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Abstract16

Representing snow equi-temperature metamorphism (ETM) is key to model the17

evolution and properties of the snow cover. Recently, a phase-field model describing mean18

curvature flow evolution on 3-D microstructures was proposed (Bretin et al., 2019). In19

the present work, this model is used to simulate snow ETM at the pore scale, consid-20

ering the only process of moving interfaces by sublimation-deposition driven by curva-21

tures. We take 3-D micro-tomographic images of snow as input in the model and obtain22

a time series of simulated microstructures as output. Relating the numerical time, as de-23

fined in the model, to the real physical time involves the condensation coefficient, a poorly-24

constrained parameter in literature. A calibration was performed by fitting simulations25

to experimental data through the evolution of specific surface area (SSA) of snow un-26

der ETM at -2°C. A value of the condensation coefficient was obtained: (9.8 ± 0.7) ×27

10−4 and was used in all the following simulations. We then show that the calibrated28

model enables to well reproduce an independent time series of ETM at -2°C in terms of29

SSA, covariance length, and mean curvature distribution. Finally, the calibrated model30

was used to investigate the effect of ETM on microstructure and effective transport prop-31

erties (thermal conductivity, vapor diffusion, permeability), for four different samples.32

As an interesting preliminary result, simulations show an enhancement of the structural33

anisotropy of snow in the case of initially anisotropic microstructures such as depth hoar.34

Results highlight the potential of such micro-scale models for the development of snow35

property predictions for large-scale snowpack models.36

Plain Language Summary37

Snow on the ground is a skeleton of ice and air evolving continuously under differ-38

ent environmental constraints. Among them, equi-temperature metamorphism (ETM)39

refers to the smoothing and rounding of the snow structure. It is one of the main mech-40

anisms of snow evolution and its correct representation is crucial for snow modeling. Here,41

we use a mean curvature flow model, describing the smoothing of 3-D microstructures,42

to simulate snow ETM. 3-D micro-tomographic images of snow samples are used as in-43

put; the output is a time series of 3-D images showing ETM evolution. Describing ETM44

classically relies on the condensation coefficient α, a poorly constrained parameter, that45

drives the intensity of the evolution. We estimate this parameter for ETM at -2°C by46

fitting simulations to experimental data. Based on comparisons with an independent dataset,47

we show that the model enables to well reproduce ETM at -2°C when no significant den-48

sification occurs. Finally, we use the model to investigate the effect of ETM on microstruc-49

ture and effective transport properties of snow for four different snow samples. Overall,50

this work presents promising tools for snow metamorphism study and the development51

of predictive means for large-scale snow models.52

1 Introduction53

Dry snow laying on the ground is a complex material made of an ice skeleton in54

an air matrix that undergoes continuous transformations. Especially, snow evolves through55

processes of mass redistribution due to thermodynamic mechanisms called snow meta-56

morphism. Different types of snow metamorphism take place depending on the temper-57

ature and humidity conditions as well as on the snow microstructure itself (see e.g. Calonne,58

Flin, et al., 2014; Colbeck, 1997; Flin et al., 2004; Hammonds et al., 2015). Consider-59

ing metamorphism is key as it impacts snowpack physical properties, including mechan-60

ical properties involved in avalanche processes or thermo-physical properties that drive61

the surface energy budget of snowpacks (Lehning et al., 2002; Vionnet et al., 2012).62

Equi-temperature metamorphism (ETM), also referred to as isothermal metamor-63

phism, occurs in snow in quasi-isothermal conditions and is driven by curvature gradi-64

ents at the ice-air interfaces. Low curvature ice surfaces have a lower saturation water65
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vapor density than the high curvature ones. Those curvature gradients lead thus to gra-66

dients of saturation vapor density causing vapor transfer across the pores (e.g. diffusion)67

as well as phase changes (sublimation and deposition). Ice sublimates in higher curva-68

ture surfaces while water vapor deposits on lower curvature surfaces. The overall struc-69

ture of snow gets rounder, coarser, and more sintered (see e.g. Colbeck, 1980). These70

morphological changes come together with mechanical grain rearrangement leading to71

snow settling. The resulting type of snow is referred to as rounded grains (RG) by The72

International Classification for Seasonal Snow on the Ground (Fierz et al., 2009). Equi-73

temperature metamorphism is constantly taking place in snow but at different levels of74

intensity. The higher the contrast in curvature and the higher the snow temperature, the75

more active the equi-temperature metamorphism. In the presence of high temperature76

gradients, the influence of curvature effects becomes insignificant as the effect of the tem-77

perature gradient metamorphism (TGM) predominates.78

Modeling the physical processes of metamorphism at fine scale requires the descrip-79

tion of the snow microstructure and its evolution (moving interfaces) as well as water80

vapor transport across the microstructure. Models can be applied on simplified geom-81

etry, as in the work of Miller et al. (2003) who considered a 2D regular network of spher-82

ical grains. They can also take as input real snow microstructures, for example 3-D im-83

ages of elementary representative volumes (REV) of snow obtained from micro-tomography84

(µCT). To enable micro-scale 3-D modeling, different hypotheses can be used, describ-85

ing kinetics at the interface, with or without vapor diffusion and settling. Flin et al. (2003)86

considered fully curvature-driven ETM based on the kinetic limited assumption, and sim-87

ulated it with an iterative method on 3-D tomographic images. Comparisons between88

modeled and experimental microstructures were also shown. Also, a first simple grain89

rearrangement model was used to account for settling (Flin, 2004). Similarly, Vetter et90

al. (2010) used a Monte-Carlo algorithm to simulate the isothermal metamorphism with91

the kinetic limited assumption and implemented a simple settling model. They obtained92

consistent results with observations although the model rely on a systematic parame-93

ter determination.94

Recently, phase-field models have been developed to handle the numerical cost and95

complexity of 3-D micro-scale models (Bretin et al., 2019; Demange et al., 2017a, 2017b;96

Granger, 2019; Kaempfer & Plapp, 2009). Kaempfer and Plapp (2009) suggested a phase-97

field model for snow metamorphism considering interface kinetics and diffusion. They98

were pioneers with the phase-field method applied to snow metamorphism, and their re-99

sults are consistent with observations. However, evaluations are qualitative and limited100

only to one temperature gradient case, mainly because of the numerical cost of the model.101

Latter, Demange et al. (2017a) and Granger (2019) introduced faceting effects in the mod-102

eling of individual snow crystals, providing very realistic shapes for highly supersatura-103

tion conditions. Finally, Bretin et al. (2019) developed a very efficient phase-field multi-104

phase growth model for curvature-driven interface evolution, which is typically relevant105

for ETM.106

Modeling the physics of snow growth classically relies on a condensation param-107

eter α, also called attachment, deposition or kinetic coefficient (e.g., Demange et al., 2017b;108

Flin et al., 2003; Furukawa, 2015; Granger et al., 2021; Harrington et al., 2019; Kaempfer109

& Plapp, 2009; Krol & Loewe, 2016; Libbrecht, 2005; Yokoyama & Kuroda, 1990). This110

parameter embodies the physics that governs how water molecules are incorporated into111

the ice lattice and is thus key to model metamorphism. The α coefficient ranges from112

0 to 1. One can think of α as a sticking probability, equal to the probability that a wa-113

ter vapor molecule striking the ice surface becomes assimilated into the crystal lattice114

(see e.g. Furukawa, 2015; Libbrecht, 2005). However, it is still poorly understood and115

quantified, notably because of its complex dependencies to temperature, humidity and116

crystalline orientation (see e.g. Libbrecht, 2019). Numerous values can be found in the117

literature, usually ranging from 10−4 to 10−1 (see e.g., Libbrecht & Rickerby, 2013). The118

large uncertainty on this coefficient is one of the main limiting factor for metamorphism119

models accuracy.120
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To evaluate 3-D models, simulated images are usually compared to experimental121

data through microstructural properties that can be calculated on 3-D microstructures.122

Specific surface area (SSA), growth speed, ice thickness and mean curvature were used123

in previous studies (Flin et al., 2003; Kaempfer & Plapp, 2009; Vetter et al., 2010). To124

characterize the anisotropy of the microstructure, an anisotropy ratio was suggested based125

on the ratio of the horizontal and vertical covariance lengths (Löwe et al., 2013). Dis-126

tributions of the mean curvature can be computed for the upward facing and downward127

facing ice surfaces, which can be interesting to identify faceted crystals and depth hoar128

(Calonne, Flin, et al., 2014).129

Micro-scale models can be useful to design larger scale models, notably to obtain130

regressions to predict macroscopic mechanical and physical properties. Estimating those131

properties is often based on numerical computations from experimentally obtained to-132

mographic snow images (e.g., Calonne et al., 2011; Calonne, Flin, et al., 2014; Courville133

et al., 2010; Kaempfer et al., 2005; Srivastava et al., 2010). However, obtaining exper-134

imental images covering the wide range of scenarios of snow evolution encountered in na-135

ture is a challenge as it is time consuming. 3-D micro-scale models of snow metamor-136

phism could be a more efficient method as those properties can be estimated on simu-137

lated images.138

In this article we intend to go further in the micro-scale modeling of ETM by ap-139

plying the efficient phase-field algorithm of Bretin et al. (2019) on tomographic images140

of snow and by calibrating it through the condensation coefficient α at -2°C using a tem-141

poral series of images obtained at this temperature. Thanks to the calibrated model, we142

investigated the evolution of both microstructural and macro-scale transport properties143

computed on simulated images. Good agreements are reported when comparing the sim-144

ulations to an independent dataset of ETM at -2°C as well as to common estimates of145

the literature. The paper is organized as follows. The physics of ETM and the phase-146

field description of the model are described in Section 2. The model calibration and an147

overview of the tools used for snow analysis are also presented in this section. Evalua-148

tion of the calibrated model and ETM prediction for different snow microstructures are149

investigated in Section 3. Section 4 discusses the model artefacts and the different re-150

sults of the paper. Finally, Section 5 concludes the manuscript.151

2 Method152

2.1 Model153

The phase-field model of Bretin et al. (2019) simulates a multi-phase medium evolv-154

ing under mean curvature flow and volume conservation of each phase. This flow is de-155

fined by an interface evolution where the normal velocity vn is proportional to the lo-156

cal interface curvature C. In our case, we consider two phases where the model minimizes157

local curvatures while conserving the average of the sample mean curvature, which is equiv-158

alent to mass conservation of the ice phase (see e.g. Bullard, 1997). The morphological159

transformations induced by the mean curvature flow can be interpreted as “smoothing”160

surfaces and is typically well-suited to model ETM as it is based on the same mathemat-161

ical description. We apply the model of Bretin et al. (2019) to ETM for which, by def-162

inition, the temperature is isotropic and constant. Such a model implies that we assume163

a kinetic-limited metamorphism: vapor transport in the pore space is not described. The164

vapor diffusion is indeed considered sufficiently fast, so that vapor density far from the165

interface Γ is taken as constant and corresponding to the average sample mean curva-166

ture. Finally, the model does not include any mechanics and the settling of the ice grains167

is thus not represented here.168

Under those conditions, ETM is classically described by the set of equations that169

follows (see e.g. Flin et al., 2003; Kaempfer & Plapp, 2009). All the variables, together170

with the values and units used, are presented in Table 1.171
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Table 1: Notations and values of the physical parameters (above) and variables used in the
model (below).

Symbol Description Value, unit Reference

a mean intermolecular spacing in ice 3.19× 10−10 m Petrenko and Whitworth (1999)
k Boltzmann’s constant 1.38× 10−23 J K−1

m mass of a water molecule 2.99× 10−26 kg Petrenko and Whitworth (1999)
λ interfacial free energy of ice 1.09× 10−1 J m−2 Libbrecht (2005)
ρi density of ice 917 kg m−3

T ETM temperature -2◦C
α condensation coefficient (9.8± 0.7)× 10−4

n number of model time steps 4 to 11
tstep model time step 0.5 to 8
ε interface sharpness parameter 3 voxels Denis (2015)

vn = αvkin
ρamb
vs − ρΓ

vs

ρΓ
vs

on Γ (1a)

with vkin =
ρref
vs

ρi

√
kT

2πm
(1b)

ρamb
vs = ρref

vs e2d0C
amb

(2a)

ρΓ
vs = ρref

vs e2d0C on Γ (2b)

Equation (1) is the Hertz-Knudsen equation that describes the normal growth velocity172

vn at the interface, such as positive values indicate ice growth and, inversely, negative173

values indicate ice sublimation. The growth velocity is driven by the difference between174

the ambient saturation vapor density in the pores ρamb
vs and the saturation vapor den-175

sity at the interface ρΓ
vs. We see in this equation that the interface growth velocity, thus176

the ETM rate, depends linearly on the condensation coefficient α.177

Equations (2a) and (2b) correspond to the Gibbs-Thomson (Kelvin) relationship and de-178

scribe the dependency of saturation vapor density with curvature at a given tempera-179

ture using the capillary length d0 = λa3/(kT ) (m) (Kaempfer & Plapp, 2009). Here,180

Equation (2a) is used to describe the ambient saturation vapor density in the pores ρamb
vs181

in equilibrium, corresponding to the “ambient” curvature Camb, defined as the average182

mean curvature of the entire snow volume. Equation (2b) expresses the interface satu-183

ration vapor density ρΓ
vs in equilibrium with the local ice surface of curvature C. Both184

equations require a reference value of saturation vapor density ρref
vs in air above a flat ice185

surface (i.e., where curvature is zero) and at the given temperature. The latter has been186

largely studied and can be determined as a function of the temperature using existing187

parameterizations. Here we use the formulation of Goff and Gratch (1946), which is ap-188

propriated for our range of temperature. Its expression can be found in Murphy and Koop189

(2005).190

The mean curvature flow model of Bretin et al. (2019) is solved with the phase-191

field method, which enables an implicit description of the interface using a function that192
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- 25 mm⁻¹

+ 25 mm⁻¹

Figure 1: 3-D representation of a tomographic snow sample from Hagenmuller et al.
(2019) under the ETM model Snow3D after 0, 8 and 16 days at -2◦C. See Section 2.2 for
the correspondence between the simulation time and the physical time in days. Concave
surfaces are shown in green, convex surfaces in red and flat surfaces in yellow. The side
of each viewing cube amounts to 675 µm. The blue, green and red arrows respectively
correspond to the x, y and z coordinate axes, z pointing to the upward direction.

varies smoothly between different phases. When adapted and applied to ETM with two-193

phases, air and ice, the phase-field equation can be expressed as:194

∂u

∂t
(x, t) = d0αvkin

(
∆u(x, t)− 1

ε2
W ′(u)

)
(3)

with x the position, t the time and u the phase function defined as:

u(x, t) :=
1

2

(
1− tanh

(s
2

)) d(x, t)

ε
(4)

with s the curvilinear abscissa of the phase function, d the distance function from the
interface Γ, ε the interface sharpness parameter, and W a double-well potential W (s) :=
s2(1−s)2/2. The distance function is linked to the surface local curvature C by ∆d(x) =
C/2 (see e.g. Bullard, 1997) and to the interface normal speed vn by ∂td(x, t) = −vn.
By substituting the physical variables to non-dimensional variables such as: t̃ = tαvkind0/d

2
x,

x̃ = x/dx and ε̃ = ε/dx with dx (m) the input image resolution, the canonical dimen-
sionless form of equation (3) is the famous Allen-Cahn equation (Bretin et al., 2015; Kaempfer
& Plapp, 2009):

∂ũ

∂t̃
(x̃, t̃) = ∆ũ(x̃, t̃)− 1

ε̃2
W ′(ũ) (5)

Equation (5) is the general form of the phase-field equation. Note that, in the model,195

a term is added in the form of a Lagrangian multiplier to guarantee the volume conser-196

vation (details can be found in Bretin et al. (2019)).197

The resulting phase-field model, called Snow3D, takes as input a 3-D binary im-198

age of snow microstructure, such as obtained from tomography, and provides as output199

a series of 3-D binary images at different time steps of the simulation. This is illustrated200

in Figure 1, where the overall smoothing effect of the curvature-driven evolution can be201

observed; ice tends to sublimate on the high curvature surfaces (red areas) whereas wa-202

ter vapor deposits on low curvature surfaces (green areas). The setting parameters of203

the model are the time step tstep, the number of time steps n and the interface sharp-204

ness parameter ε, which respectively control the time resolution, the total time span and205

the spatial resolution of the simulation. Values taken for those parameters are given in206

Table 1.207
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Table 2: a: Experimental time-series of snow images used to calibrate and evaluate the
Snow3D model (Sec. 3.1). Density values correspond to the value at the initial stage of
the series (0 day). Snow types are the main type reported throughout the time-series, or,
when separated by an arrow, are the initial and final type. b: Experimental snow images
taken as input to simulate ETM and predict snow properties (Sec. 3.2).

a)

Name Metamorphism stage Resolution Dimension Density Snow types
(µm) (voxel) (kg m−3)

Isoa 84 days of ETM at −2◦C (10 images) 4.9 512 158 PP → RG

Ebonib 4 days of ETM at −2◦C (20 images) 7.5 450 212 DF/RG

b)

I17c Recent fallen snow 7.3 700 147 DF/RG

TG2c after 16 days at 19 K m−1 7 700 254 FC/DH

Grad3d after 8 days at 100 K m−1 10 600 372 DH

7G9me after 21 days at 43 K m−1 9.7 950 314 DH

aFlin et al. (2004). bHagenmuller et al. (2019). cDumont et al. (2021). dCalonne et al.
(2012); Coléou et al. (2001). eCalonne, Flin, et al. (2014).

Finally, corrections were necessary to limit some artefacts of the model. First, cur-208

vature estimates at the image boundaries can be erroneous, due to the periodic bound-209

ary conditions applied on the images. To avoid uncertainties regarding that issue, the210

edges of the simulated images were cut off by a certain width (0.6 mm) prior to further211

analysis. Also, as the model does not account for gravity, simulations can lead to “float-212

ing” ice grains (see Flin et al., 2003; Vetter et al., 2010), especially for recent snow, which213

undergoes significant settling (see e.g. Flin et al., 2004; Schleef et al., 2014). To prevent214

this non-physical phenomenon, we restrict input images to adequate snow microstruc-215

tures and suppress disconnected ice grains.216

2.2 Calibration217

The model output is a series of n images separated by a time step tstep, without
any notion of physical duration. To obtain physical simulation evolution, a calibration
step is thus needed. Considering the non-dimensional time used to deduce the dimen-
sionless equation (5), the model physical time can be expressed as (Denis, 2015):

t =
t̃ d2

x

αvkind0
(6)

with t the physical time (s) and t̃ = tstep × n the simulated time (-). The condensa-218

tion coefficient α is needed to determine the physical time. To derive a value of α, we219

reproduced the ETM experiment of Flin et al. (2004) with the model and compared the220

simulated series of images with the experimental one (series Iso in Table 2.a) using the221

SSA evolution. The SSA parameter was chosen because it is a good scalar descriptor of222

the microstructure evolution during ETM.223

The series of experimental images of Flin et al. (2004) is composed of 10 images224

showing snow at different times of its evolution during ETM at -2◦C from 0 to 84 days.225

Each image was obtained by micro-tomography of a snow specimen sampled from a snow226

slab undergoing ETM. The first images of the series (Iso01, Iso03, Iso04) were not con-227

sidered in this paper as they correspond to fresh snow, which could lead to grain discon-228

nection issues (Sec. 2.1). To calibrate the model, we used the images Iso05 (day 5), Iso08229
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Experimental series
Flin et al., 2004

Iso05
Snow3D
simulation :
10 iterations

Eq. (6)
α (Iso 05)

Eq. (6)α (Iso 08)Iso08

a)
Iso01
Iso03
Iso04

Iso08 Iso11
Iso15 Iso19 Iso21Iso23

Iso05

b)b)

c)

... ...
Eq. (6)α (Iso 11)Iso11 ... ...
Eq. (6)α (Iso 15)Iso15 ... ...

Iso05

1 2 3 4

Figure 2: Workflow of the time calibration process and determination of the condensation
coefficient.

(day 12), Iso11 (day 18) and Iso15 (day 33). The last three images of the series (Iso19,230

Iso21, and Iso23) were not selected for calibration as they are close in time to the end231

of the experiment and data are too few for relevant statistics when estimating α. Finally,232

the sides of each simulated image were cut off by a stripe of thickness equal to the size233

of two heterogeneities (0.6 mm) before the SSA calculation to avoid edge artefacts while234

keeping volumes larger than the REV, typically about 2.5 mm for SSA (see e.g. Flin et235

al., 2011).236

The calibration process is schematized in four steps in Figure 2. For each selected237

image of the experimental series taken successively as input:238

1. we run the model with the same parameters (n = 10, tstep = 16, ε = 3) to obtain239

a simulated series composed of 10 images.240

2. we calculate the SSA evolution on the simulated series (Fig. 2.b).241

3. we fit the SSA of the simulated series (Fig. 2.b) to the SSA of the experimental242

series (Fig. 2.a) by adjusting the time axis. More precisely, we scale the simula-243

tion time to the experimental time such that simulated SSA matches experimen-244

tal SSA best by minimizing the Root Mean Square Error (RMSE) between the245

two curves (Fig. 2.c).246

4. we use the simulated time and the fitted physical time to derive a value of the con-247

densation coefficient α through the equation (6).248

The average condensation coefficient and standard deviation were calculated from249

the α coefficients obtained from the four images. The resulting condensation coefficient250

is α = (9.8± 0.7)× 10−4. As the condensation coefficient is strongly temperature de-251

pendent and the temperature condition of the experiment of Flin et al. (2004) used to252

calibrate is -2◦C, the calibrated model can only be used to simulate ETM at this tem-253

perature. To evaluate the influence of α on the microstructural parameters, we calcu-254

lated the variation of the microstructural parameters (SSA, covariance length, and mean255

curvature) as a function of α variation. In the range of the α derived from the different256

samples, the parameters only have a maximum alteration of 5%, which is small compared257

to the physical precision of those parameters.258
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2.3 Computation of snow properties259

To characterize our simulated and experimental microstructures, we calculated on260

our volumes a range of microstructural and physical properties.261

Microstructural properties262

• The snow density ρs (kg m−3) was computed with a simple voxel counting algo-263

rithm.264

• The mean curvature (mm−1), defined as (Cmin + Cmax)/ 2 with Cmin and Cmax265

respectively the minimum and maximum 2-D normal curvatures at a point of the266

surface was obtained using the adaptive method proposed by Flin et al. (2004) (see267

also Flin et al. (2005); Calonne, Flin, et al. (2014) for additional information). As268

those values are computed for each point of the surface, they can be represented269

as statistical distributions. The mean curvature is thus expressed in terms of oc-270

currence ratio, which gives the percentage of the ice surface area that exhibits a271

mean curvature located in a particular curvature class. Values near 0 mm−1 cor-272

respond to flat surfaces, positive values to convex surfaces, and negative values273

to concave surfaces; the higher the values, the more concave or convex the surfaces274

(see e.g. Haffar et al., 2021; Ogawa et al., 2006).275

• The specific surface area SSA (m2 kg−1), defined as the total surface area of ice276

per unit of mass was computed using the voxel projection approach (Dumont et277

al., 2021; Flin et al., 2011).278

• The covariance (or correlation) length lc, which corresponds to the characteris-279

tic size of the ice heterogeneities in a given snow microstructure, was calculated280

along the x-, y- and z- directions of the images as in Calonne, Flin, et al. (2014)281

(see also Löwe et al., 2013).282

• The anisotropy coefficient A(?), that can be computed for each microstructural283

and physical property which is computed along the x-, y- and z- directions. This284

coefficient is defined as the ratio between the vertical component over the hori-285

zontal ones, such as A(?) = ?z/?xy. The property is considered isotropic if it ex-286

hibits a coefficient close to 1, otherwise the property is anisotropic. For example,287

A(lc) largely above 1 means that the covariance length is higher in the vertical288

direction than in the horizontal one, and thus describes a structure that is ver-289

tically elongated.290

Macro-scale transport properties The 3-D tensors of the intrinsic permeability291

K (m2), of the effective thermal conductivity k (W m−1 K−1) and of the effective co-292

efficient of vapor diffusion D (m2 s−1) were computed on a set of simulated 3-D images.293

For each property, a specific boundary value problem, arising from a homogenization tech-294

nique (Auriault et al., 2009; Calonne, Geindreau, & Flin, 2015), is solved on the images295

applying periodic boundary conditions on the external boundaries of each volume us-296

ing the software Geodict (Thoemen et al., 2008). The effective diffusion coefficient was297

computed with an artificial diffusion coefficient of gas in free air set to Dair = 1 m2 s−1.298

In this study, we present the normalized values of the effective diffusion D/Dair (dimen-299

sionless). K is normalized by the equivalent sphere radius res = 3/(SSA × ρi) to in-300

troduce a dimensionless tensor: K∗ = K/r2
es (Calonne et al., 2012). As the non-diagonal301

terms of the tensor K, k and D are negligible, we consider only the diagonal terms, i.e.302

seen as the eigenvalues of the tensors (the image axes x, y and z are the principal direc-303

tions of the microstructure, z being along the direction of gravity). Besides, the tensors304

are transversely isotropic as the components in x are very similar to the ones in y. In305

the following, K, k and D refer to the average of the diagonal terms of K, k and D re-306

spectively. Kz, kz and Dz refer to the vertical components and Kxy, kxy and Dxy re-307

fer to the mean horizontal components where Kxy = (Kx +Ky)/2, kxy = (kx + ky)/2308

and Dxy = (Dx+Dy)/2. Finally, the anisotropy of the properties is characterized based309
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Figure 3: Comparison between the experiment of Flin et al. (2004) and the simulations,
taking the Iso05 sample as the model input. Time evolution of: a) the SSA ; b) the co-
variance lengths ; c) the mean curvature distribution.

on the anisotropy ratio A(K) = Kz/Kxy, A(k) = kz/kxy and A(D) = Dz/Dxy (see310

e.g. Calonne, Flin, et al., 2014).311

3 Results312

3.1 Model evaluation313

Here, we evaluate the calibrated model by comparing experiments and simulations.314

To do so, we use the experimental series of images of Flin et al. (2004), which was the315

dataset used to calibrate the model (Sec. 2.2), as well as the one of Hagenmuller et al.316

(2019) to allow for an independent comparison. Evaluations are performed through the317

SSA, the covariance lengths, and the mean curvature distribution computed from the318

simulated and experimental images.319

The experimental series of images of Hagenmuller et al. (2019) was obtained as part320

of a study on dust particles in snow under both temperature gradient and equi-temperature321

conditions. Here we focus on the equi-temperature part of the experiment and select 20322

tomographic images from about 70 hours of ETM at -2°C (Eboni in Table 2.a). We as-323

sume that dust has little influence on ETM (dust concentration of 0.5 mg g−1) and ar-324

tificially convert voxels of dust particles to voxels of air in the images, so we can use them325

as model inputs. In the work of Hagenmuller et al. (2019), the snow sample was observed326

with in operando X-ray tomography, meaning than the same sample was scanned at reg-327

ular intervals (Calonne, Flin, et al., 2015). This method enables to compare directly sim-328

ulated and experimental images, unlike the series of Flin et al. (2004) for which each im-329

age corresponds to a different snow sample.330

The evolution of SSA, covariance lengths and mean curvature from the experiment331

of Flin et al. (2004) and simulated with Snow3D are shown in Figure 3. As expected,332

simulations follow closely the SSA decrease reported in the experiment (Fig. 3.a). The333

RMSE is of 0.58 m2 kg−1 when comparing simulated and experimental SSA, with val-334

ues evolving from 35 to 18 m2 kg−1. Covariance lengths increase over time from around335

0.07 to 0.12 mm. This evolution is well reproduced by the model with a small RMSE336

of 0.005 mm (Fig. 3.b). Looking in more details, the snow microstructure gets slightly337

elongated in the horizontal direction with larger covariance lengths in the horizontal di-338

rection than in the vertical one, of about 0.02 mm. This is not captured by the simu-339

lations for which differences between vertical and horizontal covariance lengths do not340

exceed 0.005 mm and remain rather constant over time. The mean curvature distribu-341
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Figure 4: Comparison between the experiment of Hagenmuller et al. (2019) and the sim-
ulations. Time evolution of the a) SSA ; b) covariance length ; and c) mean curvature
distribution.

tion presented in Figure 3.c allows to qualitatively compare the evolution of the ice-air342

interface morphology. We see that the distributions are narrowing and shifting toward343

lower mean curvature values, especially in the first time period. This depicts that ice sur-344

faces are getting more uniform toward large rounded grains. Simulations follow closely345

the experimental data, showing good agreements at each time step. Finally, we should346

keep in mind that, when evaluating the simulations against the data of Flin et al. (2004),347

the small disagreements observed might be partly due to the fact that the experimen-348

tal properties do not only reflect time evolution but also the spatial variability of the mon-349

itored snow layer, and that they could be influenced by settling, which is not considered350

in simulations (see Sec. 2).351

Figure 4 shows the model evaluation with the experiment of Hagenmuller et al. (2019).352

As this experiment is rather short compared to the previous one (70 hours), microstruc-353

tural changes are more subtle. Overall, SSA decreases from 33 to 28 m2 kg−1, whereas354

covariance length increases from 0.077 to 0.087 mm in the horizontal direction and from355

0.065 to 0.072 mm in the vertical one. The model performs well for the SSA with a RMSE356

of 0.79 m2 kg−1 and, even better for the covariance length with a RSME of 0.0003 mm357

(mean for both directions). The rate of SSA decrease seems slightly underestimated by358

the model, reaching a difference of 1.47 m2 kg−1 after 80 h; this is still small with re-359

spect to the SSA value range. Good agreements are in overall found for the mean cur-360

vature distribution (Fig. 4.c).361

3.2 Model prediction362

Here the model is used to predict equi-temperature metamorphism on different snow363

microstructures. We selected four 3-D experimental images of snow showing various fea-364

tures and used them as input image in the model. The samples are I17, TG2, Grad3,365

and 7G9m, as presented in Table 2. The I17 sample corresponds to an intermediate state366

between decomposed and fragmented particles and rounding grains (DF/RG) and presents367

an isotropic structure with rather rounded shapes. The TG2, Grad3, and 7G9m sam-368

ples correspond to faceted crystals (FC) and depth hoar (DH); they underwent differ-369

ent temperature gradients and show the associated features in varying degrees (coars-370

ening, faceting, striation, cup-shaped morphology, structural anisotropy). Simulations371

were performed considering isothermal conditions at -2◦C and a condensation coefficient372

α of 9.8×10−4. For each image, we obtained a simulated series of 4 to 11 images that373

reproduce 70 to 80 days of ETM in total. Figure 5 illustrates the simulated image se-374
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ries obtained for the four samples: a 3-D view of the microstructure as well as a verti-375

cal slice are shown for each sample at the initial, intermediate, and final stage of the sim-376

ulation.377

3.2.1 Microstructural parameters378

Figure 6 presents the mean curvature distribution evolution for the sample I17 (DF/RG)379

and Grad3 (DH) (Sec. 2.3). For I17, the initial upward and downward distributions are380

similar with a peak of mean curvature located around 4 mm−1 and an occurrence ra-381

tio of 5 % (Fig. 6.a). This reflects isotropic rounded ice structures at the initial stage.382

With time, the area-averaged mean curvature decreases gradually and the distributions383

are narrower, indicating that the ice structures tend toward larger rounded shapes and384

become more uniform.385

For the evolution of Grad3 (Fig. 6.b), the initial upward and downward distribu-386

tions are wider than for the initial stage of I17, revealing a larger variety of shapes. Be-387

sides, the initial upward and downward surfaces exhibit clearly distinct distributions: the388

peak of mean curvature is located around 0 mm−1 for the downward ones and at 1.5 mm−1
389

for the upward ones. The near-0 downward distribution depicts the presence of plane sur-390

faces, which are facets as typically found in the lower area of a depth hoar crystal. In391

contrast, curvatures of the upward-looking surfaces show rather rounded shapes, again392

as typically observed in the upper area of a depth hoar crystal. With time, the differ-393

ences between the downward and upward surfaces fade away and both show a narrower394

distribution (approx. 7 % occurrence ratio) with a low area-averaged mean curvature.395

This indicates more uniform ice surfaces that are mostly large and rounded shapes, for396

both downward and upward surfaces. This overall trend is similar to the one reported397

for I17.398

Figure 7 shows the evolution of the SSA, covariance lengths, and structural anisotropy399

(anisotropy of covariance length), for our 4 simulated series. SSA decreases exponentially400

for each image, as classically reported for ETM experiments and micro-scale models of401

the literature (see e.g. Kaempfer & Schneebeli, 2007; Vetter et al., 2010). Each series402

shows different decreasing rates and shapes, ranging from the exponential decrease from403

23.7 to 9.2 m2 kg−1 for the Grad3 sample to the almost linear slope from 20.6 to 13.7404

m2 kg−1 for the I17 sample. This difference in decrease rate can be explained by the ini-405

tial microstructure. Grad3 shows a high initial SSA value, with sharp edges and facets,406

that leads to a quick and intense evolution (rounding) during the first stage of ETM. In407

contrast, the sample I17 presents rounded shapes in its initial stage. The covariance length408

evolution shows the characteristic increase observed during the ETM, reflecting the growth409

of snow grains and thus the overall increase in size of the microstructure (Calonne, Flin,410

et al., 2014; Löwe et al., 2011). Different evolution rates are again observed, from an in-411

crease of 0.05 mm for I17 to 0.1 mm for Grad3. Finally, the evolution of the anisotropy412

ratio provides rather unexpected results. The samples I17 and TG2, presenting a rather413

isotropic structure with ratio close to 1, show no changes over time. Samples that are414

initially anisotropic, however, show an increase of their anisotropy with time. The anisotropy415

of Grad3 increases from 1.44 to 1.64 through the simulation and, in a lesser way, the anisotropy416

of 7G9m evolves from 1.24 to 1.27. By the end of the simulations, the covariance length417

of Grad3 is about two times larger in the vertical direction than in the horizontal direc-418

tion. This increase in anisotropy can also be seen in the slices and 3-D images in Fig-419

ure 5: the initial vertically elongated ice structure is strengthened leading to the devel-420

opment of vertical “columns” of ice.421

3.2.2 Macro-scale transport properties422

In this section we present 3-D estimates of macroscopic transport properties cal-423

culated on the images of the simulated series predicting ETM for the samples I17, TG2,424

7G9m, and Grad3. We focus on the effective thermal conductivity, the normalized ef-425

fective coefficient of vapor diffusion, and the dimensionless permeability (Sec. 2.3).426
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Figure 5: Initial, intermediate and final stage of the simulated series of Grad3, 7G9m,
TG2 and I17. 3-D views and vertical slices taken at the center of each cube are presented.
Concave surfaces are shown in green, convex surfaces in red and flat surfaces in yellow
in the 3-D views. The ice phase is colored in yellow and the air phase in gray in the slice
representations. Each scale bar scale represents 1 mm. Closer views are available in the
supplementing materials.
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Figure 6: Time evolution of the mean curvature distribution from the downward (left)
and upward (right) surfaces of I17 (a) and Grad3 (b) simulated series. Each curvature
class is 0.5 mm−1 wide.
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Figure 8: Time evolution of density, dimensionless permeability, effective thermal conduc-
tivity, and normalized effective coefficient of vapor diffusion for the simulated series of the
I17 sample (left) and Grad3 sample (right).

Figure 8 presents the evolution of the transport properties with time for the sam-427

ple I17 and Grad3. Density is also shown as the most impacting factor on those prop-428

erties. For all properties, changes are rather small with time. For the lighter sample I17,429

the mean dimensionless permeability decreases from 10−0.33 to 10−0.43, conductivity in-430

creases from 0.078 to 0.081 W m−1 K−1, and the normalized vapor diffusion decreases431

from 0.74 to 0.73. For the denser depth hoar sample Grad3, the mean dimensionless per-432

meability decreases from 10−1.36 to 10−1.61, conductivity increases from 0.37 to 0.42 W433

m−1 K−1, and the normalized vapor diffusion increases from 0.32 to 0.36. Looking at434

the directional components of the properties, a significant anisotropy is observed for the435

sample Grad3 (higher vertical components than the horizontal ones) compared to the436

I17 sample that is rather isotropic. Some changes in transport property can be related437

to the changes observed in density for both samples. Those density changes are unex-438

pected as the model Snow3D is based on ice mass conservation. They correspond to arte-439

facts that might come from a discretization effect of the phase-field function. For all the440

four simulated series, density changes are however small and comprised between 10 kg441

m−3 (3 %) for the TG2 series and 4 kg m−3 (1 %) for the Grad3 series, as discussed in442

detail in Section 4.443

Figure 9 shows the transport properties as a function of density. The tips and hor-
izontal bars of the “T” markers represent respectively the vertical and horizontal com-
ponents of the property, allowing to assess its anisotropy. The arrows indicate the evo-
lution direction of the simulated series in time. The relative change τ of the mean prop-
erty value between the initial and final stage is provided in the legend for each property.
Finally, the computed transport properties are compared to estimates from analytical
models and current regressions from literature (solid lines in Fig. 9). We used the re-
gression from Calonne et al. (2012) and from Calonne et al. (2011) respectively for per-
meability and thermal conductivity, both derived from data obtained from pore-scale com-
putations on snow images spanning a wide range of seasonal snow types, and the self-
consistent estimate for spherical inclusions (Auriault et al., 2009) for the coefficient of
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Figure 9: Effective thermal conductivity, normalized effective vapor diffusion and dimen-
sionless permeability as a function of density.

diffusion:

KCalonne 2012 = (3.0± 0.3) exp ((−0.0130± 0.0003) ρs) (7a)

kCalonne 2011 = 2.5× 10−6ρ2
s − 1.23× 10−4ρs + 0.024 (7b)

DSC = 1− 3ρs
2ρi

(7c)

Overall, the temporal evolution of the different series in terms of macro-scale prop-444

erties and density, represented by the arrows and by the relative changes τ , follow the445

reference parameterizations. Estimates of effective coefficient of vapor diffusion for the446

sample Grad3 and 7G9m show however an opposite trend than the trend from the ref-447

erence model, i.e. we observe an increase with density and time instead of a decrease.448

This increase can be interpreted as an effect of the microstructure on the diffusion co-449

efficient, different from the effect of density. Indeed, in the Figure 9 of Calonne, Gein-450

dreau, and Flin (2014), we see that for a given density, effective vapor diffusion is smaller451

for depth hoar than for faceted crystals and even more for rounded grains. Following this452

study, the simulated evolution of the Grad3 and 7G9m samples from depth hoar to more453

rounded shapes would favor diffusion. Hence, two opposite effects could be competing454

here and it seems that the influence of microstructure overcomes the one of density. The455

impact of microstructure is also present for the dimensionless permeability, as reported456

in Figure 1 of Calonne et al. (2012) for example. In the latter figure, the dimensionless457

permeability decreases with increasing density; but, at a given density, depth hoar sam-458

ples tend to exhibit higher dimensionless permeability than faceted crystals or rounded459
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Figure 10: Influence of the image resolution on the modeled density evolution: example
of a cube surrounded by air and its complementary image as model inputs.

grains. For Grad3 and 7G9m, both the microstructure and the density evolution lead460

to a decreasing dimensionless permeability. For the thermal conductivity, the density changes461

seem to drive most of the evolution and the impact of the microstructural changes is not462

visible in our ETM simulation. The microstructural impact is however observed in the463

case of a TGM experiment in Calonne, Flin, et al. (2014) where thermal conductivity464

increases with time at constant density.465

4 Discussion466

Based on the phase-field approach of Bretin et al. (2019), the Snow3D model pro-467

vides an effective way to simulate ETM from 3-D tomographic images of real snow sam-468

ples. This optimized model has been calibrated and evaluated using experimental ETM469

series at -2◦C, and used to simulate metamorphism on a set of four snow microstructures.470

It can adequately predict the evolution with time of numerous microstructural param-471

eters as well as macro-scale transport properties.472

Having the results in mind, it is worth discussing the model artefacts in some more473

details. For our four simulated image series, we observe a slight increase in density with474

time between 1 % to 3 % or 4 to 10 kg m−3 (Figs. 8 and 9). However, the model is based475

on ice mass conservation and does not simulate settlement or any mechanical processes.476

Changes in density are thus artefacts, which seem to come from the binarization of the477

phase-field function. At the end of the simulation, the continuous interface of the phase-478

field function is approximated by air and ice voxels of finite length. This step can induce479

an error in the definition of the ice-air interface position of one voxel at most. The pro-480

portion of voxel defining the ice interface in the binarized images constitutes 9 % of the481

total ice voxels for the TG2 sample and 6 % for the Grad3 sample, which, converted in482

mass corresponds indeed to the mass gain observed in the simulations. In Figure 10, we483

ran the model on four different images: a cube surrounded by air with a size of 403 vox-484

els; the same cube with a size of 4003 voxels; the complementary of the cube - a cube485

of air surrounded by ice - with a size of 403 voxels; and the same complementary image486

with a size of 4003 voxels. The idea was to test the sensitivity of the simulated density487

to image resolution and interface shapes with an image presenting convex shapes (the488

ice cube surrounded by air) and with one presenting concave shapes (the complemen-489

tary air cube surrounded by ice). We see clearly in the figure that for the high resolu-490

tion, the density is stable in time, whereas for the coarser resolution, the density shows491

an erratic evolution with changes of about 10 %. Indeed, the higher the resolution, the492

thinner the layer of voxel of the ice surface, and the lower the error. In terms of ratio493

between the object length (covariance length) and the voxel size, the 4 studied tomogra-494

phies are similar to the cube and complementary cube of 403 voxels. Finally, the den-495

sity artefact reported in our simulations (maximum of 3 %) are lower than the precision496
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of field density measurements, which is of the order of 5 % (Proksch et al., 2016). More-497

over, snow settlement is an important process of ETM, for example, Flin et al. (2004)498

recorded, starting from fresh snow, a density increase of 60 % in 80 days of ETM. Thus,499

the density artefacts are relatively small in comparison with the settling that can occur500

for recent natural snow.501

It seems also important to discuss about the model calibration and evaluation. In502

our calibration process, the condensation coefficient α is determined using the experi-503

mental time series of Flin et al. (2004) from a ETM experiment of 84 days at -2◦C. A504

value of (9.8±0.7)×10−4 was found, which is in good accordance with the literature.505

Indeed, it corresponds to the lower end of values (typically between 10−4 and 10−1) that506

are usually reported for studies where supersaturations are commonly of the order of 0.1507

to 1 % (Libbrecht, 2019). ETM is however concerned by lower supersaturations, typi-508

cally of the order of 0.1 to 0.01 %, which result in lower α values (see e.g. Fig. 6 of Libbrecht509

and Rickerby (2013) or Fig. 4.24 of Libbrecht (2019)). The wide range of α values avail-510

able in the literature reflects the various and complex dependencies of this coefficient,511

which depends on temperature and water vapor supersaturation, but also on ice crys-512

talline orientation (see e.g. Granger et al., 2021; Libbrecht, 2019). In this work, simu-513

lations were performed for ETM metamorphism (i.e. for supersaturations close to 0.01514

%), with a constant and isotropic value of α determined for a temperature of -2◦C. Such515

simulations are only valid at that temperature and adequate condensation coefficient val-516

ues should be used when simulating ETM with the model at different temperatures. To517

test and evaluate the calibrated model, we used the experimental time series of Hagenmuller518

et al. (2019) of a ETM experiment also performed at -2◦C. Very good agreements were519

found between simulation and experiment (Fig. 4). As this time series is however rather520

short (3 days), the model evaluation would benefit from additional comparisons with longer521

time series of ETM, which is planed as a future work.522

Finally, simulations with Snow3D pointed out the enhancement of the structural523

anisotropy of snow during ETM for the initially anisotropic snow sample Grad3 (depth524

hoar). This sample has a particular morphology: it presents a rather dense structure (about525

370 kg m−3) with many intricate angular shapes and with a preferential vertical elon-526

gation (initial anisotropy ratio of 1.4). Under the simulated ETM, the microstructure527

becomes smoother and small ice convexities and concavities disappear while larger ice528

structures strengthen, forming a vertically oriented ice network. Consequently, the struc-529

tural anisotropy ratio increases, up to 1.6 for the Grad3 sample. A similar analysis can530

be done for the sample 7G9m, for which the initial anisotropy is preserved throughout531

the simulation (ratio of about 1.25). The enhancement or conservation of the structural532

anisotropy during ETM, which was never reported in previous studies, is a rather un-533

expected result as one could have anticipated that the smoothing effect of the ETM would534

make the structural anisotropy disappear for the benefit of more isotropic structures, as535

classically formed under equi-temperature conditions such as rounded grains.536

5 Conclusion537

A snow ETM model based on the work of Bretin et al. (2019) was applied to snow538

images obtained by X-ray tomography to study the impact on the microstructural and539

transport properties. The model was calibrated to experimental data at – 2°C by fitting540

the SSA of the series from Flin et al. (2004) to the simulation. A value of the conden-541

sation coefficient α was derived: α = (9.8 ± 0.7) × 10−4. The calibrated model was542

then evaluated with the independent experimental series of Hagenmuller et al. (2019)543

by looking at microstructural properties such as the SSA, the covariance length, the struc-544

tural anisotropy and the mean curvature. As this evaluation raised very encouraging re-545

sults, the model Snow3D was used to predict ETM for four different snow microstruc-546

tures from experimental samples. The four simulated time series were used to analyze547

microstructural parameters (SSA, covariance length, structural anisotropy) and phys-548
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ical effective transport properties (thermal conductivity, vapor diffusivity and permeabil-549

ity). Those results are in good agreement with current models and regressions. They also550

exhibit the influence of the microstructure on micro-scale (structural anisotropy) and macro-551

scale (effective coefficient of diffusion) phenomena. For example, we observed an enhance-552

ment of the structural anisotropy in the case of initially anisotropic microstructures. It553

questions the idea that isotropic conditions systematically tend to remove the snow struc-554

ture anisotropy. This model is a step forward for modeling ETM at the pore scale. Fu-555

ture studies will focus on implementing the settling process and water vapor transport556

in pores as well as extending the model to other metamorphism conditions, considering557

the condensation coefficient dependencies with temperature and grain orientation espe-558

cially.559
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