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S1 Neural Network Specifications

All units of the neural networks use a rectified linear unit (ReLU) activation function, except

for the output layer which uses a soft-max layer to rescale the final outputs of the neural network

such that they sum to one. We train the neural networks using the binary cross-entropy loss

between the predicted class likelihoods and the correct class membership weights, such that the

loss function is minimized when the two are equal. More information on the ReLU activation

function, the soft-max layer, and the loss function can be found in sections A1, A2, and A3 of

Barnes et al. (2020), respectively.

The neural networks were trained using the Keras Adam optimizer, an adaptive stochastic

gradient descent algorithm (Kingma & Ba, 2014). We used a learning rate that started at 0.001

and decayed linearly to 0.0005 over the span of 150 epochs. Although the Adam optimizer is

designed to alter the learning rate based on the momentum of training, the decaying learning

rate allowed the neural networks to train more quickly with improved performance. Weights and

biases were initialized using random values from a normal distribution.

As discussed in Section 3.2 and Figure S3, we applied a ridge penalty (L2 regularization) to

the input layer (see Barnes et al., 2020). The ridge penalty was selected such that the time

of emergence detected by the neural networks was the earliest. All input vectors used a ridge

penalty of 0.1, except for seasonal-mean temperature and precipitation combined input vector,

for which the TOE was earlier for a ridge penalty of 0.01 (see Figure S3).
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S2 K-means Clustering

Before applying k-means clustering, all LRP maps are converted into binary maps. Every grid

point on each LRP map is assigned a one or a zero depending on whether its relevance value is

greater than or less than the mean relevance across all maps and grid points. In this way, ones

indicate regions of high relevance, and zeros indicate regions of low relevance. K-means clustering

is then applied to these binary LRP maps (3200 in total, samples from 32 climate models for 100

neural networks). The results for K = 2 are shown in the main paper. The clusters for runs of

K-means with different random initial conditions yielded similar results. Clustering for K = 3,

4, 5, 6, 7, 8, and 32 was also explored.

S3 Additional Observational Datasets

In addition to the observational datasets in Section 2.2, we also test two additional precipita-

tion observations in Figures S4 and S5. First, we use the European Center for Medium-Range

Weather Forecasts’ ERA5 global reanalysis (Hersbach et al., 2020) at 6-hour resolution to con-

struct observational monthly mean precipitation fields from 1980 to the present. Second, we use

the Japan Meteorological Agency’s Japanese 55-year Reanalysis (JRA55; Kobayashi et al., 2015)

mean 3-hour precipitation forecasts to construct observational monthly mean precipitation fields

from 1959 to the present.
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Figure S1. TOE detected by the neural networks given different definitions of

season. As in Figure 4, but for each possible three-month combination of seasons. All three

definitions lead to similar TOE when neural networks are trained on global maps of temperature

or precipitation. When temperature and precipitation are combined, meteorological seasons lead

to the earliest detection of forced change.
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Figure S2. Climate models used for each input variable. Temperature, precipitation,

and temperature and precipitation combined used the same 37 CMIP6 climate models. Extreme

precipitation fields came from 32 climate models for which daily precipitation fields were available.
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Figure S3. TOE and RMSE for various ridge penalties. The sensitivity of RMSE and

TOE to the ridge (L2) penalty used for 10 neural networks trained on seasonal-mean maps of

(a) temperature, (b) precipitation, and (c) temperature and precipitation combined. Each plot

shows the RMSE and TOE for neural networks trained with a ridge penalty of 1, 0.1, and 0.01

(denoted by red circles, blue stars, and orange triangles, respectively). The mean RMSE and

TOE for all 10 neural networks are indicated by the horizontal and vertical lines. Each neural

network for a given variable/ridge penalty differs only in which climate models were part of

the training and testing sets. While a ridge penalty of 0.01 leads to the smallest mean RMSE

in all cases, using a higher ridge penalty of 0.1 leads to earlier detection of forced change for

temperature and precipitation input vectors. As a result, we choose to use the ridge penalties

corresponding to an earlier TOE.
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Figure S4. Sensitivity of observational correlations to the source of precipitation ob-

servations: temperature and precipitation combined. Pearson correlations of the actual

years with the years predicted by 100 trained neural networks given observations of temperature

and precipitation. Correlations were computed for all years beginning in 1980 where observa-

tional data exists for all variables. The box plots indicate the first, second, and third quartile

statistics, and the whiskers denote 1.5 times the interquartile range, or the minumum/maximum

value, whichever is less extreme. The observational correlations for seasonal-mean combined

neural networks are sensitive to the dataset of choice, as observational correlations are higher

for GPCP than ERA5 or JRA55. This is not the case for the annual-mean and monthly-mean

combined neural networks, which have approximately the same correlations regardless of the

source of the observations. This is because the seasonal-mean combined neural networks rely

on precipitation to predict the year, while the annual-mean and monthly-mean combined neural

networks do not, as shown in Figure 5.
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Figure S5. Sensitivity of observational correlations to the source of precipitation

observations: precipitation only. Pearson correlations of the actual years with the years

predicted by 100 trained neural networks given observations of precipitation. Correlations were

computed for all years beginning in 1980 where observational data exists for all variables. The

box plots indicate the first, second, and third quartile statistics, and the whiskers denote 1.5

times the interquartile range, or the minumum/maximum value, whichever is less extreme. The

observational correlations are sensitive to the source of precipitation data. Correlations are

highest for GPCP, followed by ERA5 and JRA55. The observational correlations for ERA5

seasonal-mean extreme precipitation are similar to those for ERA5 seasonal-mean precipitation.
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Figure S6. Time of emergence for seasonal-mean fields. TOE was calculated for

each climate model in the testing sets of 100 trained neural networks. Each dot represents five

(rounded up) occurrences of the associated TOE year (i.e. one dot represents 1-5 occurrences,

two dots represent 6-10 occurrences, and so on). For added clarity, box plots indicate the first,

second, and third quartiles of the TOEs for each model, and whiskers denote 1.5 times the

interquartile range, or the minimum/maximum point, whichever is less extreme.
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Figure S7. Signal and noise for extreme precipitation over the Americas. Plots

of S/N ratio, and its components (signal, climate model variability, and internal variability) for

extreme precipitation in each season over North and South America. The signal is most clear

over the northern-most latitudes. The S/N ratio is below 1.5 in all seasons indicating that there

is considerable noise relative to the signal of change.
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Figure S8. Time of emergence for extreme precipitation over the Americas. TOE

was calculated for each climate model in the testing sets of 100 trained neural networks. Each

dot represents five (rounded up) occurrences of the associated TOE year (i.e. one dot represents

1-5 occurrences, two dots represent 6-10 occurrences, and so on). For added clarity, box plots

indicate the first, second, and third quartiles of the TOEs for each model, and whiskers denote

1.5 times the interquartile range, or the minimum/maximum point, whichever is less extreme.
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