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Key Points: 10 

• Bio-climatic factors affect the presence and abundance of the dengue vectors Aedes 11 

aegypti and Aedes albopictus in India 12 

• Future climate change is projected to extend the range of Aedes aegypti into the Thar 13 

desert in Rajasthan 14 

• Range of Aedes albopictus is projected to extend into the upper and trans Himalayas as a 15 

result of climate change  16 
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Abstract 17 

India has witnessed a five-fold increase in dengue incidence in the past decade. However, the 18 

nation-wide distribution of dengue vectors, and the impacts of climate change are not known. In 19 

this study, species distribution modelling was used to predict the baseline and future distribution 20 

of Aedine vectors in India on the basis of biologically relevant climatic indicators. Known 21 

occurrences of Ae. aegypti and Ae. albopictus were obtained from the GBIF database and 22 

previous literature. Bio-climatic variables were used as the potential predictors of vector 23 

distribution. After eliminating collinear and low contributing predictors, the baseline and future 24 

prevalence of Ae. aegypti and Ae. albopictus was determined, under three RCP scenarios (RCP 25 

2.6, RCP 4.5 and RCP 8.5), using the MaxEnt species distribution model. Ae. aegypti was found 26 

prevalent in most parts of the southern peninsula, the eastern coastline, north eastern states and 27 

the northern plains. In contrast, Ae. albopictus has localized distribution along the eastern and 28 

western coastlines, north eastern states and in the lower Himalayas. Under future scenarios of 29 

climate change, Ae. aegypti is projected to expand into unsuitable regions of the Thar desert, 30 

whereas Ae. albopictus is projected to expand to the upper and trans Himalaya regions of the 31 

north. Overall, the results provide a reliable assessment of vectors prevalence in most parts of the 32 

country that can be used to guide surveillance efforts, despite minor disagreements with dengue 33 

incidence in Rajasthan and the north east, possibly due to behavioural practices and sampling 34 

efforts. 35 

Plain Language Summary 36 

Climatic parameters derived from temperature and humidity affect the development and survival 37 

of mosquitoes that spread diseases. In the past decade, India has witnessed an alarming rise in 38 

dengue, a viral disease that spreads through the bite of the mosquitoes Ae. aegypti and Ae. 39 

albopictus. We used machine learning based modelling algorithm to predict the present and 40 

future abundance of these mosquitoes in India, based on biologically relevant climatic factors. 41 

The results project expansion of Ae. aegypti in the hot arid regions of the Thar desert and Ae. 42 

albopictus in cold upper Himalayas as a result of future climatic changes. The results provide a 43 

useful guide for strengthening efforts for entomological and dengue surveillance. 44 

1 Introduction 45 

Dengue is the most widespread arthropod-borne disease, that has become endemic in 46 

more than 100 countries (World Health Organization, 2020). It is usually found in tropical and 47 

sub-tropical climates, with a vast majority of dengue cases occurring in the Americas and in 48 

South-East Asia (World Health Organization, 2020). In India, dengue has witnessed an alarming 49 

upsurge in the past decade, with more than fivefold increase from 28,066 cases in 2010 50 

(NVBDCP, 2010) to 1,57,315 cases in 2019 (NVBDCP, 2020).  51 

The two arthropod vectors of dengue are Aedes (Stegomyia) aegypti (L.) and Aedes 52 

(Stegomyia) albopictus (Skuse), which are also responsible for the transmission of several other 53 

arboviruses such as the chikungunya virus (CHIKV), yellow fever virus and Zika virus (ZIKV). 54 

Ae. aegypti exhibits an indoor resting behaviour and primarily feeds on humans during the day 55 

(Scott & Takken, 2012). It is mostly found in urban areas and usually breeds in man-made water 56 

receptacles such as plastic containers and rubber tyres (Vijayakumar et al., 2014). Ae. albopictus 57 

prefers to rest outdoors and is an opportunistic feeder (Paupy et al., 2009), though strong 58 

anthropophagic behaviour has also been observed in some studies (Delatte et al., 2010; Ponlawat 59 
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& Harrington, 2005). The presence and population size of these arthropod vectors is highly 60 

dependent on climatic factors such as temperature, rainfall and relative humidity. The 61 

poikilothermic physiology of mosquitoes renders them sensitive to temperature extremities, 62 

which affects larval development as well as vector mortality (Farjana et al., 2012). Rainfall also 63 

supports vector populations by providing suitable habitat for development of the aquatic larval 64 

stages (Farjana et al., 2012).  65 

The drastic rise in dengue cases in India warrants a more concerted effort for dengue 66 

management and control and generation of suitable knowledge to support dengue management. 67 

At present, no known vaccine or specific treatment for dengue exists (Gupta & Reddy, 2013). 68 

Dengue control in India is based on vector control practices such as indoor space spraying, 69 

fogging, environmental management and promotion of personal protection (NVBDCP, 2014). 70 

However, the nation-wide distribution of dengue vectors in India is not known and the presence 71 

of aedine species has been established only in some parts of the country based on local vector 72 

surveillance. Moreover, climate change could significantly affect the known distribution of 73 

vectors. In recent years, Species distribution modelling (SDM) has emerged as an important tool 74 

for identifying the ecological niche and climate change induced range shifts in different species. 75 

This is particularly important for species that are vectors for pathogens and pose a human health 76 

risk. Maximum Entropy (MaxEnt v3.3.3) is a machine learning algorithm for modelling species 77 

distributions using presence-only records. Its predictive performance is highly competitive as 78 

compared to other SDMs and has been used extensively since becoming available in 2004 (Elith 79 

et al., 2011). Therefore, in this study we used the MaxEnt model for predicting the present and 80 

future distributions of Aedine vectors of dengue in India under different climate change 81 

scenarios. 82 

2 Data and Methods 83 

2.1 Species occurrence data 84 

Primary occurrence data for the two primary vectors of dengue in India – Ae. aegypti and 85 

Ae. albopictus was obtained from the Global Biodiversity Information Facility (GBIF - 86 

https://www.gbif.org/). The records contain 562 points of occurrence of Ae. aegypti (GBIF, 87 

2020a) and 207 points of occurrence of Ae. albopictus (GBIF, 2020b) in India, most of which 88 

come from a recent large-scale study that compiled a global geographic database of Ae. aegypti 89 

and Ae. albopictus locations, derived from peer reviewed literature, national entomological 90 

surveys and expert networks (Kraemer et al., 2015). As the study included literature only up to 91 

2014, there was a need to update the occurrence points based on new literature since 2015.  92 

An extensive survey of all dengue entomological studies conducted in India after 2014 93 

was carried out. The search terms ‘India’, ‘aegypti’ and ‘albopictus’ were used to find relevant 94 

peer reviewed literature in NCBI - PubMed (https://www.ncbi.nlm.nih.gov/pubmed), Science 95 

Direct (https://www.sciencedirect.com/) and grey literature in Google Scholar 96 

https://scholar.google.com/). Only those studies were included where the exact coordinates of the 97 

survey were clearly mentioned. After adding these to the initial database, in total 690 occurrence 98 

points of Ae. aegypti and 330 occurrence points of Ae. albopictus were obtained. The species 99 

occurrence points were plotted in GIS environment using ArcGIS software.  100 
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2.2 Climatic predictors 101 

Nineteen bioclimatic variables that indicate the general trend, extremity and seasonality 102 

of temperature and precipitation were used as the potential predictors of vector distribution and 103 

its suitable habitat. Baseline (1970 – 2000) and future (2030s, 2050s and 2070s) climatic data for 104 

bioclimatic variables under three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5), was obtained 105 

from WorldClim website (Fick & Hijmans, 2017) with a spatial resolution of 2.5 arc minutes (~5 106 

km). Future projections of climate change thus obtained, were based on the CNRM-CM6-1 107 

(Voldoire et al., 2019) general circulation model developed from the Coupled Model 108 

Intercomparison Project Phase 6 (CMIP-6) (Eyring et al., 2016). 109 

2.3 Data processing 110 

All data processing and modelling steps were conducted using a combination of R-111 

statistics (R Core Team, 2013), within the RStudio interface (RStudio Team, 2020), and 112 

ArcGIS® software by Esri.  113 

Duplicate records in the species occurrence data were analyzed and removed accordingly. 114 

To account for spatial autocorrelation, spatial thinning was applied to the species occurrence 115 

records at 5 km intervals (equivalent to the resolution of environmental datasets) using the R-116 

package spThin (Aiello-Lammens et al., 2015). The final species occurrence data contained 383 117 

and 205 spatially explicit records of Ae. aegypti and Ae. albopictus respectively. The species 118 

occurrence records, were used to construct a sampling bias layer in order to account for 119 

differences in sampling efforts across different locations.  120 

In order to reduce model complexity, highly collinear variables that did not contribute 121 

significantly to the model output were eliminated. Pearson’s correlation factor was used to 122 

identify variables that show strong collinearity (>0.8), and a cluster dendogram of variables 123 

grouped based on collinearity was constructed (Supplementary Figure 1). Initial models were run 124 

using all bioclimatic variables, and the contribution of each variable to model output was 125 

determined. Variables with low contribution to model outputs and strong collinearity (>0.8) with 126 

other variables were eliminated one by one in subsequent models to obtain the final list of non-127 

collinear bioclimatic variables. At each stage, the effect of eliminating a variable on model 128 

performance was assessed based on the area under the ROC (Receiver operating characteristic) 129 

curve (AUC) value. The selected variables were finally reviewed and approved through expert 130 

opinion (Table 1).  131 

2.4 Predictive Modelling 132 

Present and future distribution of Ae. aegypti and Ae. albopictus was evaluated using 133 

Maxent (v 3.4.1) (Philips et al., n.d.) with the help of the R package ENMTML (Andrade et al., 134 

2020). Maxent is a presence-only species distribution model that employs a machine learning 135 

algorithm to generate a probability distribution of the selected species, and has been shown to be 136 

effective even with low number of sampling points (Townsend Peterson et al., 2007). Model 137 

parameters were determined by hit and try method, wherein initial models were run with five 138 

levels of complexity (linear, linear-quadratic, hinge, linear-quadratic-hinge and linear-quadratic-139 

hinge-polynomial) and 20 regularization multipliers from 1-10 with a half step interval in 140 

between. The outputs were analyzed based on the omission rate with respect to the testing data, 141 

Akaike Information Criterion score (AICC) and AUC values. Based on these, the best set of 142 

parameters for the maxent model was selected. Pseudo absences were allocated randomly after 143 
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applying appropriate environmental and geographical constraints (50 km buffer). For validation 144 

of model outputs, k-fold cross validation was used to partition the presence data into five subsets. 145 

The outputs were obtained in the form of GeoTiff rasters containing the logistic suitability score 146 

as the values of the pixels for the baseline and each of the future projections.  147 

The continuous logistic outputs were then converted to binary outputs using the 148 

‘maximum test for sensitivity and specificity (MAXTSS)’ in MaxEnt, which has been identified 149 

as the best method for threshold selection in presence only models (Liu et al., 2005). The results 150 

were plotted in ArcGIS and was used to assess the risk of range expansion in the vectors.   151 

2.5 Validation of Model Outputs 152 

A number of different evaluation metrics were used for assessing the model performance. 153 

The traditional accuracy measures (AUC and Kappa/True Skill Statistic - TSS) have often been 154 

criticized due to their over-dependence on species prevalence and can give misleadingly high 155 

values by not penalizing over prediction (Allouche et al., 2006). Therefore, similarity indices – 156 

namely Jaccard and Sorensen, which are not biased by true negatives were also evaluated. Most 157 

evaluation metrics are constructed for presence-absence models and modified accordingly for 158 

presence-only models. Therefore, to ensure model reliability, the Boyce index which is 159 

specifically a presence-only metric, was also computed. The significance of selected bioclimatic 160 

variables in model outputs was assessed by permutation importance contribution. 161 

3 Results 162 

3.1 Variables’ Contribution and Selection 163 

Pearson’s correlation test and cluster dendogram revealed groups of variables which 164 

showed very high collinearity. Low contributing and collinear variables were eliminated one by 165 

one, after running multiple preliminary models. The final list of variables with low collinearity 166 

and significant contribution to outputs is presented in Table 1. 167 

Table 1 168 

Selected bioclimatic variables 169 

Variable ID Variable name 

bio 2 Mean diurnal range 

bio 3 Isothermality 

bio 4 Temperature seasonality 

bio 6 Min. temperature of coldest month 

bio 15 Precipitation seasonality 

bio 16 Precipitation of wettest quarter 

bio 17 Precipitation of driest quarter 

bio 18 Precipitation of warmest quarter 

bio 19 Precipitation of coldest quarter 

 170 

Based on  selected variables, a pair-wise distribution plot was generated (Supplementary 171 

Figure 2) which revealed  that the collinearity between the variables is not significant.  172 
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3.2 Evaluation of Model Performance 173 

Three types of evaluation metrics were computed for Ae. aegypti and Ae. albopictus 174 

model outputs (Table 2) – accuracy metrics (AUC and TSS), similarity indices (Jaccard and 175 

Sorensen) and reliability metrics (Continuous Boyce Index). 176 

Table 1 177 

Accuracy and reliability metrics for the validation of model outputs 178 

Variable Ae. aegypti Ae. albopictus 

Coefficient sd Coefficient sd 

AUC 0.94 0.01 0.95 0.04 

TSS 0.77 0.04 0.84 0.11 

Jaccard 0.80 0.03 0.85 0.09 

Sorensen 0.89 0.02 0.92 0.05 

OR 0.06 0.03 0.07 0.06 

Boyce 0.86 0.03 0.84 0.08 

The AUC values for both Ae. aegypti and Ae. albopictus were significantly high (0.94 179 

and 0.95 respectively) indicating strong agreement between the training and testing datasets. The 180 

threshold dependent TSS values were also significant high for the two species (0.77 and 0.84) 181 

indicating that model performance was very good. Similarity indices such as Jaccard and 182 

Sorensen were identified as an alternative to the traditional accuracy metrics that measure the 183 

similarity between the model outputs and validation datasets. Significantly high values of the 184 

Jaccard (0.80 and 0.85) and Sorensen indices (0.89 and 0.92) for both the vectors also indicate 185 

that the model was able to accurately predict vector prevalence. Similarly, high values of Boyce 186 

index (0.86 and 0.84) for the model outputs indicates that model performance was excellent. 187 

188 
Figure 1 189 

Variable Contributions to model outputs for (a) Ae. aegypti and (b) Ae. albopictus 190 

 191 
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The variables which contributed most to model outputs (Figure 4) for Ae. aegypti were 192 

found to be the isothermality (bio3), temperature seasonality (bio4) and the minimum 193 

temperature of the coldest month (bio6). On the other hand, for the prevalence of Ae. albopictus 194 

mean diurnal range (bio2), precipitation of the driest quarter (bio17) and precipitation of the 195 

warmest quarter (bio18) were found as important variables. This indicates that temperature may 196 

be an important limiting factor for Ae. aegypti, whereas precipitation is the limiting factor for Ae. 197 

albopictus.  198 

3.3 Baseline and projected future distribution of Ae. aegypti and Ae. albopictus 199 

 200 

Figure 2 201 

Baseline and projected future suitability of (a) Ae. aegypti (b) Ae. albopictus under different 202 

climate change scenarios 203 
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Based on the probability distribution maps generated from maxent logistic output (Figure 204 

2), the baseline distribution of Ae. aegypti was found very high in the Kashmir valley (0.63 - 205 

0.91), Malwa plains of Punjab (0.59 - 0.76) and Haryana (0.65 - 0.88), Saurashtra region of 206 

Gujarat (0.4 - 0.79), upper Brahmaputra and Barak valley in Assam (0.69-0.88), the Konkan 207 

coastline (0.75-0.95) and the southern peninsular plains (0.61-0.96). The vector had high focal 208 

prevalence in the urbanized western regions of Uttar Pradesh (UP) (0.51 - 0.65), Delhi (0.76 - 209 

0.88), some northern districts of Bihar (0.48 - 0.67) and the northern Jalpaiguri division of West 210 

Bengal (0.56 - 0.93).  211 

A few regions of the Deccan plateau and northern Indo-Gangetic plains also had 212 

moderate to high (0.25 – 0.75) distribution of Ae. aegypti. Most of the central highlands, the Thar 213 

desert region and the greater Himalayan regions of Jammu & Kashmir have very low prevalence 214 

(> 0.25) of Ae. aegypti. The vector is found absent in the trans-Himalayan regions of Jammu & 215 

Kashmir and Ladakh.  216 

The prevalence of Ae. albopictus was found very high along the Coromandel (0.63 - 217 

0.98), Malabar (0.88 - 0.97), and Konkan coastline (0.62 - 0.81), southern western ghats (0.79 – 218 

0.99), Kashmir valley (0.68-0.85), lower Brahmaputra valley, Kamrup and Goalpara hills in 219 

Assam (0.71-0.8) as well as the Himalayan and terai regions of West Bengal (0.74 - 0.89). In the 220 

north eastern region, both vectors are prevalent but, Ae. albopictus appears to be the dominant 221 

vector with more widespread distribution. For example, in Arunachal Pradesh, Ae. albopictus 222 

was significantly more abundant than Ae. aegypti, which is restricted only to the lesser 223 

Himalayas. In the Indo-Gangetic plains and eastern ghats (0.28 - 0.54), Ae. albopictus had 224 

widespread moderate (0.29 - 0.49) prevalence in the baseline years, whereas a large part of India, 225 

including the arid and semi-arid regions of Rajasthan and Gujarat and most of Deccan plateau 226 

and the central highlands show low prevalence (0.04 - 0.18) of Ae. albopictus.  227 

Future projections of climate change were based on three scenarios of climate change – 228 

the low emissions scenario (RCP 2.6), moderate emissions scenario (RCP 4.6) and high 229 

emissions scenario (RCP 8.5). The RCP 2.6 scenario of climate change projects a twofold 230 

increase in geographic area with very high prevalence of Ae. aegypti in Punjab and Haryana, and 231 

a further 18.3% increase in area by 2070s. However, an initial reduction in suitability of Ae. 232 

aegypti is projected in the Saurashtra and Kachchh regions of Gujarat (12-32%), Jalpaiguri 233 

division of West Bengal (5-9%) and north eastern states (10-16%) by 2030s. This is followed by 234 

a substantial increase in suitability by 2050s and 2070s in Gujarat (9-34% and 10-40%) and in 235 

the Barak valley region of the north east (10-21% and 10-24%). Some reduction in suitability is 236 

also observed in the Rohilkhand and Awadh plains of Uttar Pradesh (10-28% in 2030s, 10-19% 237 

in 2050s and 11-24% in 2070s). The RCP 4.5 scenario projects a significant reduction suitability 238 

for Ae. aegypti by 2030s in Haryana (10-15%), Punjab (3-13%), Delhi (9-15%), Rohilkhand and 239 

Awadh plains of Uttar Pradesh (10-26%), Saurashtra regions of Gujarat (11-21%), Tripura (14-240 

16%), Meghalaya (11-16%) and the upper Brahmaputra valley of Assam (7-13%). The suitability 241 

for Ae. aegypti reduces further in western UP (11-26% in 2050s, 11-28% in 2070s), but increases 242 

considerably in Gujarat by 2050s (15-34%) as well as in Punjab (13-31%) and Haryana (10-243 

31%) by 2070s. Similarly, under RCP 8.5, a significant reduction in suitability for Ae. aegypti is 244 

projected in Punjab, Haryana, the Indo-Gangetic plains, most of Gujarat, north east and eastern 245 

regions as well as in the southern peninsular plateau. The reduction in suitability continues in 246 

2050s and 2070s in the southern peninsular plateau, with a 13.4% contraction in very high 247 

suitability areas by 2070s. However, the suitability for Ae. aegypti increases considerably in 248 
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2050s and 2070s in Punjab (12-60%), Haryana (22-65%), Gujarat (10-40%), Meghalaya (10-249 

24%) and Mizoram (17-36%). In Nagaland and the Konkan coast of Maharashtra, suitability for 250 

Ae. aegypti increases under all future years, with most significant rise in 2070s (13-31% and 15-251 

32% respectively). Furthermore, Ae. aegypti is projected to invade several regions of Leh 252 

(Ladakh) and northern Himachal Pradesh which are unsuitable for Ae. aegypti in baseline years.  253 

 254 

Figure 3 255 

Change in suitability for (a) Ae. aegypti and (b) Ae. albopictus in future scenarios of climate 256 

change 257 

The suitability for Ae. albopictus is not expected to change substantially in the country, 258 

though some local changes in suitability are visible from the logistic distribution and change 259 

maps. Under RCP 2.6, the suitability for Ae. albopictus increases gradually in the upper 260 

Brahmaputra valley of Assam, with as much as 40% and 122% increase in geographic area of 261 

very high suitability in the 2050s and 2070s respectively. Minor reduction in suitability is also 262 

observed in the terai regions of Uttarakhand (5-12%). Similar changes are projected in RCP 4.5. 263 

However, under RCP 8.5 significant increase in suitability is projected Meghalaya and lower 264 

Brahmaputra valley (11-19%), in addition to the upper Brahmaputra valley. Suitability for Ae. 265 

albopictus does not change significantly in future years in the semi-arid and arid regions and the 266 

central highlands under all three scenarios of climate change. 267 

3.4 Projected Range Expansion of Vectors 268 

The binary outputs generated by using the maximum test for sensitivity and specificity 269 

(MaxTSS) as the presence threshold (Figure 3), project an expansion in the distribution of Ae. 270 

aegypti at the edges of the Thar desert in Rajasthan, by 2030s, 2050s and 2070s. This expansion 271 

is most prominent in the RCP 8.5 scenario, and by 2070s, almost all of Rajasthan is projected to 272 
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be suitable for Ae. aegypti. Minor increase in range of Ae. aegypti is also projected in the upper 273 

Himalayas of Arunachal Pradesh. 274 

On the other hand, the results project a substantial expansion of Ae. albopictus in the Leh 275 

(Ladakh) regions comprising of the upper and trans-Himalayas (Figure 3). Significant increase in 276 

range of Ae. albopictus is also projected in the Jaisalmer district of Rajasthan. 277 

 278 

Figure 4 279 

Projected range expansion of (a) Ae. aegypti and (b) Ae. albopictus in future years under 280 

different climate change scenarios 281 

4 Discussion and Conclusions 282 

In India, several studies have been undertaken on the projected scenario of malaria and 283 

dengue with respect to climate change (Dhiman et al., 2011; Sarkar et al., 2019), while there are 284 

negligible studies on the altered distribution of vectors (Kraemer et al., 2019; Ogden et al., 285 

2014). Furthermore, the alarming rise in dengue in the last decade has received relatively less 286 

attention (Gupta & Reddy, 2013). The present study has found widespread distribution of dengue 287 

vectors in India, with a significant risk of expansion in some parts of Thar desert and upper 288 

Himalayas, due to climate change. In north east India as well as the western coastline, both Ae. 289 

aegypti and Ae. albopictus have high prevalence, which implies that the risk of dengue is high, 290 

though the reported cases of dengue do not reflect this. Such areas warrant constant monitoring 291 

and increased surveillance for dengue incidence. Ae. aegypti was found more prevalent in the 292 
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Deccan plateau and the semi-arid regions of Gujarat and Rajasthan, while Ae. albopictus in 293 

eastern coastline. 294 

Ae. aegypti is projected to witness more widespread increase in distribution under RCP 295 

2.6 in 2030s and 2050s, whereas marginal reduction is observed in most parts of the country 296 

under RCP 4.5 and 8.5. By 2070s, RCP 8.5 demonstrates a significant increase in suitability for 297 

Ae. aegypti in the eastern parts of the country. In contrast, the suitability for Ae. albopictus 298 

remains largely similar in most parts of the country by 2030s. Increase in the abundance of Ae. 299 

albopictus is projected in southern India, upper Himalayan regions of Leh (Ladakh) and 300 

Arunachal Pradesh by 2050s under RCP 8.5, and by 2070s. Ae. albopictus has been identified as 301 

a cold-adapted species in earlier studies (Tippelt et al., 2020). 302 

The states which regularly report high incidence of dengue, namely Gujarat, Maharashtra, 303 

Punjab and Karnataka (NVBDCP, 2020) are also predicted to have very high distribution of Ae. 304 

aegypti and/or Ae. albopictus. On the other hand, the model outputs are in disagreement with 305 

dengue incidence in the states of Rajasthan and north-eastern parts. In Rajasthan, the distribution 306 

of both the vectors is low but the incidence of dengue is high i.e. Rajasthan ranked four in 307 

dengue incidence in the country in 2019 (NVBDCP, 2020). A study undertaken in 1997 (Kaul & 308 

Rastogi, 1997) found perennial prevalence of Ae. aegypti in Rajasthan (Kaul & Rastogi, 1997) 309 

which could not be captured by our models. The water storage practices in dry parts of Rajasthan 310 

were perhaps not captured by the climatic variables suitable for Aedes. In North eastern states, it 311 

is just the opposite, which can be explained by oversampling efforts in the north eastern states 312 

(NVBDCP, 2020). Further studies are warranted to ascertain the reasons for low incidence in 313 

north eastern states as well as the future risk of dengue in view of climate change.  314 

A striking observation in our study was that temperature related factors (bio3, bio4, bio6) 315 

contributed more significantly to the suitability of Ae. aegypti, whereas precipitation related 316 

factors (bio16, bio17, bio18) contributed more significantly to the suitability of Ae. albopictus. 317 

This difference is most likely a result of the differences in habitat preference of the two species. 318 

As discussed previously, breeding of Ae. aegypti in household containers enables it to breed in 319 

low precipitation conditions due to water storage practices of the community. At the same time, 320 

Ae. albopictus has a larger temperature tolerance (Tippelt et al., 2020), due to which precipitation 321 

is a more significant limiting factor for Ae. albopictus.    322 

Our study provides updated insights on the changes in vector distribution in India over 323 

the last two decades as compared to earlier published work in 1997 (Kaul & Rastogi, 1997). The 324 

models are based on the assumption that there are no other dispersal limitations for the two 325 

vectors, and therefore represent an ideal scenario. The probability distribution maps thus 326 

generated may guide the ground surveillance efforts in projected areas of distribution of both the 327 

vectors. The areas with projected expansion in range warrant strengthened efforts for 328 

entomological as well as dengue surveillance. 329 
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