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Abstract14

We present a near surface air temperature (NSAT) fused data product over the con-15

tiguous United States using Level 2 data from the Atmospheric Infrared Sounder16

(AIRS), on the Aqua satellite, and the Cross-track Infrared Microwave Sounding Suite17

(CrIMSS), on the Suomi National Polar-orbiting Partnership (SNPP) satellite. We18

create the fused product using Spatial Statistical Data Fusion (SSDF), a procedure19

for fusing multiple datasets by modeling spatial dependence in the data, along with20

ground station data from NOAA’s Integrated Surface Database (ISD) which is used21

to estimate bias and variance in the input satellite datasets. Our fused NSAT prod-22

uct is produced twice daily and on a 0.25-degree latitude-longitude grid. We provide23

detailed validation using withheld ISD data and comparison with ERA5-Land reanal-24

ysis. The fused gridded product has no missing data; has improved accuracy and25

precision relative to the input satellite datasets, and comparable accuracy and preci-26

sion to ERA5-Land; and includes improved uncertainty estimates. Over the domain27

of our study, the fused product decreases daytime bias magnitude by 1.7 K and 0.528

K, nighttime bias magnitude by 1.5 K and 0.2 K, and overall RMSE by 35% and29

15% relative to the AIRS and CrIMSS input datasets, respectively. Our method is30

computationally fast and generalizable, capable of data fusion from multiple datasets31

estimating the same quantity. Finally, because our product reduces bias, it produces32

long-term datasets across multi-instrument remote sensing records with improved bias33

stationarity, even as individual missions and their data records begin and end.34

Plain Language Summary35

We have used a data fusion technique called spatial statistical data fusion (SSDF)36

to create an improved near surface air temperature (NSAT) dataset by fusing two37

separate satellite datasets. NSAT is important for a variety of applications, such as38

drought, wildfire, and extreme heat research and prediction. The two input NSAT39

datasets come from the AIRS instrument on the Aqua satellite, and the CrIMSS40

suite on the SNPP satellite. Our fused NSAT product is produced twice daily and41

on a 0.25-degree latitude-longitude grid. We also performed a detailed validation42

using withheld reference data (which was not included in the bias-correction data)43

and comparison with ERA5-Land reanalysis. The new SSDF product has no missing44

data; has improved accuracy and precision relative to the input satellite datasets, and45

comparable accuracy and precision to ERA5-Land; and includes improved uncertainty46

estimates. SSDF is computationally fast and generalizable, capable of data fusion47

from multiple datasets so long as they estimate the same quantity. Finally, because48

our product reduces bias, it provides a means of creating high-quality continuous long-49

term datasets across the years, as individual satellite missions and their data records50

begin and end.51

1 Introduction52

Data fusion is the combining of multiple datasets into a single dataset with53

improved properties relative to the input datasets (for a recent review, see Ghamisi54

et al. (2019)). Near-surface air temperature (NSAT, the air temperature at a height55

of 2 m above the surface) is a fundamental variable that critically affects life on the56

Earth’s surface, and an Essential Climate Variable. Here, we describe the use of spatial57

statistical data fusion (SSDF) to fuse two Level 2 (L2) satellite NSAT datasets into58

a single product at 0.25-degree spatial resolution on a twice-daily basis (one daytime59

and one nighttime estimate per day) over the contiguous United States (CONUS)60

and adjacent parts of North America. SSDF utilizes spatial dependence within and61

between the datasets to improve estimates at any given point, including at locations62

not covered by the input data.63
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As the Earth continues to rapidly heat due to human emissions of greenhouse64

gases, NSAT remote sensing records are becoming increasingly important for a number65

of critical science and applied science areas such as health, urban planning, hydrology66

and water, ecology and conservation, and wildfire prediction. NSAT data records67

have been produced by a variety of methods which are suited for different purposes.68

One method is to collect NSAT measurements from ground stations; one example69

of this type of dataset is the Integrated Surface Database, or ISD (A. Smith et al.,70

2011). Ground station measurements are relatively accurate, but they are sparse71

point-source measurements with some regions of the planet having less coverage than72

others. These strengths and weaknesses make them suitable for use as reference data73

for validation purposes. Another type of NSAT dataset can be created by filtering and74

processing these raw NSAT ground measurements into space-filled, gridded climate75

records useful for climate analysis and climate model validation. These climate records76

are typically monthly mean products at low resolution, such as the 1-degree resolution77

Berkeley Earth Monthly Land+Ocean dataset (Rohde & Hausfather, 2020). Berkeley78

Earth is also experimenting with daily and 0.25-degree-resolution datasets. A third79

strategy for estimating NSAT is reanalysis, which uses multiple data sources (including80

satellite data) and dynamical weather models to create dynamically consistent gridded81

fields. As computational power and algorithm efficiencies have increased, so have the82

spatial resolutions of reanalysis datasets. An example is the European Centre for83

Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5)-Land reanalysis84

NSAT dataset (Hennermann & Berrisford, 2019), which has hourly temporal resolution85

and a spatial resolution of 0.1 degrees, the highest available at the time of writing.86

Finally, NSAT can be estimated from satellite remote sensing. NSAT can be retrieved87

from imaging instruments which can estimate land surface temperature (LST) at high88

resolutions, although obtaining NSAT from LST requires regression modeling which89

introduces its own errors. An example of NSAT modeled from LST is the EUSTACE90

project (Good, 2015; Rayner et al., 2020), which produced global daily NSAT at 0.25-91

degree resolution. NSAT can also be estimated from atmospheric temperature profiles92

from infrared sounders using interpolation to the surface pressure level, such as the93

AIRS and CrIMSS products used in this study and described below in Section 2.1.94

Our data-fusion methodology, SSDF, exists within a geostatistical framework95

which is a part of the broader area of spatial statistics. Specifically, SSDF is de-96

signed to provide the principled error characterization and error propagation within97

data fusion for massive remote sensing data (Nguyen et al., 2012). SSDF has been98

demonstrated previously in the context of data fusion of L2 satellite remote sensing99

datasets. L2 datasets are geophysical quantities inferred or “retrieved” from the pri-100

mary observations of radiances by the orbiting instruments (known as “Level 1” data).101

The SSDF methodology we utilize here was first used to fuse L2 aerosol optical depth102

from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution103

Imaging Spectroradiometer (MODIS) aboard the Terra platform. It was subsequently104

demonstrated in the fusion of L2 total column CO2 concentration (XCO2) from the105

Atmospheric Infrared Sounder (AIRS) aboard the Aqua platform and XCO2 from the106

Orbiting Carbon Observatory-2 (OCO-2) (Nguyen et al., 2014). In addition, an SSDF107

variant called local kriging was used to produce fused estimates of XCO2 from GOSAT108

(Hammerling et al., 2012). In the current work, we describe the creation of the first109

long data record produced by SSDF, and the first data fusion of NSAT by any method.110

L2 datasets can present certain challenges and limitations to end users which111

can be mitigated through data fusion. Instantaneous snapshots are obtained at a112

large number of spatial and temporal fields of regard determined by orbital and sensor113

geometry, and therefore do not fall on a regular grid. Data coverage is spatially114

and temporally incomplete due to clouds, gores (spaces between orbit tracks), and115

faults due to “single-event upsets” often attributed to cosmic rays. L2 data can have116
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large errors relative for example to reanalysis datasets, and uncertainty estimates, if117

reported, may not accurately represent the true error.118

Our SSDF NSAT product combines two input remote sensing datasets: L2 NSAT119

from AIRS, and L2 NSAT from the Cross-track Infrared Microwave Sounding Suite120

(CrIMSS) on the Suomi National Polar-orbiting Partnership (SNPP) platform. These121

L2 datasets are created using two independent retrieval algorithms with different first-122

guess strategies. We also use information content from in situ ground station networks123

from NOAA’s Integrated Surface Database (ISD) to determine uncertainties in the two124

remote sensing datasets which are needed to perform fusion, and to validate the SSDF125

product and its associated uncertainty estimates. We randomly divide the ISD data126

into training and testing sets to perform these two separate functions.127

Our fused SSDF NSAT product has the following key advantages over either of128

the input remote sensing datasets:129

1. SSDF fills spatial gaps;130

2. SSDF produces estimates on a regular 0.25-degree spatial grid;131

3. SSDF reduces bias and variance relative to a reference in situ dataset;132

4. SSDF produces improved uncertainty estimates;133

5. SSDF improves long-term stationarity relative to the input datasets.134

The rest of the paper is organized as follows. We first describe the input datasets135

and methodology. Then we present the SSDF NSAT product, and the results of val-136

idation against withheld ISD surface station data. We also compare the SSDF fused137

NSAT product to the individual input remote sensing datasets, and to ERA5-Land138

reanalysis. In the process of validating our SSDF product, we also produce the most139

thorough validation study to date of the AIRS V7 and SNPP-CrIMSS-CLIMCAPS140

V2 NSAT products over CONUS. We conclude with a discussion of advantages, limi-141

tations, and potential future work.142

2 Data and methods143

Performing and evaluating SSDF involves five major steps: (1) Obtaining and144

filtering input remote sensing datasets that estimate the same quantity; (2) Match-145

ing the remote sensing datasets to a reference in situ dataset in space and time; (3)146

Using these matched data pairs (“matchups”) to characterize the input datasets via147

estimation of their bias and variance relative to the reference estimate; (4) Performing148

the SSDF calculations; and (5) Validating the results using withheld data from the149

reference dataset. The method and the specific datasets used in our NSAT dataset are150

described in the following subsections.151

2.1 Satellite NSAT data152

The input satellite datasets come from two hyperspectral infrared sounders and153

retrieval algorithms. The Aqua platform that carries AIRS launched in 2002 in a154

sun-synchronous polar orbit, with equator crossing times of approximately 1:30 P.M.155

and 1:30 A.M. for ascending (south to north) and descending (north to south) nodes,156

respectively. AIRS is an infrared grating spectrometer with 2378 channels, spanning157

3.7 to 15.4 µm (Chahine et al., 2006). Power to critical channels of the Aqua satellite’s158

Advanced Microwave Sounding Unit (AMSU)-A2 was lost in September 2016 (Yue et159

al., 2017). AMSU-A2 complemented the AIRS instrument in atmospheric temperature160

and moisture profile retrievals, and was especially informative for moisture profiles.161

The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave162

Sounder (ATMS) instruments launched onboard the SNPP platform in 2012. SNPP163
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is in the same orbital plane as Aqua, but at a higher altitude (824 km as opposed164

to 705 km), with equator crossing times also approximately 1:30 P.M. and 1:30 A.M.165

Together, these two instruments are known as SNPP-CrIMSS (Cross-track Infrared166

Microwave Sounder Suite). SNPP-CrIS experienced an anomaly on May 21, 2021167

which resulted in the loss of the longwave infrared channels. Another instance of168

CrIMSS is flying on the JPSS-1 (Joint Polar Satellite System, also known as J1 or169

NOAA-20) which launched on November 2017. Data from J1-CrIMSS is not used in170

this study, but could be used in future SSDF products.171

For obtaining Aqua-AIRS temperature soundings, we use the AIRS-team Version172

7 L2 “infrared-only” temperature retrieval algorithm (Susskind et al., 2014), a least173

squares estimate using singular value decomposition regularization and cloud-cleared174

radiances. Stochastic Cloud Clearing Neural Network (SCCNN) which is trained to175

ECMWF fields (Blackwell, 2005) as a first guess, then refines to a final estimate. We176

choose the “infrared-only” retrieval for our study due to the 2016 loss of AMSU-A2,177

but we note that this retrieval uses information from the satellite’s other microwave178

sounder, AMSU-A1 (Yue et al., 2020). The retrieval uncertainty is estimated via a179

regression model using eleven retrieval diagnostic quantities as predictors; the regres-180

sion coefficients are trained on two days of retrievals (9/29/04 and 2/24/07) using181

ECMWF 3-hour forecasts as a reference dataset (Susskind et al., 2014; Thrastarson182

et al., 2020). Each individual retrieval has a nominal horizontal resolution of 45 km183

comprised of nine 15 km fields of view in a 3x3 matrix, and each swath contains 30184

retrievals across its width and 45 along track. The product is organized nominally in185

240 “orbital granules” per day (AIRS Project, 2020).186

For obtaining SNPP-CrIMSS temperature soundings, we use the Community187

Long-term Infrared Microwave Coupled Atmospheric Product System (CLIMCAPS)188

Version 2 L2 temperature retrieval, which uses a hybrid optimal estimation methodol-189

ogy with a first guess from the Modern-Era Retrospective Analysis for Research and190

Applications version 2 (MERRA2) (N. Smith & Barnet, 2020), and information from191

both the CrIS and ATMS instruments. Like the AIRS-team retrieval, CLIMCAPS192

uses nine approximately 15 km fields of view in a 3x3 field of regard of 45 km, and193

performs cloud clearing using L1 radiances. CLIMCAPS uncertainty is estimated and194

propagated sequentially via error covariance matrices in stages (N. Smith & Barnet,195

2019). CLIMCAPS produces a combined infrared and microwave retrieval at two196

spectral resolutions: Nominal Spectral Resolution (NSR) and Full Spectral Resolution197

(FSR). We use the CLIMCAPS-SNPP NSR product to create our SSDF product, since198

it begins in 2012 whereas the FSR record only begins on November 2, 2015. In what199

follows, we refer to this product as “CrIMSS-CLIMCAPS” or sometimes as “CrIMSS.”200

An overview of the AIRS-team and CLIMCAPS retrievals is available online (AIRS201

team, n.d.), and a detailed comparison of the two retrievals applied to AIRS L1 data202

is available, including relative strengths and weaknesses can be found in (Yue et al.,203

2021).204

NSAT is obtained from the vertically-resolved temperature profiles (with 100205

pressure levels) via interpolation to the surface pressure for each field of regard (Olsen206

et al., 2017). The profile temperatures immediately above and below the surface207

are used for the interpolation, unless the level above is within 5 hPa of the surface208

pressure. In that case, the two levels above the surface are used. We include only L2209

NSAT retrievals from AIRS V7 IR-only and CrIMSS-CLIMCAPS products with data210

quality flags ‘good’ or ‘best.’211

2.2 In situ NSAT data212

The National Oceanic and Atmosphere Administration (NOAA) Integrated Sur-213

face Database (ISD) is a global database of near-surface meteorological observations214
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compiled from over a hundred systems of ground stations (A. Smith et al., 2011). The215

record extends back to the 1950s, although new stations have been added on a con-216

tinual basis as available, improving coverage over time. Today ISD consists of more217

than 35,000 surface weather stations globally, 14,000 of which remain active. Figure 1218

shows the spatial coverage of ISD stations in North America.219

We use sub-hourly NSAT measurements gathered from over 7000 stations in220

North America as our reference dataset, for bias and variance estimation and for valida-221

tion. No data are perfect, but the ISD errors are small relative to the errors in the input222

remote sensing datasets (see Figure 7). Naturally ventilated screened surface station223

air temperature measurements are accurate to ±0.1 K in most circumstances(Harrison224

& Burt, 2021). ISD data come with a set of ten data quality flags, indicating various225

problems and levels of quality. We only use ISD data flagged as highest quality, i.e.,226

data must be flagged with either 1 (‘Passed all quality control checks’) or 5 (‘Passed227

all quality control checks, data originate from an NCEI data source’).228

We chose ISD ground stations as our reference dataset for the following reasons:229

(1) it is not reanalysis, which assimilates AIRS and SNPP-CrIMSS information, as230

well as information from dynamical weather modeling; (2) ISD is among the most231

comprehensive ground station datasets available; (3) ISD NSAT estimates have low232

errors relative to remote sensing estimates.233

Figure 1: Spatial coverage of the ISD stations over North America. Note that ISD is a
global dataset.

2.3 Reanalysis NSAT data234

We also compare the SSDF NSAT results to ECMWF Reanalysis 5 (ERA5)-235

Land reanalysis data. The ERA5 is the fifth-generation global atmospheric reanalysis236

from ECMWF, replacing the ERA-Interim reanalysis which stopped being produced237

on August 31, 2019. Newly reprocessed datasets along with recent instruments have238

been assimilated into the ERA5 that could not be ingested into the ERA-Interim239

(Hennermann & Berrisford, 2019). We note that some AIRS spectral channels under240
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clear conditions are incorporated into ECMWF reanalysis (Mcnally et al., 2006), but241

that ISD data are not.242

We use hourly ERA5-Land output which is a high-resolution version of the land243

component of the ERA5 reanalysis. ERA5-Land 2 m air temperature was chosen over244

the full ERA5 reanalysis for its finer spatial resolution of 0.1x0.1 degrees and hourly245

temporal resolution.246

2.4 Bias and variance estimation247

Biases and variances of input data sources are the key to high-quality data fusion.248

SSDF assumes input data are unbiased, and weights them by the inverse of their249

respective variances. This minimizes output errors of the fused estimates. Therefore,250

data must be bias-corrected before SSDF ingestion, and the quality of the final fused251

product depends on the quality of uncertainty estimates for the inputs.252

To estimate bias and variance for satellite footprints, we create an ensemble253

of “matchups”: matched pairs of satellite and ISD station estimates that are close254

in space (less than 100 km apart) and time (less than an hour apart). For a given255

period, the matchups are sorted into 240 km (∼two-degree) diameter hexagonal spatial256

bins based on satellite footprint location, with three-day time bins (day of interest,257

along with preceding and following days). We empirically tested different time bins258

(monthly, seven days, and three days) for aggregating matchups for determining bias259

and variance, and the three-day time bins minimized the mean standard deviation of260

a sample SSDF product over CONUS, while allowing for adequate sample size. This261

binning is the basis for quantifying bias and variance for all satellite footprints in a262

given space-time cell. We randomly select 1% of the ISD matchup pairs to withhold for263

validation (we do not withhold entire ISD stations). We chose a relatively small amount264

to withhold in order to maximize the information content for the SSDF product.265

To obtain the matchups we apply the following steps.266

1. Given an ISD observation at location s and time tI(s), select the AIRS granule267

(1 of 240) with the closest time to tI(s).268

2. Within this granule, select all L2 retrievals within 100 km of s and 1 hour of269

tI(s).270

3. If Step 2 results in more than 1 retrieval, select the one closest in spatial distance.271

Note that these steps will result in a one-to-one match between an ISD obser-272

vation and a single AIRS footprint. Some ISD observations may have no correspond-273

ing AIRS match, in which case no matchup is returned. We next tessellate a fixed274

hexagonal spatial grid over CONUS and find the biases and variances using matchups275

aggregated over 3 days within each grid cell, as follows:276

I. To compute a bias on day d and mode j (day or night) and in hexagonal grid277

cell i, we find the set of all valid (i.e., non-null) AIRS-ISD matchups from Steps278

1 to 3 above such that,279

(a) the AIRS data come from mode j,280

(b) the AIRS footprint belongs within the grid cell i,281

(c) the ISD date is in (d− 1, d, d+ 1).282

II. The bias and variance for day d, mode j, and grid cell i are then computed283

using the set of paired ISD-AIRS matchups.284

Bias and variance estimation for CrIMSS follows the same procedure. For bias285

correction, given an instrument observation at location s on day d and mode j, we286
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compute the corresponding bias within the grid cell which contains s for day d and287

mode j, and we subtract it from the instrument’s NSAT value. For more detail on the288

bias and variance estimation process, please refer to Appendix A.289

After the bias field is estimated for a given dataset relative to the ISD reference290

dataset, every datum in that dataset is then bias-corrected. After the variance field291

is estimated for a given dataset, every datum in that dataset is assigned a variance292

estimate which is then used in the SSDF algorithm to weight the datum.293

2.5 Data fusion methodology294

SSDF is an algorithm for fusing multiple remote sensing datasets by leveraging295

spatial dependence in the data, also known as kriging or optimal interpolation (Cressie,296

1993). Remote sensing data from different instruments in general are heterogeneous.297

By this we mean that the input remote sensing data sets may have different spatial298

footprints, sampling patterns, and measurement error characteristics. SSDF accounts299

for these heterogeneities by using a spatial statistical model that expresses the rela-300

tionships between the true quantity of interest at a particular location, and all the301

observations at all locations from all data sources.302

We note that the main requirement of SSDF is that the different instruments in303

question (e.g., AIRS and CrIMMS) must be observing the same geophysical quantity304

of interest (e.g., NSAT). We assume that after bias correction, the retrievals from305

both instruments are unbiased relative to the true underlying process. We also assume306

that we have standard deviation estimates that characterize the relative informational307

content between the instruments.308

One of the challenges encountered when applying spatial interpolation via tradi-309

tional kriging to remote sensing data is the massive data sizes involved. In traditional310

kriging, the computational complexity of the algorithm is O(N3) due to the need to311

invert an N × N covariance matrix C, where N is the number of data points. This312

inversion makes traditional kriging infeasible for datasets with N on the order of tens313

of thousands of data points or larger. To account for this, we use a scalable vari-314

ant of kriging that employs a dimension-reduction technique (Spatial Random Effects315

modeling) to parameterize the matrix C as a rank-r update to a diagonal matrix,316

where r << N . This allows us to invert the covariance matrix C analytically us-317

ing the Sherman-Morrison-Woodbury formula with computational complexity O(Nr2)318

(Cressie & Johannesson, 2008). SSDF is essentially an extension of Fixed-Ranked Krig-319

ing (FRK) for combining multiple datasets. Indeed, SSDF works by concatenating all320

the datasets into a meta-dataset (with each data point encoded with a value, location,321

and variance estimate) and then applying the FRK algorithm. Therefore, SSDF can322

easily generalize to more datasets than two, and it can also be applied to a single323

dataset (a sub-case needed for the AIRS-only part of the multi-instrument record,324

from 2002-2012), without mathematical modification.325

A second challenge with traditional kriging is handling arbitrary spatial foot-326

prints of the input datasets and those of the output grid. Gotway and Young (2002)327

identified this “change of support” problem of inferring a spatial process at one res-328

olution from data at another resolution. However, their solution is computationally329

intensive, requiring integration over footprints and making it difficult to do parameter330

estimation for general non-linear covariance classes. In SSDF the SRE model is linear,331

which makes change of support and the associated parameter estimation straightfor-332

ward (Nguyen et al., 2012).333

As a scalable variant of Gaussian process prediction (Cressie, 1993), SSDF pro-334

vides two other advantages over other non-statistical data fusion approaches such as335

binning or non-parametric methods such as machine learning. First, the standard336
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errors are optimized because SSDF minimizes errors relative to the unknown true pro-337

cess; SSDF estimates are therefore “best linear unbiased estimates.” Within the class338

of linear estimators, this method produces the smallest prediction errors. In addition,339

SSDF provides a statistically principled method for estimating uncertainties. Mini-340

mizing errors and quantifying uncertainties allows SSDF to create more accurate and341

usable data products from input datasets.342

For the full mathematical formulation of SSDF, see Appendix B.343

2.6 Dataset preparation for validation344

We validate our SSDF product using a randomly chosen reserved 1% of the ISD345

dataset. We match up SSDF, AIRS, CrIMSS, and ERA5 estimates to withheld ISD346

data using a 100 km and 1 hour matchup criterion (see Section 2.4 for more detail).347

These matchup datasets generally differ in their coverage; for instance, an SSDF es-348

timate might be matched to an ISD observation at a location where there are no349

nearby AIRS or CrIMSS estimates. Therefore, to mitigate the effect of biases due to350

differing spatial and temporal coverage in these matchup pairs, we also require that351

SSDF estimates are also close to (within the same matchup distance and time) of at352

least one datum from the comparison dataset. This matchup procedure generates mul-353

tiple paired datasets: ISD-AIRS, ISD-CrIMSS, ISD-SSDF, and ISD-ERA5, allowing354

comparison, for example, of pairs of datasets such as AIRS and SSDF(AIRS) (i.e., a355

subset of the SSDF points matched up to AIRS points) which have the same number356

of samples, each of which is collocated in space and time within the matchup criterion.357

To put this another way, the reason we have separate plot traces for SSDF(AIRS) and358

SSDF(CrIMSS) is to allow an apples-to-apples comparison despite differing spatial359

coverage of the AIRS, CrIMSS, ERA5, and SSDF datasets.360

The choices of a 1% test ISD dataset and this matchup scheme results in over361

4000 AIRS-SSDF sample pairs and over 13,000 CrIMSS-SSDF sample pairs for 2013,362

a typical year.363

3 Results364

3.1 SSDF product overview365

We produced fused NSAT using two satellite input datasets over North America366

between 25 N and 50 N. We chose to fuse the AIRS and SNPP-CLIMCAPS products367

because the orbits of these satellites have similar overpass times of approximately368

1:30 and 13:30 local solar time, and the records extend back to at least 2013. We369

note that although we initially restrict our product to CONUS, the two input L2370

retrievals provide global coverage, and that we plan to extend our SSDF product to371

global land surfaces in the future. We produce two products, a main product from372

both AIRS and SNPP-CrIMSS which runs from November 28 2012 through 2020 and373

which we will denote SSDF-AC; and a long-record product with just AIRS, which374

runs from August 31 2002 through 2020 and which we will denote SSDF-A. These375

two product lines were created identically, with the only difference being that the list376

of input data tuples (bias-corrected NSAT, latitude, longitude, and variance) fed to377

the SSDF algorithm consisted of tuples from either two remote sensing datasets or378

just one. Between 2013 and 2020 there were 32 days and 30 nights with no AIRS379

data, and 29 days and 24 nights with no SNPP-CLIMCAPS data. Because outages380

happened not to occur for both input datasets on the same day or night over this381

period, the SSDF-AC product was created from only the single dataset when necessary,382

thus creating a continuous record. The SSDF-A record has 74 missing daily files383

due to AIRS outages, often due to single event upsets (for a list of AIRS outages,384

–9–



manuscript submitted to Earth and Space Science

see https://airs.jpl.nasa.gov/data/outages/). In what follows, if not otherwise385

specified, “SSDF” refers to SSDF-AC.386

Figure 2: Sample data fusion satellite NSAT inputs, SSDF NSAT results, and uncer-
tainty estimates for 2015 October 31, day. The top two plots show maps of the input
satellite NSAT data ingested into the SSDF product (restricted to CONUS and neighbor-
ing regions), with AIRS on the left and SNPP-CrIMSS on the right. The bottom left plot
shows the SSDF fusion results. The bottom right plot shows the uncertainty estimates on
the SSDF fusion results at the 1-sigma level. All units are degrees K.

Figures 2 and 3 provide maps representing one arbitrarily chosen day and night387

of the SSDF-AC product. For both the day and night cases, the top two plots show388

maps of the input satellite data ingested into the SSDF product, with AIRS on the left389

and SNPP-CrIMSS on the right; the bottom left plot shows the SSDF fusion results;390

and the bottom right plot shows the uncertainty estimates on the SSDF fusion results391

at the 1-sigma level. These sample maps demonstrate how our SSDF method fills392

in missing data in the input datasets by exploiting spatial correlations to provide a393

complete gap-filled, gridded product. Note that the estimated uncertainties are higher394

in regions that contain no observations, contain observations from only a single input395

dataset, or in which the two input datasets have relatively poor agreement.396

3.2 Comparison of bias, standard deviation, and RMSE397

We now turn to validation against withheld ISD reference data to quantify im-398

provement in the SSDF products. We emphasize that the ISD data used for validation399

were not the same as the ISD data used to estimate bias and variance in the course400

of creating the SSDF products, as we split the ISD matchup data into ‘training’ and401

‘testing’ sets. We examine bias, standard deviation, and RMSE, calculated from the402

withheld matchups, of AIRS, CrIMSS, ERA5-Land, and the corresponding matched403

SSDF data. In what follows, we often analyze daytime and nighttime separately, as404

daytime and nighttime biases can differ significantly.405

We first show maps of bias, RMSE, and standard deviation relative to the 1% of406

withheld (testing-only) ISD reference data, based on the matchups aggregated into the407

hexagonal bins. Figure 4 shows maps of bias (retrieval - ISD) for AIRS, CrIMSS, and408

SSDF, for the 2013-2020 period in total, and for day-only and night-only. Individual409

bias estimates for retrieval-ISD pairs are aggregated into 2-degree hexagonal cells.410
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Figure 3: Same as Figure 2 but for night. All units are degrees K.

Overall, in the mean over CONUS and over the entire time period, SSDF provides411

a reduction in the magnitude of daytime bias of 1.7 K and 0.5 K relative to AIRS and412

CrIMMS, respectively. At night, SSDF is essentially unbiased in the mean over the413

domain and provides a reduction in the magnitude of bias of 1.5 K and 0.2 K relative414

to AIRS and CrIMMS, respectively.415

AIRS shows a strong cold bias in daytime over the mountainous West, which416

is also present in CrIMSS, although less severe. AIRS shows a near-constant warm417

bias over the entire Eastern CONUS at night, while CrIMSS shows a sharp warm bias418

over small regions of the mountainous West at night. SSDF mitigates these biases419

(through the bias-correction procedure described above) and produces estimates with420

lower biases than either of its input satellite data sets over the domain.421
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Figure 4: Maps of bias (retrieval - ISD) over the product period of 2013-2020, created
against the withheld ISD test data, for AIRS (first column), CrIMSS-CLIMCAPS (second
column) and SSDF (third column), for both day and night together (top row), for day
only (second row) and for night only (third row). Individual bias estimates for retrieval-
ISD matchup pairs are aggregated over 2-degree hexagonal cells. The mean bias over
CONUS for the entire time period is shown in the title for each map.
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Figures 5 and 6 show maps of standard deviation and RMSE for AIRS, CrIMSS422

and SSDF, for the 2013-2020 period, and for daytime only and nighttime only. Stan-423

dard deviation and RMSE tell a similar story to that of bias. Overall, in the mean424

over CONUS and over the entire time period, SSDF provides a reduction in RMSE of425

35% and 15% compared to AIRS and CrIMSS, respectively.426

CrIMSS has high RMSE over the mountainous West in both day and night,427

but low RMSE over the eastern two-thirds of the continent. Similarly, AIRS has428

relatively high RMSE over the entire domain, but especially over the mountainous429

West. Mountainous regions pose particular challenges for remote sensing of surface430

quantities, and of NSAT in particular, which can vary greatly depending on e.g., north-431

facing versus south-facing mountain surfaces. Furthermore, variations in topographic432

features between ISD stations and their matched remote sensing retrievals can lead433

to random errors, increasing RMSE and variance estimates. However, SSDF NSAT434

shows a clear decrease in bias over all regions, including in the mountainous western435

CONUS, although there is potential for improvement in the SSDF product over the436

West.437

Figure 5: Standard deviation maps. The nine panels are similar to those in Figure 4 but
for standard deviation.
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Figure 6: RMSE maps. The nine panels are similar to those in Figure 4 but for RMSE.
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We repeated this analysis over CONUS and the 2013-2020 period for the SSDF-438

A product. We found similar improvements in bias, standard deviation, and RMSE.439

The mean bias of SSDF-A over the entire domain was -0.08 K for daytime only, and440

-0.03 K for nighttime only. The overall RMSE was 2.52 K, 4% higher than the overall441

RMSE of the SSDF-AC product.442

Figure 7 shows histograms of the NSAT error (retrieval/reanalysis - ISD) for the443

year 2013, over CONUS only. The three comparison datasets (AIRS, CrIMSS, and444

ERA5-Land) were matched separately to SSDF outputs, to ensure that the SSDF445

product and each corresponding comparison dataset are considering the same scenes.446

The SSDF error histograms are symmetric with a single mode and peak at 0 for both447

day and night, which is consistent with the errors being unbiased relative to the ISD448

reference dataset. The AIRS histogram exhibits a cold bias during the day and a warm449

bias at night. CrIMSS has a similar day/night bias shift, but of a smaller magnitude. A450

cold bias over land, particularly at higher temperatures, has been previously noted for451

both input datasets (Yue et al., 2020, 2021), although there have been few validation452

studies (Ferguson & Wood, 2010; Sun et al., 2021). The SSDF product exhibits453

smaller mean biases and RMSEs than either input dataset. On average, over both454

input datasets, daytime and nighttime, SSDF decreases mean bias magnitude by 81%455

and mean RMSE by 23% relative to the input datasets.456

Next, we examine the seasonality of bias and RMSE. Figure 8 shows the mean457

bias (retrieval/reanalysis – ISD) by month split into day/night to examine seasonality.458

There is a significant cold bias during the day for AIRS and CrIMSS that switches459

to a warm bias at night. During the day, AIRS has a smaller bias during winter460

months (Dec/Jan/Feb) and a larger bias during summer months (Jun/Jul/Aug). This461

is switched during nighttime where a larger warm bias is observed during winter and462

a smaller warm bias is observed during summer. These AIRS biases are of course also463

apparent in Figure 7. The SSDF product is relatively unbiased for both day and night.464

The SSDF bias magnitude is slightly larger during the day than night. From May to465

December, the SSDF product has a smaller bias at night than does ERA5-Land while466

during the day the reanalysis and the SSDF mean biases are of similar magnitude.467

Figure 9 shows mean RMSE (retrieval/reanalysis – ISD) by month split by day/night,468

i.e., the mean RMSE values calculated in 2-degree spatial bins. RMSE is largest for469

AIRS, particularly during the day. Generally, RMSE is higher in winter and lower in470

summer. During the day, the ERA5-Land has the lowest RMSE. At night, the SSDF471

RMSE is comparable and sometimes lower than the ERA5-Land RMSE.472

We next examine relative performance in hot and cold extremes. Figure 10 shows473

the mean bias (retrieval/reanalysis – ISD) by ISD percentile of the ISD matchups.474

The error bars indicate the standard error of the mean at the 95 percent confidence475

level. The lighter shade of every color is the matched SSDF corresponding to the476

comparison dataset. All retrievals and reanalysis do best in the mean state (25th to477

75th percentile). At the extremes, each of the datasets being compared to ISD have478

warm biases for low values (1st through the 15th percentile) and cold biases for high479

values (85th through the 99th); in other words, all of the datasets understate cold480

or warm extremes represented in the ISD. The SSDF product captures the extremes481

better than both the AIRS and CrIMSS inputs. However, the reanalysis generally482

does best, having the smallest bias regardless of percentile, and is better at capturing483

the extremes.484

We next examine performance at extremely high elevations. Figure 11 shows485

mean biases (retrieval/reanalysis – ISD) aggregated by ISD elevation. At around 2500486

meters, mean biases increase with elevation in the SSDF product, AIRS, CrIMSS, and487

reanalysis. Daytime mean biases at these high elevations are larger in SSDF, although488
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Figure 7: Histograms of errors for day (top) and night (bottom) for 2013 over CONUS,
for AIRS (blue), CrIMSS (red) and ERA5-Land (green). The dashed line is the SSDF-AC
subset matched to the other datasets. Mean statistics of bias, RMSE, and the number of
samples are provided.

we note that the sample size is small. At night, SSDF shows lower mean biases than489

AIRS, CrIMSS, or ERA5-Land at high elevations.490

In order to increase the sample size for high-elevation cases, Figure 12 shows491

the mean biases aggregated by ISD elevation for elevations higher than 2000 meters492

over the period 2012-2020. During the day, the SSDF bias exceeds AIRS and CrIMSS,493

consistent with Figure 11. We hypothesize that this excess bias in SSDF for a very small494

number of data points at very high elevations is caused by the bulk-binning method495

for bias estimation. As Figure 11 shows, both remote sensing datasets exhibit a cold496

bias during the daytime at lower elevations. Because the two-degree hexagonal bins for497

bias estimation are dominated by lower elevations (as the problematic high elevations498

are high mountain surfaces), and because both remote sensing dataset biases switch499

signs from cold bias to warm bias at approximately 2500 m, the cold bias correction500

calculated from the bulk bins ends up exacerbating the warm bias from the input501

datasets at the highest elevations. In a future version of SSDF, we will improve the502
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Figure 8: Mean bias as a function of month for day (top) and night (bottom) for 2013
over CONUS. Numbers at the bottom indicate the number of data points, and are color-
coded according to dataset.

bias estimation of the input datasets, which could mitigate or eliminate this bias at503

the small number of estimates elevations above 2500 m.504
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Figure 9: Mean RMSE as a function of month for day (top) and night (bottom) for 2013
over CONUS. Numbers at the bottom indicate the number of data points, and are color-
coded according to dataset.

Figure 10: Mean biases as a function of ISD percentile for 2013 over CONUS. Num-
bers at the bottom indicate the number of data points, and are color-coded according to
dataset.
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Figure 11: Mean biases as a function of ISD elevation for day (top) and night (bottom)
for 2013 over CONUS. Numbers at the top indicate the number of data points, and are
color-coded according to dataset.
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Figure 12: Mean biases as a function of ISD elevation for day (top) and night (bottom)
over CONUS from 2012-2020 for AIRS, CrIMSS, and SSDF. Numbers at the top indicate
the number of data points, and are color-coded according to dataset.
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3.3 Comparison of uncertainty estimates505

The SSDF algorithm provides a mean (prediction/estimate) and standard devi-506

ation (uncertainty) of the conditional distribution of true NSAT, given the available507

inputs; this distribution is termed the predictive distribution. In what follows, this508

is a Gaussian distribution, centered at the SSDF estimate. This information can be509

used to construct prediction intervals for the true NSAT. Here we provide a summary510

and probabilistic assessment of the SSDF predictive distribution along with related in-511

formation from the AIRS V7 and CrIMSS-CLIMCAPS V2 products. In the notation512

that follows, we use the subscript i in place of the areal unit notation Bi.513

• In addition to each SSDF NSAT estimate, Ŷi, the algorithm also provides the514

conditional standard deviation of the predictive distribution, denoted σ̂Ŷ ,i.515

• The AIRS V7 NSAT retrieval, Z1,i, is accompanied by a corresponding uncer-516

tainty estimate, denoted σ̂Z,1,i (Susskind et al., 2014). This estimate results517

from a regression model for predicting the absolute retrieval error given several518

predictors available from the retrieval.519

• The CrIMSS-CLIMCAPS V2 retrieval, Z2,i, also has a corresponding uncer-520

tainty estimate, denoted σ̂Z,2,i (N. Smith & Barnet, 2020). This estimate re-521

sults from a linear approximation of the posterior standard deviation of the true522

state given the observed radiances for a single footprint and is an output of the523

optimal estimation (OE) approach used in CLIMCAPS.524

Figure 13 shows histograms of these uncertainty estimates: σ̂Z,1, σ̂Z,2, and σ̂Ŷ525

across the CONUS data record. The solid line shows uncertainty estimates from AIRS526

(blue) and CrIMSS (red) while the dashed shows the corresponding matched SSDF527

uncertainty estimates. CrIMSS has a peak around 1.2 K with a narrow distribution;528

AIRS V7 has a peak between 1.5 and 2 K with a wide distribution. SSDF uncertainty529

histograms peak around 2 K.530

These uncertainty estimates are properties of distributions, whereas we define
error ei as a realization of a random variable that represents the difference between an
estimate and the true state. For example, the error for SSDF is eŷ,i = Ŷi − Yi, where
Yi is the ISD validation for colocation i. If the predictive distribution is assumed to
be Gaussian, the empirical coverage of intervals of the form

Ŷi ± c σ̂Ŷ ,i,

can be assessed for the ISD matchups. In the case of an unbiased estimate, “well-531

calibrated” uncertainty estimates, and a Gaussian distribution; intervals with c = 1532

should cover the true state Yi about 68% of the time, and about 95% of the time for533

c = 2.534

Figure 14 shows scatterplots of the joint distribution of the uncertainty estimate535

(x-axis) and the observed error (retrieval-ISD). There are many cases for AIRS and536

CrIMSS where the uncertainty estimate grossly underestimates the true error; over537

15% of the time for both datasets and for day and night, the true error is more than538

three times greater than the uncertainty estimate. However, this occurs about 3% of539

the time with SSDF in the day and fewer than 5% of the time at night. Overall, the540

CrIMSS uncertainty estimates are distributed too narrowly, and with a peak too low,541

to capture the true error. The AIRS uncertainty estimates also peak at a value below542

the peak of the error distribution, although the uncertainty estimate distribution is543

much wider, including a very long tail of high uncertainty estimates.544

In general, SSDF uncertainty estimates are consistent with statistical expecta-545

tions under Gaussian assumptions. For example, one would expect one-sigma uncer-546

tainty estimates to cover a standard error distribution 68% of the time, and we see547
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Figure 13: Histograms of uncertainty estimates for day (top) and night (bottom) for 2013
over CONUS.

that the SSDF uncertainty estimates do so roughly 65% of the time in daytime. Simi-548

larly, one would expect the estimates to cover 95% and over 99% at the 2- and 3-sigma549

levels, with SSDF covering about 90% and 97% during daytime.550
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Figure 14: Observed errors (retrieval - ISD) versus uncertainty estimates for day (top)
and night (bottom) for 2013 over CONUS. The colors show whether the range of each
observed error was within the uncertainty bound, as described in the text: 1×uncertainty
(green, should cover the true state about 68% of the time), 2×uncertainty (orange, should
cover the true state about 95% of the time), 3×uncertainty (red, should cover the true
state about 99% of the time) or > 3×uncertainty (black).
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3.4 Empirical distribution consistency551

The ISD record provides a sample of the empirical distribution of NSAT over552

CONUS. Here, we assess the relative consistency of the SSDF empirical distribution553

versus the other products against the ISD reference distribution. Figure 15 shows an554

example of the empirical cumulative distribution (ECDF) for the ISD (pink) and AIRS555

(blue). While it is almost certainly the case that the products’ ECDFs deviate from the556

ISD reference distribution in some subtle ways, we evaluate their relative consistency557

with ISD through a series of hypothesis tests. Figure 16 shows the difference between558

the ECDF of the retrieval/reanalysis to the ECDF of ISD. The AIRS ECDF has the559

largest difference to the ISD ECDF, particularly during the Day.560

Figure 15: ECDF for AIRS (blue) and ISD (pink) for day (top) and night (bottom) for
2013 over CONUS.

The SSDF estimates are tested against each of the other products (AIRS, CrIMSS,561

ERA5-Land) for night and day conditions. Each assessment is carried out using a ran-562

domization or resampling test (Wilks, 2006). For this test, the null hypothesis is that563

the empirical distributions of SSDF and the comparison product deviate equally from564

the ISD reference distribution. The alternative hypothesis is that either SSDF or the565

comparison product have an empirical distribution that is closer to the ISD reference566

distribution. For this procedure, the test statistic is computed as the difference in567

two-sample Kolmogorov-Smirnov (KS) statistics for the products versus ISD.568

For each instance of the test, we have a collection of matched triples {Ŷ,Zk,Y};
where Ŷ ≡ {Ŷi}; i = 1, . . . , n are the SSDF estimates, Zk ≡ {Zk,i}; i = 1, . . . , n are
the comparison products, and Y ≡ {Yi}; i = 1, . . . , n are the ISD NSAT. As above,
k = 1 for AIRS, k = 2 for CrIMSS, and here k = 3 for ERA5-Land. Then, test k has
a test statistic

γk = δ(Ŷ,Y)− δ(Zk,Y),

where δ is the traditional two-sample KS statistic. The KS statistic is the maximum569

difference in the two ECDFs being compared. Thus, the test statistic γk for the570

current test is a difference of ECDF deviations. A negative value is an indication that571

the SSDF distribution is closer to ISD than the comparison product.572
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Figure 16: The ECDF difference between the retrieval/reanalysis and the ISD color
coded for day (top) and night (bottom) for 2013 over CONUS.

The distribution of the test statistic under the null hypothesis can be estab-573

lished through a resampling procedure. The procedure should preserve the inherent574

dependence of the matched triples, but the assignment of the two comparison groups575

can be shuffled randomly. A null distribution is generated by repeating these steps576

m = 1, . . .M times:577

1. Define shuffled data vectors Wm,1 and Wm,2.578

2. For each validation matchup (i = 1, . . . , nk), assign Wi,m,1 = Ŷi and Wm,2,i =579

Zk,i with probability 0.5; otherwise assign Wm,1,i = Zk,i and Wi,m,2 = Ŷi. This580

effectively shuffles the labels for SSDF and the comparison product for each581

matchup.582

3. Compute the test statistic for the randomized samples,

γ0,m,k = δ(Wm,1,Y)− δ(Wm,2,Y),

The distribution of γ0,m,k provides the null distribution of the test statistic for each
test. Figure 17 displays the test statistics γk along with density plots of the null
distributions of test statistics γ0,m,k for M = 20, 000 resampled datasets for each test.
A two-sided p-value can be computed for each test as

pk =
1

M

M∑
m=1

Iγ(|γ0,m,k| > |γk|),

where Iγ is an indicator function.583
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The p-values for each of the resampling tests of SSDF versus other products are584

displayed as text in Figure 17. All tests, except the night comparison of SSDF and585

CrIMSS, yield p-values of 0, indicating a significant difference in consistency with the586

ISD reference distribution. These results can also be seen visually as the observed test587

statistics γk, shown as vertical lines, lie well outside the corresponding null distribu-588

tions. The tests indicate SSDF is more consistent with ISD than AIRS for both day589

and night conditions, as well as a favorable result for SSDF versus CrIMSS for day and590

versus ERA5-Land at night. The positive test statistic for SSDF versus ERA5-Land591

during the day indicates the reanalysis is more consistent with ISD in this case.592

Figure 17: Histogram of the KS statistic for AIRS (blue), CrIMSS (maroon) and ERA5-
Land (green), for day (top) and night (bottom) for 2013 over CONUS. The corresponding
p-value is color-coded on the left side.

3.5 Stationarity593

Long-term stationarity is a key characteristic for creating long, stable, multi-594

instrument Earth science data records. To assess long-term bias stationarity, we cal-595

culated mean annual biases over CONUS relative to the withheld ISD data for the two596

input datasets and SSDF. Figure 18 shows the annual mean bias for both the input597

datasets, as well as for SSDF-AC and SSDF-A. Shading shows two standard deviations598

of these annual bias estimates. We include full years only.599

SSDF reduces the mean magnitude, the variance, and the trend in these annual600

bias time series, with the biases estimated relative to the ISD reference dataset. For601

AIRS and SSDF-A matched to AIRS from 2003-2020, the overall means of the annual602
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bias time series were -0.10 K and -0.035 K and the standard deviations of the annual603

bias time series were 0.17 K and 0.035 K.604

We estimated trends and trend uncertainties using the nonparametric technique605

called Thiel Sens Slope (Sen, 1968) which is based on the medians. We used the Mann-606

Kendall test to assess statistical significance (Mann, 1945; Kendall, 1948). Trends607

for AIRS and SSDF-A were -0.01 K/yr (p-value 0.08) and -0.003 K/yr (p-value 6e-608

8), respectively, over the 2003-2020 period. The AIRS trend was less statistically609

significant due to the high standard deviation in the time series.610

For CrIMSS and SSDF-AC from 2013-2020, the overall means of the annual bias611

time series were -0.23 K and 0.076 K and the standard deviations of the annual bias612

time series were 0.059 K and 0.024 K respectively. Trends were 0.009 K/yr and -0.0007613

K/yr, respectively; neither trend is statistically significant, with p-values of 0.6 and614

0.8, respectively.615

The annual mean biases also reveal a shift of about 0.1 K between the SSDF-AC616

and SSDF-A products. This shift is small compared to the biases in the input remote617

sensing datasets, but it is undesirable. We hypothesize that it could be an artifact618

of the bulk-binning bias estimation procedure, and subsequent bias correction, due to619

differing systematic error characteristics in the two input datasets. Future versions of620

SSDF will use improved uncertainty quantification methods to estimate input dataset621

biases, which could mitigate or eliminate this small difference mean bias between SSDF622

products created from different combinations of input datasets.623

Figure 18: Annual mean bias for each year of the data record, for the SSDF product and
each of the two remote sensing input products, relative to the withheld ISD data. Shad-
ing shows two standard deviations of these annual bias estimates. SSDF-A refers to the
AIRS-only SSDF product; SSDF-AC refers to the SSDF product created from both the
AIRS and SNPP-CLIMCAPS input datasets.

Figure 19 shows the histogram of the SSDF uncertainty estimates for 2011 (black)624

and 2013 (red). The mean uncertainty is provided as text. The histograms are com-625

parable, although the SSDF-AC product in 2013 has mean uncertainties that are 4%626

lower on average than the SSDF-A product in 2011. This is to be expected as the627

additional information from CrIMSS provides greater certainty for SSDF.628
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Figure 19: SSDF uncertainty histogram for 2011 (black) and 2013 (red) aggregated by
day (top) and night(bottom). Summary statistics of mean SSDF uncertainty are provided
as text on the upper left.
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4 Discussion and conclusion629

We have produced a new fused NSAT product over CONUS, from November630

2012 through December 2020, using Spatial Statistical Data Fusion of Aqua-AIRS V7631

and SNPP-CrIMSS CLIMCAPS V2 L2 NSAT datasets. Remote sensing data provides632

information to span the spatial domain, in situ data provides the information to correct633

the remote sensing data, and SSDF provides the means to fuse them into an improved634

dataset.635

The SSDF NSAT product could be used for applications over CONUS that re-636

quire NSAT data and that would benefit from the improvements we have demonstrated637

here from a detailed validation using withheld ISD data as a reference dataset. The638

SSDF method generates a fused gridded product that has no missing data; has im-639

proved accuracy and precision relative to the input satellite datasets; and includes640

uncertainty estimates that are more consistent with the observed errors relative to the641

ISD reference. The NSAT SSDF pilot product is comparable in precision and accu-642

racy to the state-of-the-art ERA5-Land reanalysis, but unlike reanalysis it does not643

involve dynamical weather modeling, only spatial covariance modeling. Furthermore,644

unlike reanalysis it could in the future support a near-real-time version for operational645

applications.646

SSDF is a general method and can be applied to one or more L2 datasets, so647

long as each dataset estimates the same observable. For example, fusion of Aqua-AIRS648

and SNPP-CrIMSS estimates of NSAT works because both satellites estimate NSAT649

at approximately 1:30 and 13:30 local solar time. However, it would not make sense650

to directly fuse NSAT estimates from Infrared Atmospheric Sounding Interferometer651

(IASI) instruments on the MetOp satellites with the Aqua and SNPP datasets, as652

the MetOp satellites pass over at approximately 9:30 and 21:30 local solar time, when653

NSAT is at different points of the diurnal cycle. On the other hand, the details of654

instruments used to make the input datasets, and their spatial footprints and sampling,655

are immaterial. For example, it would be possible to fuse NSAT derived from the656

Visible Infrared Imaging Radiometer Suite (VIIRS) land surface temperature (LST)657

product via (for example) regression modeling (Good, 2015), since such a LST-derived658

NSAT product would also sample at approximately 1:30 and 13:30 local solar time.659

SSDF could be applied across a wide range of observables estimated as L2 satellite660

datasets, such as atmospheric composition, water vapor profiles, or vapor pressure661

deficit (the difference between the water vapour pressure and the saturation water662

vapour pressure). Bias and variance estimates of the input datasets are required, and663

we emphasize that the quality of the SSDF product depends on the quality of those664

error estimates.665

Our plans for future work include improving the bias and variance estimation666

using simulation-based uncertainty quantification (Hobbs et al., 2017; Braverman et667

al., 2021). Simulation-based uncertainty quantification has the potential to further668

improve the overall quality of the SSDF product. It could also mitigate or eliminate669

the two issues our validation has uncovered, namely (1) increased bias at a small670

number of data points at elevations in excess of 2500 m, and (2) a ∼0.1 K shift in671

annual mean bias between the SSDF-AC and SSDF-A (AIRS-only) versions.672

We also plan to create an NSAT SSDF product over global land areas, create a673

high spatial resolution NSAT SSDF product by including high spatial resolution input674

NSAT datasets in the fusion, and apply the SSDF method to other hyperspectral675

surface products, starting with near-surface specific humidity.676
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Open Research677

The SSDF NSAT datasets described in this paper are available from the NASA678

GES DISC repository at679

https://doi.org/10.5067/CPXNAPA2WSQ8 (SSDF-AC) and https://doi.org/680

10.5067/8AE9Y5TSXFX4 (SSDF-A).681

Publicly available data were obtained from the NASA Atmospheric Infrared682

Sounder and the Suomi-NPP projects, the NOAA Integrated Surface Databse, and683

the European Centre for Medium-Range Weather Forecasts reanalysis.684

Aqua AIRS V7 is available from the NASA GES DISC repository (AIRS Project,685

2019). The retrieved surface air temperature (TSurfAir), the corresponding error es-686

timate for TSurfAir (TSurfAirErr), and the corresponding quality flag (QC) (TSur-687

fAir QC) were obtained for the standard IR-only product.688

SNPP-CrIMSS-CLIMCAPS V2 is available from the NASA GES DISC reposi-689

tory (Barnet, 2019). Near surface temperature (surf air temp), the corresponding QC690

flag (surf air temp qc), and the corresponding error estimate (surf air temp err) were691

obtained from the NSR product.692

NOAA ISD NSAT data is available using the rnoaa R package.693

ECMWF ERA5-Land gridded hourly 2 m temperature means are available from694

the Copernicus Climate Change Service (C3S) Climate Data Store (Copernicus 2017).695
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Appendix A Matchups and bias estimation701

In this appendix, we will elaborate in detail our procedure for matching between702

ISD and the instruments’ observations, and the consequent bias estimation process.703

For clarity, we establish the following notation. Let s, u, and v be latitude-longitude704

locations; e.g., s = (lat, lon). On a given day (or night) let Zk(u) be the value of705

the k-th instrument’s near-surface temperature retrieval centered at u. and focus on706

a single ISD station at location s during a single period. Let tI1(s), . . . , tIM (s) be the707

times at which observations are acquired at this station during the period. These time708

points may be irregularly spaced, and M can change from station to station. The ISD709

measurements are ZI(s, ZIm(s)), m = 1, . . . ,M .710

Let tk(u) be the acquisition times associated with the k-th instrument’s footprints711

centered at location u. In principle, u ranges over all footprint locations for the712

appropriate instrument during the entire period, but in practice these locations are713

grouped by granules. We denote granule number during the current period by g =714

1, . . . , 120, and the set of footprints belonging to granule g by Gkg . The time associated715

with Gkg is τkg . To ease the computational burden, u ranges only over locations in the716

single granule with time that is closest to tIm(s).717

A matchup associates the location and time of an ISD value,
(
s, tI(s)

)
, with the

location and time of the k-th instrument’s footprint in the period:
(
u∗, tk(u∗)

)
. The

matchup function is,

Mk
(
s, tIm(s)

)
=
(
u∗, tk(u∗)

)
,

u∗ = argmin
u

{
||u− s||, u ∈

(
Gkg∗ ∩ U time ∩ Uspace

)}
,

g∗ = argmin
g

{∣∣τkg − tIm(s)
∣∣} ,

U time =
{
u :

∣∣tk(u)− tIm(s)
∣∣ ≤ 1 hour

}
, Uspace = {u : ||u− s|| ≤ 100 km} .

Note that, for a given instrument and period, there will only be one granule that718

satisfies the criterion provided by g∗.719

For a given ISD station (indexed by location s) in the current period, p, we create
the sets of matchup values for the k-th instrument as follows,

Ak(p, s) =

{
ZI
(
s, tIm(s)

)
, Zk

(
Mk
(
s, tIm(s)

))}M(p,s)

m=1

for all ISD time points at s indexed by m = 1, . . . ,M(p, s). p is identified by a date720

and a mode (day/night) indicator, e.g., p = (d, j) = (2013-01-01, day). M(p, s) is the721

number of ISD station values in period p at location s. There is at most one AIRS and722

one CrIMSS footprint associated with each station-time, but the same footprint can723

be associated with more than one station-time. Thus, Ak(p, s) may contain multiple724

elements if there is more than one ISD measurement during period p at location s.725

They may also be empty if there are no matching AIRS or CrIMSS footprints.726

After creating Ak(p, s) for all periods and ISD locations, we create supersets of
matchup value pairs by combining across three-day moving windows, by mode:

Akj(d, s) = Ak(d− 1, j, s) ∪ Ak(d, j, s) ∪ Ak(d+ 1, j, s), Akj(d) =
⋃
s

Akj(d, s).

j ∈ {day,night}. We chose the three-day time window after experimenting with shorter727

and longer windows. Shorter windows did not provide adequate sample sizes while728

longer windows failed to capture weather-related changes. Ideally, window duration729

would be as short as possible since longer time windows result in larger variance730

estimates in the fused data, relative to withheld ISD data.731
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The final step before actually computing estimated bias and variance for each
AIRS and CrIMSS footprint is to tessellate a 240 km (approximately two degrees),
hexagonal spatial grid over CONUS. We do this by creating a discrete global grid
using the DGGRID software package (Sahr et al., 2003; Sahr, 2019). One of the
centers, for example, is at 87.72550324 W, 40.7908839 N, near Watseka, Illinois; this
center uniquely determines the tessellated grid. All elements of Akj(d) are sorted in to
these grid cells based on the instrument’s footprint locations. Formally, let i ∈ 1, . . . , L
index grid cell centers, and let 1i(u) = 1 if u lies inside cell i, and zero otherwise. For
grid cell i, mode j, and date d, set

Akji (d) =

{{
ZI
(
s, tIm(s)

)
, Zk

(
u∗ms, t

k(u∗ms)
)

: 1i(u
∗
ms) = 1

}M(d,j,s)

m=1

}
all s

,

where M(d, j, s) is the number of time points acquired by the ISD station at s on732

day d in mode j, L is the total number of hexagonal grid cells, and we write u∗ms to733

emphasize its dependence on m and s via the matchup functions.734

The bias assigned to all footprints from the k-th instrument observed on day d
in mode j belonging to grid cell i is,

bkdji =
1

|Akji (d)|

∑
all s

M(d,j,s)∑
m=1

[
Zk
(
u∗ms, t

k(u∗ms)
)
− ZI

(
s, tIm(s)

)]
1i
(
u∗ms

)
.

The corresponding variance assigned to all footprints observed on day d in mode j
belonging to grid cell i is,

vkdji =
1

|Akji (d)|

∑
all s

M(d,j,s)∑
m=1

[
Zk
(
u∗ms, t

A(u∗ms)
)
− ZI

(
s, tIm(s)

)
− bkdji.

]2
1i
(
u∗ms

)
,

Subtracting the biases from the satellite footprints yields bias-corrected data.
Denote an footprint acquired by the k-th instrument on day d in mode j, centered at
location u, by ZAdj(u), where we suppress the argument tA(u) since, for a given date
and mode, location and time are confounded. The bias-corrected value is denoted by
Zk∗dj (u) as follow:

Zk∗dj (u) = ZAdj (u)− bAdji∗ , i∗ = argmax
i

1i(u),

with associated variance vkdji∗ .735

Appendix B SSDF methodology736

Consider a discretized domain where {Y (s) : s ∈ D} is a hidden, real-valued737

spatial observable. The domain of interest is ∪{Ai ⊂ <d : i = 1, . . . , ND}, which is738

made up of ND fine-scale, non-overlapping, areal regions {Ai} with locations D ≡739

{pi ∈ Ai : i = 1, . . . , ND}. Nguyen et al. (2012) call these fine-scale regions Basic740

Areal Units (BAUs), and they represent the smallest resolution at which we will make741

estimates with the model.742

For a given day and mode (d and j using the notation of the previous subsection),743

denote the vector of NSAT data at all locations by Zk, where k = 1 for AIRS and744

k = 2 for CrIMSS:745

Zk = (Zk(Bk1), Zk(Bk2), . . . , Zk(BkNk
))′,

where Zk is Nk-dimensional, Bkq is the q-th footprint from the k-th dataset and is
made up of BAUs with locations indexed by D ∩Bkq. We assume that data observed
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at an arbitrary areal region B follow the “data model” in which the true observable is
averaged over the areal region plus an independent error term. That is,

Zk(B) =
1

|D ∩B|

{ ∑
s∈D∩B

Y (s)

}
+ εk(B); B ⊂ <d. (B1)

where Y (·) is a geophysical observable (here, NSAT) that is common to both datasets,746

and εk(·) is an independent but non-identically distributed Gaussian random variable.747

That is, we assume that the q-th error in the k-th dataset is distributed as εkq ∼748

N(bkq , v
k
q ). In general, bkq is not zero, however, in our case bkq is assumed to be zero749

because we performed bias correction as described in the previous subsection, and750

vkq are calculated from the hexagonal-cell-specific mean and variance estimates (see751

Appendix A for details).752

Our fused estimate for a region centered at location B0 is a linear combination753

of Z1 and Z2. That is,754

Ŷ (B0) = a′1Z1 + a′2Z2, (B2)

where a1 and a2 are N1 and N2 dimensional vectors, respectively. These vectors are755

unknown and are estimated in a way that minimizes the expected squared error relative756

to the true observable. That is, we choose a1 and a2 to minimize,757

E((Y (B0)− Ŷ (B0))2) = Var(Y (B0)− a′1Z1 − a′2Z2)

= Var(Y (B0))− 2a′1Cov(Z1, Y (B0))

−2a′2Cov(Z2, Y (B0))

−2a′1Cov(Z1,Z2)a2

+a′1Var(Z1)a1 + a′2Var(a2)a2

subject to the unbiasedness constraint that the elements of a1 and a2 add up to 1.758

That is,759

1 = a′11N1
+ a′21N2

, (B3)

where 1Nk
is an Nk-dimensional vector of ones. The solution to the minimization760

problem in (B3) can be found via the method of Lagrange multipliers; but it requires761

knowledge of the spatial covariance structure C(Bi, Bj), which can be expanded in762

terms of the BAU covariances:763

C(Bi, Bj) =
1

|D ∩Bi||D ∩Bj |
∑

u∈D∩Bi

∑
v∈D∩Bj

C(u,v). (B4)

Typically, the covariance structure in kriging-based approaches is estimated from
the data, but the formulation in Equation B4 makes estimation intractable for non-
linear covariance classes. We make use of the Spatial Mixed Effects model (SME;
Cressie & Johannesson, 2008), which assumes that the true observable, here NSAT,
can be written as the linear mixed model,

Y (s) = t(s)′α + S(s)′η + ξ(s). (B5)

where t(·) ≡ (t1(·), . . . , tp(·))′ is a vector of p known covariates, such as geographical764

coordinates or other physical variables. The vector of linear coefficients, α, is unknown765

and will be estimated from the data. The middle term captures the spatial dependence766

as the product of an r-dimensional vector of known spatial basis functions, S(s), and an767

r-dimensional Gaussian random variable, η. Here, we assume that with η ∼ N(0,K).768

Similar to the implementation in Nguyen et al. (2012), we implement these using769

multi-resolution bisquare basis functions centered at different resolutions of the Inverse770
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Snyder Equal-Area Projection Aperture 3 Hexagon (ISEA3H) type within the Discrete771

Global Grid (DGGRID) software (specifically, resolutions 2, 3, and 5 of ISEA3H, for772

details see Sahr, 2019). The last term, ξ(·), describes the BAU-scale variability of the773

process. We assume that ξ(·) is an independent Gaussian process with mean zero and774

variance σ2
ξ .775

The SME model in Equation B5 has useful change-of-support properties, which776

makes computation of the spatial covariance function straightforward. In particular,777

Nguyen et al. (2012) shows that778

cov(Z(Bi), Z(Bj)) = S(Bi)
′KS(Bj) + σ2

ξ

|D ∩Bi ∩Bj |
|D ∩Bi||D ∩Bj |

+ vki I(i = j), (B6)

where

S(Bi) ≡
1

|D ∩Bi|
∑

u∈D∩Bi

S(u).

Notice that Equation B6 allows us to express the covariance between spatial averages779

explicitly in terms of the spatial dependence parameter K. This allows for straightfor-780

ward estimation of it from footprint data.781

Another advantage of the SME model is its scalability. For a general covariance782

structure, solving for a1 and a2 requires inverting a (N1 +N2)× (N1 +N2) covariance783

matrix, which has computational complexity O((N1 +N2)3). For large datasets such784

as AIRS and CrIMSS where the data size is on the order of tens of thousands, this785

matrix inversion is computationally infeasible. However, the model in Equation B5786

implies the following full covariance matrix:787

Σ ≡ var((Z1′,Z2′)′)

= S′KS + U,

where S is a matrix constructed by appending the spatial function S(·) over all the788

footprints in both datasets, U is the sparse covariance matrix for the fine-scale pro-789

cesses ξ(·), and the measurement-error processes εk(·) at the given data locations (for790

more details, see Equation 4 of Nguyen et al., 2012). Using the Sherman-Morrison-791

Woodbury formula (e.g., Henderson & Searle, 1981), the matrix inverse is given by,792

Σ−1 = U−1 −U−1S′
(
K−1 + SU−1S′.

)−1
SU−1,

Note that the inversion above, and hence the calculation of the coefficients a1 and793

a2 for the fused estimate, is very fast because it only requires inversion of the sparse794

(N1 + N2) × (N1 + N2) matrix U, which is typically very sparse, and inversion of K795

and (K−1 + S′U−1S), both of which are r × r matrices (r << N1 +N2).796
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