate the effect of changes in AMJ maximum
daily temperature on the change in 𝐹6, the probability density plots of all the
predictor variables were plotted conditioned upon AMJ maximum daily temper-
ature being less and greater than −0.20. It was observed that the significant
decrease in AMJ maximum daily temperature occurred in humid watersheds
and in watersheds with aridity index less than 1.5. About 65% of the watershed
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with the moderate decrease in this quantity were arid. The snow dominated
arid watersheds are primarily located in western USA. The snow dominated
humid watersheds are primarily located in eastern USA, Pacific northwest, and
Northern Rocky Mountains. Thus, change in AMJ maximum daily temperature
has different effects in wet/moderate-dry and dry watersheds. The mechanism
behind the effect of AMJ temperature was unclear.

Soil properties that were important in determining the trends in 𝐹6 were sand
fraction, silt fraction, soil conductivity, soil depth, and depth to bedrock. Wa-
tersheds with sandy and high conductivity soils were more likely to exhibit a
decrease in 𝐹6. Watersheds with clayey and low conductivity soils were more
likely to exhibit an increase in 𝐹6. One of the differences between the watershed
with clayey and sandy soils was that in the former the average high rainfall depth
increased more significantly. In ≈ 20% of the watersheds with sandy soils, aver-
age high rainfall depth decreased. In the watersheds with clayey soils, the OND
(Oct-Nov-Dec) temperatures increased moderately, whereas in the watersheds
with sandy soils, the OND temperatures increased significantly. Also note that
in most snow dominated watersheds, the high rainfall occurs mainly in winter
season. These observations lead to the following hypothesis. In the watersheds
with clayey soils, increase in high rainfall depth together with only moderate
increase in winter maximum daily temperature is responsible for the increase
in 𝐹6: moderate increase in winter maximum daily temperature ensures that
soil moisture does not decrease significantly. In the watershed with sandy soils,
decrease or only a moderate increase in high rainfall depth with large increase
in winter maximum daily temperature is responsible for significant decrease in
soil moistures. This decrease in soil moisture is responsible for decrease in 𝐹6.

Finally, trend in 𝛿snow and trend in time-to-peak are important variables for de-
termining the change in 𝐹6. Higher the increase in 𝛿snow, higher the increase in
𝐹6; higher the decrease in time-to-peak, higher the increase in 𝐹6. Both, the in-
crease in 𝛿snow and the decrease in time-to-peak suggests an increase in snowmelt
rate. This, in turn, implies that water is reaching the river network faster which
decreases the contribution of low frequency component and increases 𝐹6 values.
In summary, in snow-dominated watersheds change in rainfall depth and dura-
tion, increase in winter (OND) and decrease in spring (AMJ) temperatures, and
change in streamflow-temperature relationship is responsible for change in 𝐹6.
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Figure 9. Snow-dominated watersheds. Probability distribution of
important predictor variables at less than 1-month timescale

Figure 10 shows the probability distribution of important variables that deter-
mine the change in the contribution of 1-month to 1-year timescale components
(𝐹5) – only the 24 most important variables are shown in the figure. Rainfall re-
lated important variables were the trend in high rainfall duration, trend in mean
and median storm depth, and trend in total storm depth. Increase in mean, me-
dian, and total storm depth was associated with a decrease in 𝐹5. High rainfall
duration decreased in most of the watersheds. If the decrease in average rainfall
duration was large, then the watershed was more likely to exhibit an increase
in 𝐹5; if the moderate decrease or increase in average rainfall duration was ob-
served, watershed was likely to exhibit a decrease in 𝐹5. As discussed above,
changes in rainfall statistics also explained changes in 𝐹6. Basically, increase
in storm depth and increase in high rainfall duration are related to increase in
high frequency components and decrease in low frequency components.

Mean elevation, mean temperature, and fraction of snow were also important
variables. Watersheds with lower (higher) mean elevation, higher (lower) mean
temperature, and smaller (higher) value of fraction of snow were more likely to
exhibit a decrease (increase) in 𝐹5. The threshold value of fraction of snow at
which the sign of change in 𝐹5 transitions from negative to positive is 0.4. The
fraction of snow is less than 0.4 in eastern US snow dominated watersheds and
greater than 0.4 for most of the western snow dominated watersheds (Figure 3 in
Addor et al., 2017). This indicates that the change in 𝐹5 is different in eastern
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and western US watersheds which was also observed in Figure 7. Moreover,
Figure 7 clearly shows that 𝐹5 (= 𝐹1 +𝐹2) decreased in most of the eastern snow
dominated watersheds while it increased in western snow dominated watersheds.

Further investigation revealed that in the majority of the eastern snow domi-
nated watersheds the following quantities have increased: number of rain days,
total storm depth, and mean storm depth (Figure 4). As discussed above, in-
crease in these quantities is related to increase in 𝐹6, thus, almost by implication
decrease in 𝐹5. Figure S10 shows that in eastern snow-dominated watersheds
SWE increased over the study period. In general, increase in SWE is expected
to result in increase in 𝐹5. Therefore, it may be concluded that in eastern snow-
dominated watersheds change in rainfall statistics is the dominant control over
change in streamflow regime. We caution here that this statement is applica-
ble to deseasonalized streamflow time-series only. The seasonal component of
streamflow may have been profoundly impacted by the change in SWE.

In western US snow dominated watersheds, the change in 𝐹5 had large spa-
tial variability. The SWE decreased in most of these watersheds (Figure S10).
Change in rainfall statistics has some spatial variability but the following gen-
eral observations can be made: (1) total storm depth has decreased or has only
slightly increased, (2) mean storm depth has decreased in most watersheds but
there exist some watersheds in the Southwest region with significant increase,
and (3) number of storms and number of rain days have increased (decreased) in
most of the northern (southern) watersheds. Therefore, it can be concluded that
change in rainfall statistics have at least some control over change in streamflow
regime in western snow dominated watersheds also. In summary, the differences
in change in rainfall statistics explain the differences in changes in 𝐹5 in eastern
and western snow-dominated watersheds.

Another observation was that several temperature related variables were impor-
tant for determining the change in 𝐹5. Some of these variables include trend in
AMJ minimum and maximum daily temperatures, trend in mean daily minimum
and maximum temperatures, trend in mean JFM minimum daily temperature,
and trend in mean OND maximum daily temperature. Both mean minimum
and maximum daily temperatures increased in most of the snow dominated
watersheds. A moderate increase was associated with a decrease in 𝐹5 and a
significant increase was associated with an increase in 𝐹5. As discussed above,
increase in temperature affects soil moisture regime which, in turn, affects the
streamflow regime. However, change in temperature can also directly affect the
low frequency components of streamflow, for example, via change in baseflow
characteristics, and change in snowpack storage. These mechanisms have been
discussed above.
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Figure 10. Snow-dominated watersheds. Probability distribution of
important predictor variables at 1-month to 1-year timescales

7. Causes of streamflow regime changes in rain dominated watersheds

In rain dominated watersheds rainfall is the primary driver of streamflow. Some
of the rainwater is intercepted by the plant canopy and other structures, some
of the rainwater infiltrates into the soil, and the rest of the rainwater runs off
and eventually reaches the rivers. Most of the intercepted rainwater evaporates
back to the atmosphere. Some of the infiltrated water goes to groundwater
through percolation, some of the infiltrated water goes back to atmosphere in
the form of soil evaporation and plant transpiration, and rest of the infiltrated
soil water flows below the earth surface to nearby streams which is referred to
as interflow. Groundwater also flows to the river, which is referred to baseflow.
These processes occur at vastly different timescales and are affected strongly by
several watershed properties including their spatial distribution. It is possible
that change in the rainfall-runoff response of a watershed is responsible for
change in streamflow regime in rain-driven watersheds. In this study, we used a
conceptual event-based model to simulate rainfall-runoff response of rain-driven
CAMELS watersheds.

The details of the modeling are discussed in SI. In summary, hydrograph separa-
tion was carried out using streamflow and rainfall data in each of the watersheds
(Lamb and Beven, 1997; see Collischonn and Fan et al., 2013 for hydrograph
separation). Each rainfall-runoff event was modeled using the SCS-CN method
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(Ponce and Hawkins, 1996; Mishra and Singh, 1999; Geetha et al., 2007; Soulis
and Valiantzas, 2012; Soulis and Valiantzas, 2013) and 2-parameter gamma dis-
tribution as unit hydrograph (Botter et al., 2013). There were a total of four
model parameters 𝜆, 𝐶𝑁, 𝛼, and �. The first two parameters belong to the SCS-
CN model and the last two parameters belong to unit hydrograph. The mean
and variance of the unit hydrograph is 𝛼/𝛽 and 𝛼/𝛽2, respectively. These pa-
rameters were estimated for each of the rainfall-runoff event using the Dynamic
Dimension Search (DDS) algorithm (Tolson and Shoemaker, 2007) with the ob-
jective of minimizing mean-square-error between observed and simulated direct
runoff. Once these parameters are obtained for each of the rainfall-runoff events,
then the change in these parameters over time can be used as a measure of the
change in the rainfall-runoff response of a watershed. One difficulty is that these
parameters have high variability from event to event. Therefore, the change in
probability distributions of these parameters had to be measured. This was
achieved using the moving windows as illustrated in Table 1. All the events
contained in a moving window were used to create a probability distribution of
the four parameters. The change in probability distribution was measured by
estimating the trend in several statistics of the probability distributions which
includes mean, mean of 0-10 percentiles, mean of 10-30 percentiles, mean of
30-60 percentiles, mean of 60-90 percentiles, and mean of 90-100 percentiles.
The important variables were recognized using the same method as in snow
dominated watersheds.

Figure 11 shows the conditional probability density of important variables for
the classification of positive and negative trends at less than 1-month timescale
(𝐹6) in rain dominated watersheds. Some of the important variables are OND
mean maximum daily temperature, trend in median minimum daily tempera-
ture, and aridity. The value of 𝐹6 increased in many of the arid watersheds
while it decreased in most of the humid watersheds. Further, 𝐹6 increased in
the watersheds in which OND maximum daily temperature increased signifi-
cantly. It was observed that arid rain-driven watersheds had higher increase in
OND maximum daily temperature (Figure 4), higher increase in number of dry
days, higher increase in JAS maximum and minimum daily temperature, and
decrease in monthly rainfall variation. Also, changes in average rainfall depth
in arid watersheds during OND and JAS months were small (not shown). All
these factors indicate that the increase in evaporation is more than the increase
in rainfall in the arid watersheds which has resulted in the decrease of low fre-
quency components of streamflow in these watersheds. And the decrease in low
frequency components is responsible for increase in high frequency components.
Figure 11 also shows that increase median minimum daily temperature is associ-
ated with increase in 𝐹6. This further supports the hypothesis that decrease in
contribution of low frequency components in arid watersheds is due to increase
in evaporation, and subsequent decrease in low frequency component.

Many of the humid watersheds where 𝐹6 decreased are located in the Pacific
Northwest and the Gulf Coast region where rainfall is more frequent in winter
months. It was observed that OND rainfall depth decreased in most of the
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humid watersheds and OND temperature increased moderately in these water-
sheds. These two factors can explain the decrease in 𝐹6 in these watersheds.
Increase in temperature implies higher potential evaporation and higher actual
evaporation (because humid watersheds are energy limited), and lesser soil mois-
ture. Thus, more rainwater is absorbed by the soils and lesser rainwater reaches
the river network in the form of direct runoff. Decrease in rainfall further ampli-
fies this process. Other observations that support this hypothesis are decrease
in median storm depth and decrease in high rainfall duration in most of the wa-
tersheds. Ficklin et al. (2016) also reported decrease in quick runoff in several
watersheds located in the Pacific Northwest and the Gulf Coast which supports
this hypothesis.

The values of 𝐹3 have decreased in almost all the Pacific Northwest watersheds.
As discussed above, the value of 𝐹3 is partially determined by ET: increase in
ET results in decrease in 𝐹3. Therefore, the decrease in 𝐹3 and 𝐹6 in these
watersheds suggest the role of temperature in changing the streamflow regime.
The value of 𝐹4 increased in some of the watersheds in Pacific Northwest (Figure
6). The reason for this is unclear.

Some of the rainfall related variables such as trend in low rainfall frequency,
trend in low rainfall duration and frequency, trend in number of rain days, low
rainfall frequency and mean rainfall were also important. These variables are
also related to aridity and humidity of the watersheds. Watersheds with low
mean rainfall and larger number of dry days are typically arid. Most of the
watersheds where number of rain days decreased, number of dry days increased,
and low rainfall duration increased, 𝐹6 also increased. This is expected because
these trends indicate an increase in aridity of the watershed and arid watershed
are known to exhibit high values of 𝐹6. Figure 11 also shows that in most of
the watersheds where 𝐹6 has increased, number of rain days have decreased.

Some of the soil properties such as sand fraction and porosity including frac-
tion of forests are also important variables. Most of the watersheds with sandy,
smaller porosity soils and large fraction of forest cover exhibited a decrease in
𝐹6. These three variables are correlated since sandy soils are known to be porous
and ideal to support forests given the water availability (Eagleson, 1982). It was
observed that most of the CAMELS watersheds with sandy soils are located in
humid regions with high mean annual rainfall. Thus, the decrease in 𝐹6 in wa-
tersheds with sandy soils can be explained as in humid watersheds as discussed
above. Another difference between watersheds with sandy and fine soils was
that in the former the phase difference between monthly rainfall and evapora-
tion decreased which might have resulted in more rainwater evaporating back
to atmosphere, drying of soils, and muted response of watershed to rainstorms.
Many of the watersheds in the Pacific Northwest have sandy soil.

One notable point in above discussion is that OND maximum temperature has
increased in most of the watersheds, located in both humid and arid climates. In
humid watersheds increase is moderate and in arid watersheds increase is large.
But this increase has opposite effect on streamflow regimes in humid and arid
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watersheds. In humid watersheds, increase in OND temperature resulted in an
increase in ET, decrease in soil moisture, and a muted response of the watershed
to rainfall which resulted in a decrease in high frequency component. In arid
watersheds, increase in OND temperature resulted in an increase in ET and a
decrease in low frequency component which, in turn, resulted in an increase in
high frequency component. Thus, change in OND temperature directly affects
the high frequency component in humid watersheds and only indirectly affects
it in arid watersheds.

One question remains here: Why the high frequency component is not directly
affected by change in OND temperature in arid watersheds? The reason is that
in majority of rain driven arid watersheds in USA, rainfall pre-dominantly oc-
curs in spring-summer months (except in California where rain occurs in winter
months) (Addor et al., 2017, Fig 3). Thus, an increase in ET in winter months
directly affects only the low frequency component, not the high frequency com-
ponent. High frequency component is formed by the summer rainfall which
appears to be unchanged during the study period. This conclusion is further
supported by the fact that AMJ (Apr-May-Jun) and JAS (Jul-Aug-Sep) max-
imum daily temperatures have not increased significantly in these watersheds.
AMJ minimum daily temperature also did not increase in most of the water-
sheds. JAS minimum daily temperature increased significantly only in a few of
the arid watersheds (<40%). In contrast to arid watersheds, rainfall occurs in
winter months in many of the humid watersheds, especially the ones located in
Pacific Northwest. Therefore, change in temperature directly affects the high
frequency component in humid watersheds.

Finally, two of the parameters of the rainfall-runoff model came out to be im-
portant for determining the streamflow regime change: CN and 𝜆. Decrease in
CN and increase in 𝜆 seems to be associated with an increase in 𝐹6. This associ-
ation, however, is weak because several of the watersheds where CN decreased
also reported a decrease in 𝐹6. Also, the change in CN and 𝜆 is relatively small
is most of the watersheds. Therefore, we conclude that change in streamflow
regime in rain driven watershed is a direct result of change in climate statistics
rather the change in rainfall-runoff response of the watershed.
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Figure 11. Rain dominated watersheds. Probability distribution of
important predictor variables for classification of positive and nega-
tive trends at less than 1-month timescales

The causes for change in low frequency components is not discussed because
fluctuation at greater than 1-year timescales had very small contribution to
total streamflow variance in rain dominated watersheds. And, therefore, the
contribution of 1-month to 1-year timescale components is almost one-to-one
related to less than 1-month timescale contribution.

8. Summary and Conclusions

The main conclusions of this study are summarized in Table 2. It was found
that the effect of climate change on streamflow regime change was strongly
modulated by watershed static attributes. The contribution of greater than 1-
year timescales fluctuations to total streamflow variance is typically very small
in rain-driven watersheds, but it is substantial in western snow dominated wa-
tersheds where the fraction of snow is greater than 0.4. The contribution of
1-month to 1-year timescale fluctuations strongly depends upon the contribu-
tion of baseflow to total streamflow. Also, long-term persistence (value of 𝑑)
in deseasonalized streamflow time-series depends upon the contribution of base-
flow: low values of BFI are associated with weaker long-term persistence. The
contribution of 2-weeks to 1-month timescale fluctuations to total streamflow
variance appears to be determined by interflow and rainfall. Contribution of
high frequency components are mainly determined by quick flow. Thus, spectral
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analysis of deseasonalized streamflow time-series can be very useful in detect-
ing hydrologic regime changes in a watershed through analysis of streamflow
time-series.

In snow-dominated watersheds across the USA, a clear east-west divide was
found in terms of change in streamflow regime. 𝐹1 and 𝐹2 decreased (increased)
in most of the eastern (western) watersheds. 𝐹0 decreased in most of the west-
ern watersheds. The high frequency components increased in most of the snow
dominated watersheds. Increases of high frequency components and decreases
in low frequency components in snow dominated watersheds were related to
increases in rainfall in these watersheds but also to increase in OND tempera-
tures. It could be concluded that trends in rainfall have significant control over
streamflow regime change in snow dominated watersheds. Changes in snowmelt-
temperature relationships also played a role in changing the streamflow regime
in snow-dominated watersheds.

In most rain-driven watersheds and in eastern snow dominated watersheds, the
contribution of high frequency (less than one-month) components was greater
than 50%. This was particularly the case in the watersheds in the Great Plains
and the Mississippi Valley where the contribution of low frequency component is
very small due to high ET. In most of the arid watersheds, the values of 𝐹4 and
𝐹6 increased. These increases are related to increases in ET in these watersheds
in winter months which decreased contributions from low frequency components
and, in turn, increased the contribution of the high frequency components.

The high frequency fluctuations, 𝐹6, decreased in the Gulf Coast watersheds and
the Pacific Northwestern watersheds. The reason for this was also the increase
in winter ET and decrease in winter rainfall depth in these watersheds. In
these watersheds, the dominant rainfall season is winter; therefore, an increase
in ET possibly resulted in decrease in antecedent soil moisture and, overall,
muted response of rainfall to streamflow. There was a difference in the Pacific
Northwest and Gulf Coast watersheds: the values of 𝐹4 increased in majority
of the Pacific Northwest region while it decreased in the latter.

The trends in the contribution of fluctuations at different timescales were also
related to soil properties such as soil texture, porosity, and fraction of forest.
Further analyses revealed that soil properties were an indicator of change in
climatic statistics. In snow dominated watersheds with fine soils, high rainfall
depth increased, and winter maximum daily temperature increased only mod-
erately. This is hypothesized to have resulted in an increase in 𝐹6 in these
watersheds. In the snow dominated watershed with sandy soils, decrease or
only a moderate increase in high rainfall depth with large increase in winter
maximum daily temperature is hypothesized to result in significant decrease in
soil moistures and decrease in 𝐹6.

In the rain dominated watersheds with sandy soil 𝐹6 decreased. Most of the
watersheds with sandy soils are in humid region with high mean annual rainfall.
Another difference between watersheds with sandy and fine soils was that in the
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former the phase difference between monthly rainfall and evaporation decreased
which might have resulted in more rainwater evaporating back to atmosphere,
drying of soils, and muted response of watersheds to rainstorms.

In snow dominated watersheds change in temperature-snowmelt relationship is
responsible at least to some extent for streamflow regime change. The change
in temperature-snowmelt relationship is likely due to change in spatiotemporal
snow statistics and temperature statistics rather than any physical changes in
the watersheds. Although, change in vegetation density might also be responsi-
ble for the changes. In rain dominated watersheds, the change in rainfall-runoff
relationship appears to be negligible.

We note that conclusions reported in this study apply only to deseasonalized
streamflow time-series. Changes in seasonal components are not studied in this
paper. Nevertheless, the results presented in this study convincingly show that
changes in streamflow regime have occurred across USA. Although the pattern
of changes is patchy, there is substantial spatial structure. These changes have
consequences for accurate simulation of streamflow time-series in the presence
of climate change. Decreasing influence of low frequency components can result
in decrease in accuracy of simulations. This is evident in arid watersheds of the
Great Plains where the contribution of low frequency components has always
been small, and all the models (conceptual, process-based, and ML models)
of streamflow have been reported to perform poorly in these watersheds (e.g.,
Konapala et al., 2020).

In this study, only the effect of climatic statistics change on streamflow regime
change has been explored. But streamflow regime can also change due to change
in natural changes in land-use such as due to forest disturbance (e.g., Goeking &
Tarboton, 2022). The effects of such changes on streamflow statistical structure
should be the topic of future study. Moreover, we believe that it would be
worthwhile to simulate the hydrologic response of CAMELS watersheds using a
detailed process-based model to understand the changes in various hydrologic
quantities in these watersheds.

Finally, the analysis carried out in this study identifies only the variables that
play a role in determining the changes in streamflow regime. The specific mech-
anisms creating the changes could not be identified using this analysis. Never-
theless, a few hypotheses regarding changes in the hydrologic mechanisms that
might have led to streamflow regime change have been proposed. Data between
water years 1980-2013 was used to achieve the objectives. Though 30-35 years
of data are not enough to identify all the changes in streamflow regime due to
climate change because natural climate oscillation occurs at 30-year timescale,
such data can still reveal useful pattern of hydrologic change (e.g., Ficklin et
al., 2016). Besides, it is well known that systematic changes in global temper-
atures and rainfall patterns have occurred over the study period (Manabe &
Broccoli, 2020). Therefore, we believe that it is prudent to look for streamflow
regime changes across the USA due to climate change over the period used in
this study.
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Table 2. A summary of streamflow statistical structure and change in streamflow
statistical structure in different regions of USA

Geographic
region

Climate Streamflow
statistical
structure

Change in
streamflow
statistical
structure

Cause of
change

Pacific
Northwest

Humid High values
of 𝐹3, 𝐹5, 𝐹6,
low values of
𝐹0

Decrease in
𝐹3 and 𝐹6,
increase in
𝐹4 in some of
the
watersheds

Increase in
winter
temperature
and
decrease in
winter
rainfall
depth,
resulting in
decrease in
the strength
of
interflow
seems to be
the main
cause.
Winter is the
high rainfall
season in
these
watersheds.

33



Geographic
region

Climate Streamflow
statistical
structure

Change in
streamflow
statistical
structure

Cause of
change

Gulf Coast Humid High values
of 𝐹6,
moderate to
high value of
𝐹3 and 𝐹5

Decrease in
𝐹6, 𝐹4,
mixed
response of
change in 𝐹3;
Increase in
low frequency
components
𝐹0, 𝐹1, and
𝐹2

Decrease in
winter
temperature
and
decrease in
winter
rainfall
depth,
resulting in
muted
response of
these
watersheds to
rainfall seems
to be the
main cause.
Winter is the
high rainfall
season in
these
watersheds.

Great Plains Arid Very high
values of 𝐹6.
Low to
moderate
values of 𝐹0,
𝐹3, and 𝐹5

Mixed trends,
but majority
of the
watersheds
had increase
in high
frequency
components
and decrease
in low
frequency
components

Increase in
OND temper-
atures,
resulting in
increase in
ET and
decrease in
low frequency
components.
Spring-
summer is
the main
rainfall
season in
these
watersheds.
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Geographic
region

Climate Streamflow
statistical
structure

Change in
streamflow
statistical
structure

Cause of
change

Atlantic
Coast and
eastern most
Great Lakes
region

Humid Low value of
𝐹0, high
values of 𝐹5
and 𝐹6, low
to high
values of 𝐹3.

Increase in
𝐹4 and 𝐹6,
decrease in
𝐹3 and 𝐹5

Increase in
precipitation

Western
Rocky
Mountains

Arid Moderate to
high values
of 𝐹0, high
values of 𝐹5,
low values of
other
components

Decrease in
𝐹0, increase
in 𝐹4 and 𝐹6;
𝐹1 and 𝐹2
had both
positive and
negative
trends

Increase in
temperature,
change in
rainfall
patterns, and
decrease in
SWE.

Eastern
Rocky
Mountains

Arid Moderate to
high values
of 𝐹0, high
values of 𝐹5,
low values of
other
components

Mixed trends,
𝐹1 increased
in most of
the
watersheds;
𝐹0 decreased
in some and
increased in
other
watersheds

Increase in
temperature,
change in
rainfall
patterns, and
decrease in
SWE.
The cause of
differences
between
eastern and
western
Rocky
Mountains
is unclear.

𝐹0 = Fraction of variance contributed by greater 1-year timescale components;
𝐹1 = Fraction of variance contributed by 4-months to 1-year timescale compo-
nents; 𝐹2 = Fraction of variance contributed by 1-month to 4-months timescale
components; 𝐹3 = Fraction of variance contributed by 2-weeks to 1-month
timescale components; 𝐹4 = Fraction of variance contributed by less than 2-
weeks timescale components;

𝐹5 = 𝐹1 + 𝐹2; 𝐹6 = 𝐹3 + 𝐹4

Appendix:
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Table A1. Variables used in the study to interpret the streamflow regime changes

Property Variables Remarks
Rainfall Mean rainfall, rainfall

seasonality (see Addor
et al., 2017),
high rainfall frequency,
high rainfall duration,
low rainfall
duration, trend in mean
rainfall depth, trend in
total
rainfall depth, trend in
number of rainstorms,
trend in
number of rain days,
trend in high rainfall
frequency,
trend in high rainfall
duration, trend in high
rainfall depth,
trend in low rainfall
frequency, trend in low
rainfall
duration, trend in low
rainfall depth, trend in
OND (Oct
Nov-Dec) rainfall depth,
trend in JFM
(Jan-Feb-Mar)
rainfall depth, trend in
AMJ (Apr-May-Jun)
rainfall depth,
trend in JAS
(Jul-Aug-Sep) rainfall
depth
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Property Variables Remarks
Temperature Mean temperature,

trend in mean minimum
daily
temperature, trend in
mean maximum daily
temperature,
trend in median
minimum daily
temperature, trend in
median minimum daily
temperature, trend in
median
maximum daily
temperature, trend in
SD (standard
deviation) maximum
daily temperature,
trend in SD
minimum daily
temperature, trend in
OND minimum
(maximum) daily
temperature, trend in
JFM minimum
(maximum) daily
temperature, trend in
AMJ minimum
(maximum) daily
temperature, trend in
JAS minimum
(maximum) daily
temperature, trend in
mean minimum
(maximum) daily
temperature 0-10
percentiles, trend in
mean minimum
(maximum) daily
temperature 10-30
percentiles, trend in
mean minimum
(maximum) daily
temperature 30-60
percentiles, trend in
mean minimum
(maximum) daily
temperature 60-90
percentiles, trend in
mean minimum
(maximum) daily
temperature 90-100
percentiles,
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Property Variables Remarks
Snow statistics Fraction of snow,

trend in snow water
equivalent (SWE)

For snow dominated
watersheds

Geomorphological
characteristics

Mean elevation, mean
slope,
drainage area

Climate indices except
precipitation

Potential
evapotranspiration
(PET),
aridity, runoff

Monthly climate
statistics

Temperature amplitude
(Δ𝑇 ), mean normalized
rainfall
amplitude (𝛿𝑃 ),
temperature phase (𝑠𝑇 ),
rainfall phase
(𝑠𝑃 ), phase difference
between rainfall and
temperature
(𝑠𝑑)

Berghuijs and Woods,
(2016)

Soil properties Soil depth, depth to
bedrock, soil
conductivity, fraction of
sand content, fraction
of clay content, fraction
of silt
content, fraction of
organic content, water
holding
capacity, other fractions

Addor et al., (2017)

Land use Fraction of forest
Location Latitude, Longitude
Rainfall-runoff response Trend in 𝜆, CN, 𝛼/𝛽,

𝛼/𝛽2 and mean of
different
percentiles on these
quantities

Only for rain-driven
watersheds (see SI)

Temperature
streamflow relationship

Trend in rising limb
slope, trend in rising
limb intercept,
trend in streamflow
regime time-to-peak

Only for
snow-dominated
watersheds (see SI)
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Figure A1. Map of the geographical regions referred to in this study
(https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/ge
ography)
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provided in the text.

Acknowledgements:

AG was supported by Maki Postdoctoral Fellowship at DRI to carry out this
work. Authors acknowledge Chris Pearson, and Patrick Sawyer for providing
feedback on this work. Authors thank Jaideep Ray for suggesting some of the
methodology implemented in the paper and providing feedback on a draft of
this paper.

References:

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017). The CAMELS
data set: catchment attributes and meteorology for large-sample studies. Hy-
drology and Earth System Sciences, 21(10), 5293-5313.

Addor, N., Newman, A., Mizukami, M., & Clark, M. P. (2017). Catchment
attributes for large-sample studies. Boulder, CO: UCAR/NCAR. https://doi.
org/10.5065/D6G73C3Q

Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W., & Trouet, V. (2016).
Multi-century evaluation of Sierra Nevada snowpack. Nature Climate Change,
6(1), 2-3.

Berghuijs, W. R., & Woods, R. A. (2016). A simple framework to quantita-
tively describe monthly precipitation and temperature climatology. Interna-
tional Journal of Climatology, 36(9), 3161-3174.

39

https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/geography
https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/geography
https://doi.org/10.5065/D6G73C3Q
https://doi.org/10.5065/D6G73C3Q


Betterle, A., Schirmer, M., & Botter, G. (2019). Flow dynamics at the conti-
nental scale: Streamflow correlation and hydrological similarity. Hydrological
processes, 33(4), 627-646.

Beven, K. J. (2011). Rainfall-runoff modelling: the primer. John Wiley and
Sons.

Botter, G., Basso, S., Rodriguez-Iturbe, I., & Rinaldo, A. (2013). Resilience of
river flow regimes. Proceedings of the National Academy of Sciences, 110(32),
12925-12930.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series
analysis: forecasting and control. John Wiley and Sons.

Bras, R. L., & Rodriguez-Iturbe, I. (1993). Random functions and hydrology.
Courier Corporation.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Chow, V. T. (1978). Stochastic modeling of watershed systems [French Broad
River Basin, North Carolina as an example]. Advances in Hydroscience.

Collischonn, W., & Fan, F. M. (2013). Defining parameters for Eckhardt’s
digital baseflow filter. Hydrological Processes, 27(18), 2614-2622.

Donohue, R. J., Roderick, M. L., McVicar, T. R., & Farquhar, G. D. (2013).
Impact of CO2 fertilization on maximum foliage cover across the globe’s warm,
arid environments. Geophysical Research Letters, 40(12), 3031-3035.

Eagleson, P. S. (1982). Ecological optimality in water‐limited natural
soil‐vegetation systems: 1. Theory and hypothesis. Water Resources Research,
18(2), 325-340.

Ed Dlugokencky & Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/),
date accessed: 17 Mar 2022.

Ficklin, D. L., Robeson, S. M., & Knouft, J. H. (2016). Impacts of recent
climate change on trends in baseflow and stormflow in United States watersheds.
Geophysical Research Letters, 43(10), 5079-5088.

Geetha, K., Mishra, S. K., Eldho, T. I., Rastogi, A. K., & Pandey, R. P. (2007).
Modifications to SCS-CN method for long-term hydrologic simulation. Journal
of Irrigation and Drainage Engineering, 133(5), 475-486.

Goeking, S. A., & Tarboton, D. G. (2021). Variable streamflow response to
forest disturbance in the western US: A large‐sample hydrology approach. Water
Resources Research, e2021WR031575.

Gordon, B. L., Brooks, P. D., Krogh, S. A., Boisrame, G. F., Carroll, R. W.,
McNamara, J. P., & Harpold, A. A. (2022). Why does snowmelt-driven stream-
flow response to warming vary? A data-driven review and predictive framework.
Environmental Research Letters.

40

http://gml.noaa.gov/ccgg/trends/


Granger, C. W. (1980). Long memory relationships and the aggregation of
dynamic models. Journal of econometrics, 14(2), 227-238.

Granger, C. W., & Joyeux, R. (1980). An introduction to long‐memory time
series models and fractional differencing. Journal of Time Series Analysis, 1(1),
15-29.

Gudmundsson, L., Tallaksen, L. M., Stahl, K., & Fleig, A. K. (2011). Low-
frequency variability of European runoff. Hydrology and Earth System Sciences,
15(9), 2853-2869.

Hirpa, F. A., Gebremichael, M., & Over, T. M. (2010). River flow fluctuation
analysis: Effect of watershed area. Water Resources Research, 46(12).

Horner, I., Branger, F., McMillan, H., Vannier, O., & Braud, I. (2020). Informa-
tion content of snow hydrological signatures based on streamflow, precipitation
and air temperature. Hydrological Processes, 34(12), 2763-2779.

Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of
the American Society of Civil Engineers, 116(1), 770-799.

Kim, D. H., Rao, P. S. C., Kim, D., & Park, J. (2016). 1/f noise analyses
of urbanization effects on streamflow characteristics. Hydrological Processes,
30(11), 1651-1664.

Klemeš, V. (1978). Physically based stochastic hydrologic analysis. In Advances
in hydroscience (Vol. 11, pp. 285-356). Elsevier.

Klemeš, V. (1986). Operational testing of hydrological simulation models. Hy-
drological sciences journal, 31(1), 13-24.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018).
Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hy-
drology and Earth System Sciences, 22(11), 6005-6022.

Laio, F., Porporato, A., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in
water-controlled ecosystems: active role in hydrologic processes and response
to water stress: II. Probabilistic soil moisture dynamics. Advances in Water
Resources, 24(7), 707-723.

Lamb, R., & Beven, K. (1997). Using interactive recession curve analysis to
specify a general catchment storage model. Hydrology and Earth System Sci-
ences, 1(1), 101-113.

Lee, H. T., & Delleur, J. W. (1972). A program for estimating runoff from
indiana watersheds, part iii: analysis of geomorphologic data and a dynamic
contributing area model for runoff estimation. https://docs.lib.purdue.edu/cg
i/viewcontent.cgi?article=1025&context=watertech

Manabe, S., & Broccoli, A. J. (2020). Beyond global warming: How numerical
models revealed the secrets of climate change. Princeton University Press.

41

https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1025&context=watertech
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1025&context=watertech


Milly, P. C. D. (1997). Sensitivity of greenhouse summer dryness to changes in
plant rooting characteristics. Geophysical Research Letters, 24(3), 269-271.

Milly, P. C., & Dunne, K. A. (2016). Potential evapotranspiration and conti-
nental drying. Nature Climate Change, 6(10), 946-949.

Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z.
W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Stationarity is dead: whither
water management?. Science, 319(5863), 573-574.

Milly, P. C., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends
in streamflow and water availability in a changing climate. Nature, 438(7066),
347-350.

Mishra, S. K., & Singh, V. P. (1999). Another look at SCS-CN method. Journal
of Hydrologic Engineering, 4(3), 257-264.

Montanari, A., Rosso, R., & Taqqu, M. S. (1997). Fractionally differenced
ARIMA models applied to hydrologic time series: Identification, estimation,
and simulation. Water Resources Research, 33(5), 1035-1044.

Montanari, A., Rosso, R., & Taqqu, M. S. (2000). A seasonal fractional ARIMA
model applied to the Nile River monthly flows at Aswan. Water Resources
Research, 36(5), 1249-1259.

Mote, P. W. (2006). Climate-driven variability and trends in mountain snow-
pack in western North America. Journal of Climate, 19(23), 6209-6220.

Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. (2018). Dramatic
declines in snowpack in the western US. Npj Climate and Atmospheric Science,
1(1), 1-6.

Mudelsee, M. (2007). Long memory of rivers from spatial aggregation. Water
Resources Research, 43(1).

Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number: Has it reached
maturity?. Journal of Hydrologic Engineering, 1(1), 11-19.

Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in
water-controlled ecosystems: active role in hydrologic processes and response to
water stress: III. Vegetation water stress. Advances in Water Resources, 24(7),
725-744.

Priestley, M. B. (1982). Spectral analysis and time series: probability and math-
ematical statistics (No. 04; QA280, P7.).

Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in
water-controlled ecosystems: active role in hydrologic processes and response to
water stress: I. Scope and general outline. Advances in Water Resources, 24(7),
695-705.

Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., & Coxi, D. R. (1999).
Probabilistic modelling of water balance at a point: the role of climate, soil and

42



vegetation. Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 455(1990), 3789-3805.

Singh, R., Wagener, T., Van Werkhoven, K., Mann, M. E., & Crane, R. (2011).
A trading-space-for-time approach to probabilistic continuous streamflow pre-
dictions in a changing climate–accounting for changing watershed behavior. Hy-
drology and Earth System Sciences, 15(11), 3591-3603.

Sivapalan, M., Yaeger, M. A., Harman, C. J., Xu, X., & Troch, P. A. (2011).
Functional model of water balance variability at the catchment scale: 1. Evi-
dence of hydrologic similarity and space‐time symmetry. Water Resources Re-
search, 47(2).

Soulis, K. X., & Valiantzas, J. D. (2012). SCS-CN parameter determination
using rainfall-runoff data in heterogeneous watersheds–the two-CN system ap-
proach. Hydrology and Earth System Sciences, 16(3), 1001-1015.

Soulis, K. X., & Valiantzas, J. D. (2013). Identification of the SCS-CN param-
eter spatial distribution using rainfall-runoff data in heterogeneous watersheds.
Water Resources Management, 27(6), 1737-1749.

Stephens, C. M., Marshall, L. A., Johnson, F. M., Lin, L., Band, L. E., and
Ajami, H. (2020). Is past variability a suitable proxy for future change? A vir-
tual catchment experiment. Water Resources Research, 56(2), e2019WR026275.

Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., & Pecknold, S. (1996). Mul-
tifractal analysis and modeling of rainfall and river flows and scaling, causal
transfer functions. Journal of Geophysical Research: Atmospheres, 101(D21),
26427-26440.

Wu, S., Zhao, J., Wang, H., & Sivapalan, M. (2021). Regional patterns and phys-
ical controls of streamflow generation across the conterminous United States.
Water Resources Research, 57(6), e2020WR028086.

References from Supporting Information

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, 74(368), 829-836.

Montanari, A., Rosso, R., & Taqqu, M. S. (1997). Fractionally differenced
ARIMA models applied to hydrologic time series: Identification, estimation,
and simulation. Water Resources Research, 33(5), 1035-1044.

Seabold, S., & Perktold, J. (2010, June). Statsmodels: Econometric and sta-
tistical modeling with python. In Proceedings of the 9th Python in Science
Conference (Vol. 57, p. 61).

Akaike, H. (1973). Information theory and an extension of the maximum likeli-
hood principle, in Petrov, B. N.; Csáki, F. (eds.), 2nd International Symposium
on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, Bu-
dapest: Akadémiai Kiadó, pp. 267–281. Republished in Kotz, S.; Johnson, N. L.,
eds. (1992), Breakthroughs in Statistics, vol. I, Springer-Verlag, pp. 610–624.

43

https://en.wikipedia.org/wiki/Hirotugu_Akaike
https://en.wikipedia.org/wiki/Akad%C3%A9miai_Kiad%C3%B3
https://en.wikipedia.org/wiki/Samuel_Kotz
https://en.wikipedia.org/wiki/Norman_Lloyd_Johnson
https://en.wikipedia.org/wiki/Springer-Verlag


Beran, J. (1994). Statistics for long-memory processes. Routledge.

Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). Declin-
ing mountain snowpack in western North America. Bulletin of the American
Meteorological Society, 86(1), 39-50.

Mote, P. W. (2006). Climate-driven variability and trends in mountain snow-
pack in western North America. Journal of Climate, 19(23), 6209-6220.

Knowles, N., Dettinger, M. D., & Cayan, D. R. (2006). Trends in snowfall versus
rainfall in the western United States. Journal of Climate, 19(18), 4545-4559.

Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W., & Trouet, V. (2016).
Multi-century evaluation of Sierra Nevada snowpack. Nature Climate Change,
6(1), 2-3.

Berg, N., & Hall, A. (2017). Anthropogenic warming impacts on California
snowpack during drought. Geophysical Research Letters, 44(5), 2511-2518.

Collischonn, W., & Fan, F. M. (2013). Defining parameters for Eckhardt’s
digital baseflow filter. Hydrological Processes, 27(18), 2614-2622.

Lamb, R., & Beven, K. (1997). Using interactive recession curve analysis to
specify a general catchment storage model. Hydrology and Earth System Sci-
ences, 1(1), 101-113.

Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number: Has it reached
maturity?. Journal of Hydrologic Engineering, 1(1), 11-19.

Mishra, S. K., & Singh, V. P. (1999). Another look at SCS-CN method. Journal
of Hydrologic Engineering, 4(3), 257-264.

Geetha, K., Mishra, S. K., Eldho, T. I., Rastogi, A. K., & Pandey, R. P. (2007).
Modifications to SCS-CN method for long-term hydrologic simulation. Journal
of Irrigation and Drainage Engineering, 133(5), 475-486.

Soulis, K. X., & Valiantzas, J. D. (2012). SCS-CN parameter determination
using rainfall-runoff data in heterogeneous watersheds–the two-CN system ap-
proach. Hydrology and Earth System Sciences, 16(3), 1001-1015.

Soulis, K. X., & Valiantzas, J. D. (2013). Identification of the SCS-CN param-
eter spatial distribution using rainfall-runoff data in heterogeneous watersheds.
Water Resources Management, 27(6), 1737-1749.

Brutsaert, W. (2005). Hydrology: an introduction. Cambridge University Press.

Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search
algorithm for computationally efficient watershed model calibration. Water Re-
sources Research, 43(1).

44


