COVID-19 and non-communicable diseases: GMM /IV

Panel VAR evidence from US states

Abstract

To analyse the endogenous connection between COVID-19 and non-communicable
diseases (NCDs) in US states. I employ a panel VAR approach to investigate the en-
dogenous interactions between deaths due to covid (COV) and NCDs in US states.
The NCDs considered are respiratory (RES) and circulatory (CIR) diseases. I use
Arellano—Bond’s dynamic panel equations to supply estimates for the dynamic rela-
tionship between COVID-19 and NCDs. Thereafter, I estimate the orthogonalized
impulse response functions (IRFs), which help isolate the response of a variable to
an orthogonal shock in another variable of interest. The results show evidence of
a significant positive relationship between mortality due to COVID-19 and NCDs.
Most impacts peak after two weeks, corresponding with the latent period between
covid infection and mortality. Besides, I find that while a positive shock to mortality
from respiratory illnesses affects that from circulatory illnesses, the reverse is not
the case. Lastly, these results differ by gender and are robust to several sensitiv-
ity checks, so large deviations are unexpected. The paper summarises the findings
and proffers potential policies and interventions (e.g. providing cancer scanners in
supermarkets) that could reduce the reinforcing effects of COVID-19 on NCDs.
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1 Introduction

COVID-19 (everywhere else, I shall simply refer to the disease as covid or coronavirus.)
is the worst pandemic that has hit humankind since the last Century. Since its discovery
in Wuhan, China, in December 2019 more than 500 million cases, with 6.32 million
deaths have been recorded worldwide according to [John Hopkins University as at 20th
June 2022. Of this count, the U.S. leads in both the number of cases (> 20%) and deaths
(> 18%). The novelty of this virus has necessitated a plethora of emerging research
investigating its causes and consequences. Given the high infection rate of the virus,
countries have initiated several containment measures to limit its spread while actively
seeking for a permanent solution. These restrictions led to disruptions in several sectors
of the economy, such as the health sector.

The disruption in health services following the pandemic resulted in routine health
services being accessed less frequently, thus the ability of countries to address and respond
to non-communicable diseases (NCDs) has been impacted. For example, new cancer dia-
gnoses have fallen by 25% since the pandemic lockdown began in the Netherlands [1].
NCDs, especially cardiovascular diseases, cancers, diabetes, and chronic respiratory dis-
eases, are the leading causes of death and disability globally and affect a larger proportion
of people annually than all other causes combined - 71% of all deaths [2].

Medical studies suggest a potential link between covid and NCDs since those with
pre-existing NCDs appear to be more vulnerable to contracting or even dying from the
covid virus. A systematic review finds that patients with certain chronic illnesses such as
diabetes, hypertension (and other cardiovascular diseases), chronic respiratory illnesses,
chronic kidney and liver conditions are more likely to be affected by Covid-19 [3]. Sim-
ilarly, another study use state-level Indian Covid-19 data to show a positive correlation
between deaths per million with NCD risk factors such as obesity, hypertension, diabetes,
etc [4]. They also show analogous findings using state-level Covid-19 cases per million.
Some researchers use simple statistical analysis to describe the significant impact of the
pandemic on NCD patients in Europe and the US [5]. They report that 50% of NCD

patients report worsening conditions during the pandemic, while 17% developed a new
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disease.

It is important to understand how NCD-related mortality has been impacted by the
Covid pandemic in the U.S. since it has the largest share of infection worldwide. Given the
lack of a detailed analysis in this area, this paper adds to the evidence by undertaking
a more robust analysis that explores the bi-directional relationship between covid and
NCDs in the US. While the existing few studies consider a subset of U.S. cities using
raw death counts, this study takes a holistic approach by considering all covid-affected
U.S. states. I carry out this activity by estimating panel-data vector autoregressions
(PVARSs) using weekly datasets covering all covid-affected states in the continental US
for the period 2020-2021, allowing for substantial spatial and temporal variation in the
model.

PVAR is increasingly becoming a popular econometric tool for estimating multivariate
time-series data in a panel setting [6]. This is a class of models built on the achievements
of traditional panel models |7], in terms of allowing the use of large dataset, and VAR
models [8], that control for endogeneity by allowing endogenous interactions of the vari-
ables within the system. I use Arellano-Bond’s dynamic panel equations to show and
provide reliable estimates for the dynamic relationship between covid and NCDs. More
importantly, this strategy allows the estimation of orthogonalized impulse response func-
tions (IRFs), which helps isolate the response of a variable to an orthogonal shock in

another variable of interest.

2 Methods

2.1 Methodology

I employ a panel VAR approach to investigate the endogenous interactions between
deaths due to covid (COV) and NCDs in US states. NCDs are proxied here by respiratory

(RES) and circulatory (CIR) diseases. The following model is estimated

Yit = O —+ A(L)ylt -+ B$it + €t (1)



where y;; is a three-variable vector (COV, RES, CIR) in state ¢ at time ¢ (in weeks); «; is
a diagonal matrix of state-specific intercepts (fixed effects), which capture time-invariant
factors that affect mortality (nation-wide lockdowns, for example). A(L) is a matrix
polynomial of lagged coefficients with A(L) = A;L' + AsL* + ... + A,LP, and zy is a
vector of exogenous (weather) covariates as these have been cited as important influencers
of mortality 9, [10]. I show in the robustness section that the results are sensitive to the
exclusion of these exogenous controls. B are parameters to be estimated, and ¢; is a
vector of idiosyncratic errors. The autoregressive order (p=2) of the VAR is selected
using the Bayesian Information Criterion.

I transform death cases into their week-on-week (WoW) log-differenced values is to
ease the interpretation of the impulse-responses in percentage terms and for policy relev-

ance. I calculate the growth rate of mortality (g;;) as

git = log(yit) - log(yit—l)

where y;; refers to cumulative deaths from each mortality cause in state ¢ at time ¢. In
principle, y;; — y;;_1 refers to the number of new deaths in the last one week within each
state in the US. This decision follows from several papers [11]. Although, other studies
[9] use a less lag period use a longer lag period to account for the mortality rates, there
is evidence of no significant difference in the number of lags [12].

Given the dynamic nature of the model, the fixed effects are likely correlated to the
lags of the dependent variable, meaning that the common method of eliminating fixed ef-
fects (mean-differencing), would produce biased results [13]. To overcome this weakness,
I employ the forward mean-differencing or orthogonal deviation (Helmert transforma-
tion) approach proposed in [14] as an alternative transformation. According to [13], this
“forward mean-differencing” approach removes the mean of all future observations for
each state-week instead of using deviations from past observations. This transformation
allows the use of lagged covariates as instruments since it retains the orthogonal struc-
ture between the lagged covariates and the transformed variables [15]. Hence, the model

coefficients can be jointly estimated using system GMM.



To compute the impulse-response functions (IRFs) and forecast-error variance decom-
positions (FEVDs), it is important to apply Cholesky decomposition to the residuals to
orthogonalize them. In the Cholesky ordering, I allow COV to have a contemporaneous
impact on RES and CIR, while the latter two are not allowed to have such impact on
the former. This arrangement, by construction, implies that the variable that appears
earlier (covid) is weakly exogenous with respect to the rest of the covariates in the short
run. However, with no strong theoretical basis for this ordering, I present results with
alternative orderings as robustness.

Finally, the IRFs and FEVDs are estimated using the method described in [13|, where
the confidence intervals are estimated using Monte-Carlo simulations. These estimations
were done using the pvar package in Stata by [16]. Practically, I re-estimated the IRFs by
randomly building a draw of coefficients A of equation (1) using the estimated coefficients
and the associated variance-covariance matrix. This process is repeated 1000 times to
obtain the 5th and 95th percentiles of the distribution that is used as confidence intervals
of IRFs. The IRFs describe the response of a variable over time to shocks to another
variable within the system, while the variance decomposition measures the percent of the
change in a variable that is explained by the innovation in another variable, at a given

forecast horizon (12 weeks, in our case).
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Figure 1: Trends of growth rates of deaths (in %) from COVID-19, respiratory,
and circulatory diseases in the U.S. (by Region)

2.2 Data Sources and Description
Mortality and Population Data

I use weekly mortality data from three sources the United States Department of
Health and Human Services (US DHHS), the Centers for Disease Control and Prevention
(CDC), and the National Center for Health Statistics (NCHS). These data provided by
the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program are
freely available on the CDC WONDER Online Database. The dataset can be assessed via
https://wonder.cdc.gov/wonder/help/mcd-provisional.html. More information on
how the data are compiled can be found in the Technical Appendix domiciled on the
website. Respiratory diseases are made up of 20 underlying causes of death related
to the respiratory system, while circulatory diseases consist of 30 underlying causes of

death related to the circulatory system. More information on how the data are compiled
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can be found in the Technical Appendix domiciled on the website. The study’s sample
period begins from January 2020 to December 2021 to allow for the relevant period that
captures the inception of Covid but excludes the vaccine era (2022). The sample contains
the continental 48 U.S. states, including the District of Columbia, totalling 4,627 state-
week observations. I excluded Alaska and Hawaii, and also dropped observations from
unspecified states.

It is important to state that as at the time of collating the data, some of the obser-
vations were “provisional” implying they will likely not include all deaths that occurred
during a given time period, especially for the more recent time periods. However, since
this is a systemic issue and should not bias the results in any significant way. Further,
state-level projected 2020 population information was obtained from the U.S. Census Bur-
eau’s website (https://www.census.gov/topics/population.html). I use this state-
level population figure to derive the first difference in the natural logarithm of weekly
cumulative deaths per 1 million people. Figure (1| suggests some comovement amongst

the growth rates of mortality from the three diseases considered.

Weather Data

The historical weather dataset is obtained from the ERAS reanalysis product from
European Centre for medium-range weather Forecasts (ECMWF'), which provides daily
gridded weather variables at 0.25° resolution (see https://cds.climate.copernicus.eu
for a complete description of the dataset). Specifically, I collected hourly downward UV
radiation at the surface (in J/m?hour), 2-meter temperature (in °C), 2-meter dewpoint
temperature (in °C), and 10 metre U and V wind components (in m/s) for January 01,
2020, to December 31, 2021. The weather measures were averaged across hours in a week
to obtain weekly average measures. Thereafter, I link the weather data to state-level
mortality cases by overlaying a US polygon with state boundaries on the gridded weather

dataset for each grid cell and then taking a simple average across all grid cells per state.
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3 Results and Discussion

Figure[2] depicts that estimated GMM panel VAR (Eq. (1)) is stable since the modulus
of each eigenvalue of the fitted model is strictly less than one: inside the unit circle. The
stability of the estimated model implies that shocks will eventually zero-converge: hence,

the PVAR is invertible, thereby making the estimated IRFs and FEVDs interpretable.
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Figure 2: Roots of companion matrix

3.1 Main Results

In what follows, I present the IRFs graphs and their associated 95% confidence in-
tervals generated via Monte Carlo simulations with 1,000 repetitions in Figure 3] The
Figure reports the impact of a shock in any variable on other endogenous variables for
26 weeks (6 months) after the introduction of the shock. The results show that shocks to
RES, CIR, and COV are transitory as the effect of a shock fades out almost immediately
as seen in the diagonal panels (a, e, and i). The main interest in this paper, however, lies
in the impact of shocks from any of the disease categories on the others — the off-diagonal
panels. A positive shock to COV appears to have a positive positive impact on both
RES and CIR as seen in panels g and h in Figure [3] Similarly, RES and CIR respective
shocks also impact COV positively as seen in panels ¢ and f. These results confirm that

mortality from covid and NCDs are closely linked. Further, most impacts peak after



two weeks (which corresponds with the latent period between when one contracts covid
and mortality) before they start dying out. Additionally, this study finds that a shock
to CIR does not impact RES significantly, whereas a positive shock to RES affects CIR
positively as seen in panels d and b, respectively. These results suggest that the perceived
correlation between respiratory and circulatory disease-related deaths is due to the effect

of RES on CIR, rather than the other way round.
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Figure 3: Impulse-response functions

I present the cumulative IRF in Figure [4] to show the effects in levels rather than in
log-differences. This activity is done by accumulating the impacts over time (26 weeks).
Although the appearance of Figure [ differs from Figure [3| they have similar interpreta-
tions and findings. As earlier discussed, the impact of a positive shock to COV on RES
and CIR is positive, and in like manner, a shock from either CIR or RES affects COV

positively. Also, CIR shock does not have a significant impact on RES.
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Figure 4: Cumulative IRFs

Advances in medical sciences have shown that mortality rate differs across sub-population
17]. Since the GMM approach imposes homogeneous dynamics across spatial units, I
divide the sample by gender. The gendered IRFs in Figure [5| show that there exists
heterogeneous dynamics across the sub-sample. While the overall pattern still remains
qualitatively similar to the main results, the IRFs for both genders are below what is
observed in the entire sample for responses to RES shock. On the other hand, the impact
of COV shock is higher in males than females, suggesting that men with NCDs are more

predisposed to die from covid than women.
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Table 1: Variance decompositions

COV CIR RES
COV 0.932 0.018 0.049
CIR 0.059 0.842 0.097
RES 0.017 0.052 0.930

Note: Variation in the row variable explained by column variable (25
periods ahead).
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Figure 5: Gendered IRFs. 95% confidence bounds are represented by shaded areas.

To understand the contribution of changes in each variable to changes in other vari-
ables, I turn to the variance decomposition results presented in Table [I The Table
shows that RES explains more of the variation in COV and CIR for 25 periods ahead:

nevertheless, the size of the effect is rather small, 4.9% and 9.7% respectively.

3.2 Robustness Results

Here, I use four alternative specifications to test the robustness of the results. First, I

re-arrange the recursive order of the endogenous variables — allowing both RES and CIR
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(b) Lag Adjustment

Figure 6: IRFs from Alternative Specifications (Recursive Re-ordering and Lag Adjust-
ment). 95% confidence bounds are represented by shaded areas.
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<t - Full Exo. Var. o~
—— No Quadratics w
= No Exo. Var
0 5 10 15 20 25 0 5 10 15 20 25
(c) Response of RES to CIR shock (d) Response of COV to CIR shock
w w
@«
o
w |
0 5 10 15 20 25 25
(e) Response of RES to COV shock
<
T T T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
(a) No exogenous variables
(a) Response of CIR to RES shock (b) Response of COV to RES shock
@ Full sample o~
© 4 NY, CA removed
NY, CA, FL removed
0 5 10 15 20 25 0 5 10 15 20 25
(c) Response of RES to CIR shock (d) Response of COV to CIR shock
N v
0
o4
w |
0 5 10 15 20 25 0 5 10 15 20 25
(e) Response of RES to COV shock (f) Response of CIR to COV shock
< - |
el | [ =
o~ o~
(= - =
ol T T T T T T ol T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25

(b) Outliers

Figure 7: IRFs from Alternative Specifications (Weather Variables and Outliers). 95%
confidence bounds are represented by shaded areas.
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to assume weak exogeneity in turns. The results in Figure [6a) produce a similar pattern
as the main result. Also, I show in Figure [6b]that the results are robust to lag choices by
replacing the selected lag used in the primary model with lags 1 and 3, respectively. For
most of the specifications, the IRF from 3-lag model appears higher than others, however,
such small differences do not alter the overall interpretation of the results.

Next, the baseline model is re-estimated with the (weather) exogenous variables
altered. Figure [7al shows that omitting weather variables significantly increases the im-
pact of a shock on one variable on another variable. This result highlights the importance
of weather variables in explaining mortality. Lastly, to confirm that the results are not
driven by outliers, I purged the sample data of observation in the three states with the
highest cumulative covid cases as of December 31 New York (NY), California (CA), and
Florida (FL) in that order. Figure shows that the states with large cases do not

principally drive the results as the estimates are still very similar to the baseline results.

4 Conclusion

The results from this paper find that COVID-19 and NCDs reinforce themselves.
After controlling for time-invariant location effects and important (exogenous) weather
variables, I find a bi-directional causality between most combinations of death causes
considered. Specifically, I find that covid mortality in the US positively affects mortality
from respiratory and circulatory diseases. Although, the study does not find a statistic-
ally significant effect of mortality due to respiratory diseases on circulatory diseases. In
addition, the paper finds that these impacts are higher in the male sub-population than
in the females, which corroborates earlier studies [e.g.,|18]. Finally, the results are robust
to alternative VAR specifications and several samples, suggesting that large deviations
are unexpected.

Using robust dataset and rigorous empirical approach, the findings in this paper add
to evidence of the impact of coronavirus on NCD-related deaths. Urgent health policies,
therefore, ought to be implemented to ensure that people dying from non-covid causes are

not rising due to the enormous attention shifted towards the pandemic. Innovative health
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measures (e.g., having cancer detection scanners in supermarkets) should be developed to
ensure the continuation of conventional health services. Although with the introduction
and push towards compulsory vaccination in countries like the US, it is expected that
the coronavirus-NCD nexus will be weakened. However, further research is required to

investigate if this assertion holds and to what degree.
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