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Abstract 13 

Investigating watershed hydrology from a data-driven causal perspective consists of an attractive 14 

opportunity to characterize and understand relationships between water storages and fluxes. 15 

Previous studies have focused on assessing causal interactions of individual hydrologic processes 16 

along with their environmental drivers. Here we assess integrally how the water balance 17 

components interact with themselves, aiming to find relevant time-lags or dependency patterns. 18 

Granger’s causality test and time-lagged mutual information were used in a pairwise approach to 19 

examine cause-effect relationships between precipitation, streamflow, groundwater levels under 20 

different land-covers, and evapotranspiration data (daily timescale) from 2009 to 2019 in a 21 

Brazilian watershed (52 km²), located in a recharge area of the Guarani Aquifer System. A 22 

verification assessment using synthetic datasets shows that the methods are effective to identify 23 

the underlying generating mechanisms. Statistically significant causal connections were 24 

confirmed in practically all pairs of observed data. Granger’s causality indicates that 25 

groundwater and streamflow responses are influenced by precipitation even with a lag of 1-day 26 

(“instantaneous interaction”), while the evapotranspiration can take more than 200 days to 27 

influence groundwater responses, depending on the water table depth and surrounding land-28 

cover. From the mutual information curves, the first local peaks are possibly associated with a 29 

physical mechanism, while other peaks, despite resulting statistically significant, lack a 30 

reasonable interpretation and require further research. The causal analysis provides a 31 

complementary view of the hydrological system’s functioning and challenges us to develop 32 

predictive models that reproduce not only the target variables but also the diverse time-lagged 33 

dependencies observed in environmental data.  34 

 35 

Plain Language Summary 36 

The amount of water moving between the atmosphere, plants, soil, aquifers, and surfaces is 37 

continuously changing over time. Hydrologists are interested to understand and quantify these 38 

changes, associating them to the environmental conditions. In hydrology, observational datasets 39 

from natural systems are the main source of information. Here we characterize the temporal 40 

dependencies between rainfall, streamflow, groundwater levels, and evaporation rates observed 41 

in a recharge area of the Guarani Aquifer System. Instead of methods based on correlation, we 42 

applied techniques capable to find, in a broader way, how past observations help to predict 43 

current processes.  We identify the time variability and strength of time-lagged dependencies and 44 

confirm the existence of causal connections. While a physical interpretation of part of the 45 

statistical results was possible, further studies are needed to take advantage of the information 46 

obtained. Applying causal analysis in hydrology, just like in other science fields (Earth sciences, 47 

ecology, neuroscience), is interesting because it provides us with additional knowledge of the 48 

underlying systems and has the potential to improve the consistency, quality, and value of our 49 

predictions. Reliable projections of the possible futures will help us to be better prepared for 50 

threatening situations. 51 

 52 

 53 

 54 

 55 
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1 Introduction 56 

Applying causal inference methods in hydrology finds motivation in the complexity of 57 

the multiple interactions and interdependencies between hydrological, climatic, environmental, 58 

and human systems, in both space and time domains (Kumar, 2015). The analysis of 59 

observational data, which are becoming increasingly available from satellite remote sensing, 60 

station-based, and field site measurements (Runge et al., 2019), has been one of the most feasible 61 

alternatives to investigate hydrological variability and causality (Blöschl et al., 2019; Ombadi et 62 

al., 2020). Mechanisms of how the water cycle components are being impacted by natural and 63 

human-induced changes, including climate change, land-use changes, and increasing water 64 

demands, may be unraveled with causal frameworks (Goodwell et al., 2020). Similarly, the 65 

environmental conditions that control hydrologic responses of interest for management purposes 66 

(e.g., extreme events) can be better understood (Pelletier and Tucotte, 1997; Dey and Mujumdar, 67 

2018).  68 

Ruddell and Kumar (2009) used transfer entropy (an information-theoretic statistical 69 

measure) for quantifying several properties of information flow and interactions between pairs of 70 

variables measured at an eddy flux tower. Goodwell and Kumar (2017) investigated complex 71 

dependencies and proposed a partitioning method to characterize how two source variables 72 

jointly influence a third (target) variable. The results were illustrated with an application to data 73 

measured at a weather station. In more recent applications of causal methods in hydrology: 74 

Ombadi et al. (2020) compared four methods (Granger causality, transfer entropy, PC algorithm, 75 

and convergent cross mapping) and examined pairwise causal relationships in the 76 

evapotranspiration process using data from a flux tower; Franzen et al. (2020) characterized 77 

time-lagged dependencies between precipitation and streamflow data observed in a large river 78 

basin using mutual information; and Bennett et al. (2019) used a lag 1-day transfer entropy to 79 

quantify and compare the intensity of interaction between simulated hydrologic data.  80 

As suggested by the scope of related studies, applications in which the underlying 81 

causality mechanisms are reasonably well-known represent opportunities to test and explore 82 

causal methods before moving to the analysis of more complex interactions. To date, no studies 83 

have focused on an exploratory and comprehensive causal analysis in a monitored watershed 84 

aiming to quantify the time-lagged dependencies between precipitation, evapotranspiration, 85 

streamflow, groundwater levels, and vegetation indices data, not even in a simple pairwise setup.  86 

As prediction is one of the main goals of science, the presence of properties in time series 87 

data that facilitate to predict future terms from past observed behavior and patterns has a 88 

fundamental value. Memory and persistence (dependences between past and future states) are 89 

properties widely found in hydrologic data. Hurst was the precursor in identifying that the 90 

hypothesis of serial independence of hydrological data results in statistical inconsistencies, 91 

triggering a series of studies that formalized the theory of long memory processes (Amblard & 92 

Michel, 2013; Graves et al., 2017). As practical examples, Zimmermann et al. (2006) and 93 

Tomasella et al. (2008) identified significant memory effects in studies related to deforestation 94 

and interannual variability of precipitation in the Amazon rainforest, suggesting that the history 95 

of land-use and the groundwater system were influencing later hydrological responses. To detect 96 

such cause and effect relationships from observational data, several methods have been 97 

developed (e.g., Granger's method and variations, causal maps, causal networks, algorithms 98 

based on information theory) (Runge et al., 2019). The selection of the most appropriate method 99 
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depends on the prior knowledge of the system, on the nature of the variables involved and on the 100 

intended objectives. 101 

The Granger causality test has been one of the most used statistical tools to determine the 102 

presence of causal relationships between random variables (Barnett & Seth, 2015). 103 

Papagiannopoulou et al. (2017), McGraw and Barnes (2018), Singh and Borrok (2019) and 104 

Huang et al. (2019) applied the test to investigate, respectively, the dynamics between climate 105 

and vegetation, the climate variability, the association between groundwater reserves and food 106 

production on a global scale, and the dependence between climatic and hydrological variables. 107 

The advantage of the method proposed by Granger (1969) over traditional methods based on 108 

correlations or regressions with lagged explanatory variables is the consideration of the memory 109 

effects of the response variables (McGraw & Barnes, 2018). Granger (1969) proposed that a 110 

process S causes, in Granger's sense, another process, T, if future values of T can be better 111 

predicted using values of S and T instead of just values of T. An assumption of the classic 112 

Granger causality test is the linearity premise for the underlying system. Despite that, some 113 

studies have reported the capability to detect, with some limitations, even nonlinear interactions 114 

(Barnett & Seth, 2014; Ombadi et al., 2020).  115 

Along with the Granger test, methods derived from the information theory (IT) – which 116 

are based on the entropy measure (Shannon, 1948) and operate on probability distribution 117 

functions (pdf) – are attracting increasing attention in hydrologic research and Earth system 118 

sciences (Weijs et al., 2010; Rinderer et al., 2018; Goodwell et al., 2020; Kumar & Gupta, 2020). 119 

The principal reasons are found in the capability of information-theoretic methods to provide us 120 

with stronger and more robust conclusions with respect to data interaction and connectivity 121 

(Ruddell & Kumar, 2009; Goodwell & Kumar, 2017; Jiang & Kumar, 2019). Moreover, the 122 

methods do not rely on specific data properties or on the nature of dependencies (linear or 123 

nonlinear). Data limitations – for instance, significant changing behaviors (Ombadi et al., 2020) 124 

and insufficient sample lengths (Li et al., 2018) – still hinder the application of IT methods.  125 

Two specific measures based on informational entropy have been widely applied for 126 

causal inference: time-lagged mutual information (TLMI) and transfer entropy (TE). The first, 127 

TLMI, is a more practicable approach, which measures the general dependence (linear and 128 

nonlinear) between two variables (Fraser & Swinney, 1986), and requires considerably shorter 129 

sample lengths of data. TLMI is not capable to eliminate data memory effects (like the Granger 130 

causality test does) so that static dependencies are not ignored (Li et al., 2018). To address this 131 

limitation, Schreiber (2000) proposed the transfer entropy (TE), a conditioned mutual 132 

information, which measures the amount of directional information transferred between 133 

variables, excluding those memory effects induced by the response (target) time series. Barnett et 134 

al. (2009) demonstrated that the TE metric is proportional to the likelihood ratio of the Granger 135 

causality test for Gaussian random variables. Despite the advantages, the estimation of TE is still 136 

a challenging problem and an active area of research, due to numerical issues, high 137 

dimensionality (determined by the number of time lags between the variables), and dependence 138 

on accurate estimates of probability distributions (Gençağa, 2018). 139 

 Here we explore time-lagged dependencies between hydrologic variables measured in a 140 

small watershed. The Granger causality test and the normalized time-lagged mutual information 141 

metric (NMI) were selected to perform this study due to their suitability to assess the 142 

connectivity and dependency throughout long time windows. We expected to find patterns of 143 

interactions and estimate memory time scales associated with the hydrological processes, which 144 



manuscript submitted to Water Resources Research 

 

may support, directly or not, the predictive modeling and the system characterization. This study 145 

represents an opportunity to identify the potentials and limitations of applying causal methods in 146 

headwater or small watersheds, which are widely acknowledged for their importance in the 147 

context of water management, and to discuss the innovative or relevant information we can 148 

obtain from them. 149 

 150 

2 Materials and Methods 151 

2.1 Study Area 152 

The study domain is limited to the Onça Creek watershed (OCW) (~65 km²), located in 153 

an agricultural area of the state of São Paulo (Brazil) (47°54’ – 48°00’W, and 22°09’ – 22°15’S) 154 

(Figure 1). The watershed entirely lies on a recharge area of the Guarani Aquifer System (GAS), 155 

which is one of the most important groundwater reserves in South America, responsible for 156 

supplying water to more than 90 million people in Argentina, Brazil, Paraguay, and Uruguay 157 

(Araújo et al., 1999; Kirchheim et al., 2019).  158 

The GAS is composed of sandstone layers from the Jurassic (Botucatu Formation) and 159 

Triassic (Piramboia Formation) periods and is widely (~ 90%) confined by basaltic spills that 160 

occurred in the Cretaceous period (Serra Geral Formation). The study area, instead of presenting 161 

such a confining layer, presents a permeable deposit of Cenozoic sediments with a thickness of 162 

tens of meters, and a specific yield varying from 0.08 to 0.16 (Wendland et al., 2015; Coutinho et 163 

al., 2020).  164 

The watershed has an average terrain surface slope of 8 m/km, and elevations between 165 

825 and 655 m above sea level (a.s.l.). Sandy soils, which dominate the watershed, along with 166 

the mild surface slope favor the occurrence of high infiltration rates and low overland flow. The 167 

Köppen-Geiger climate classification (Alvares et al., 2013) indicates a humid subtropical 168 

climate, with dry winters and rainy summers (Cwa). From 1979 to 2014, the mean annual 169 

precipitation was 1486 mm (about 65% in the rainy seasons), and the mean annual temperature, 170 

21.6 °C (Cabrera et al., 2016).  171 

Agricultural and livestock activities have dominated the area during the last decades. In 172 

1990, eucalyptus plantations covered about 30% of the total area, pastures, 15%, and the native 173 

vegetation (Cerrado, tropical savanna), 30% (Pompeo, 1990). In 2017, eucalyptus, citrus, 174 

sugarcane, and pasture activities summed-up approximately 35%, 30%, 10%, and 4%, 175 

respectively, with the remaining native vegetation corresponding to only 10% (Figure 1).  176 

Data from the monitoring stations and wells indicated in Figure 1 were used in this study. 177 

The reference period covered December 2008 to September 2019. Basic quality control 178 

procedures were followed to ensure data consistency. 179 

 180 
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  181 

Figure 1. Location of the study area. (a) hydrometeorological stations and (b) dominant land-182 

covers and monitoring wells. Data sources: 1. Recharge areas of the Guarani Aquifer: 183 

http://geoserver.ourinhos.unesp.br/; 2. DEM: https://www.infraestruturameioambiente.sp.gov.br/ 184 

 185 

2.2 Streamflow and Baseflow Data 186 

The discharge time series was estimated at the stream gauge Santa Maria, in a section that 187 

drains an area of 52.1 km² (Figure 1), and located immediately upstream to a crossroad with two 188 

culvert pipes with a diameter of 1.50 m. Discharge measurements have been carried out by 189 

current meters twice a month since 2004. The daily discharges (long-term mean = 0.65 m³/s) 190 

were estimated from the transformation of sub-hourly water level data, using the classic power-191 

law stage-discharge transformation function. The level data are recorded every 15 minutes, since 192 

December 2008, by water level loggers maintained in a stilling well hydraulically connected to 193 

the stream. The parameter for zero flow condition was set based on the invert elevation of the 194 

culverts, while the other rating curves parameters were calculated by the ordinary least square 195 

method. The parameters are variable over time due to the channel section instability (sandy 196 

stream bed) and due to the downstream impoundment with controlled water release during the 197 

dry seasons. Considering the errors associated with the rating-curves and the water level data, the 198 

median uncertainty in the estimated discharges was 11.9%, whereas the mean uncertainty, 199 

13.0%. 200 

The unconfined aquifer holds a high interaction with the stream, maintaining its perennial 201 

regime (Wendland et al., 2015). To estimate the daily baseflow time series, the two-parameter 202 

separation method proposed by Duncan (2019) was applied. This method comprises a backward 203 

filtering operation to fit an exponential master recession curve, followed by the original Lyne 204 
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and Hollick digital filter to smooth the resulting curve. The filter parameters in the first and 205 

second pass were set equal to 0.983. The baseflow index was estimated as 0.86, which is 206 

comparable to the value of 0.83 obtained by Batista et al. (2018) through isotopic mass balance 207 

calculations, in nearby catchments with similar meteorological and hydrogeological conditions 208 

(recharge areas of the GAS).  209 

 210 

2.3 Meteorological Data 211 

The operation periods up to September 30, 2019, of the four nearby weather stations 212 

(WS, circles in Figure 1) and the two rain gauges (RG, squares in Figure 1) defined the 213 

meteorological datasets used here. All weather stations are equipped with rain gauges, air 214 

temperature and humidity probes, pyranometers, and anemometers.  215 

Reference evapotranspiration rates were calculated by the Penman-Monteith method (PM 216 

FAO-56) (Allen et al., 1998). Given the dimensions of the study area and the spatial variability 217 

of meteorological variables, daily precipitation data and the reference evapotranspiration 218 

calculated at each WS were interpolated. The deterministic method of inverse distance weighting 219 

(IDW), with power 2 (Dirks et al., 1998), was used to obtain daily grid surfaces (50 x 50 m) from 220 

simultaneous records. The average values over the monitored drainage area formed the final time 221 

series of precipitation and reference evapotranspiration. 222 

 223 

2.4 Spectral Vegetation Indices and Evapotranspiration 224 

The vegetation dynamics can be relevant to describe the hydrological behavior of 225 

catchments, especially in small spatial and temporal scales (Area < 500 km² and 1 - 5 years) 226 

(Donohue et al., 2007; Wegehenkel, 2009). Studies have shown that the relationships between 227 

actual (AET) and reference (RET) evapotranspiration are reasonably well estimated, in diverse 228 

biomes, as a function of remotely sensed vegetation indices (Glenn et al., 2008; Glenn et al., 229 

2011; Kamble et al., 2013; Nagler et al., 2013).  230 

The empirical method proposed by Nagler et al. (2013), based on experimental studies in 231 

the state of Arizona (USA), was adapted here to provide an estimate of the actual 232 

evapotranspiration. The method follows Equation 1, which is based on the Beer-Lambert law to 233 

determine the absorption of light by a canopy and takes the enhanced vegetation index (EVI) as 234 

an indicator of the density of light-absorbing particles.  235 

 236 

AET = [𝑎(1 − exp (−𝑏. EVI)) − 𝑐] × RET 

(

1) 

in a, b, and c are parameters to be calibrated against observed data. As a simplification, 237 

motivated by the lack of observed evapotranspiration in the study area (e.g., by flux towers in 238 

representative land covers), we adopted a = 1.65 and b = 2.25, the same values estimated by 239 

Nagler et al. (2013), and left c as a free parameter to be adjusted in the water balance assessment. 240 

This is equivalent to allow for slight translations in the transformation curve, maintaining the 241 

sensibility of the ratio AET/RET with respect to EVI. 242 
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The EVI data, referring to the surrounding areas of the monitoring wells and to the 243 

watershed area, were taken from the product MOD13Q1 (Didan, 2015), generated every 16 days 244 

in 250 m spatial resolution, and made available on the NASA Land Processes Distributed Active 245 

Archive Center (LP DAAC). Daily values of EVI were obtained from linear interpolation, then 246 

individual time series of actual evapotranspiration for each well and for the watershed were 247 

calculated.  248 

 249 

2.5 Groundwater Level 250 

The surrounding typical land covers, the ranges of water level variation of the eight 251 

monitoring wells considered in this study (Figure 1), and the respective specific yield (drainable 252 

porosity) values are shown in Table 1. The wells have been monitored every 15 days by water 253 

level meters, and twice a day by dataloggers (Levellogger® Edge 3001 or Diver® DI501). The 254 

datasets from the manual and automatic measurements were adjusted, resampled, and merged to 255 

form the final daily time series for each well. Also, an average groundwater level variable 256 

(named ‘GWL’) was defined as the arithmetic mean of the levels observed in the monitoring 257 

wells.  258 

 259 

Table 1. Description of the groundwater monitoring wells (m b.g.l. = meters below ground 260 

level). Specific yield (drainable porosity) values were obtained from Wendland et al. (2015).  261 

ID 
Land cover 

Water level depth 

(m b.g.l.) 
Specific 

yield  
 min mean max 

W4  Pasture 14.4 16.5 17.9 15.9% 

W5 Pasture 3.6 6.3 9.1 15.9% 

W9 Eucalyptus  15.6 20.2 24.4 15.1% 

W13 Sugarcane 5.5 9.8 11.0 15.1% 

W14 Sugarcane 2.8 6.6 7.6 15.1% 

W15 Citrus 4.6 7.8 9.5 8.5% 

W16 Eucalyptus 2.7 5.2 7.2 12.3% 

W19 Eucalyptus 8.9 15.1 18.7 12.3% 
 262 

 263 

2.6 Water Balance 264 

We examined the water balance dynamics in the watershed from October 01st, 2009 to 265 

September 30th, 2019, which corresponds to ten complete water years in the study area. The 266 

control volume of inputs and outputs was defined as the region from the upper canopy layer to 267 

the layer where deep regional recharge (outflow to the GAS) occurs.  268 

 269 

∆𝑆 = 𝑃𝑃 − 𝐴𝐸𝑇 − 𝑄 − 𝐷𝑅 (2) 

in which ∆𝑆: water storage change, PP: precipitation, AET: actual evapotranspiration, 270 

Q: discharge, and 𝐷𝑅: deep recharge. Based on the study by Wendland et al. (2007), the deep 271 
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recharge was assumed as 3.5% of the average annual precipitation (~ 50 mm/a in the study 272 

period). The accumulated water storage changes are supposed to follow the average behavior of 273 

the groundwater levels because the soil moisture has negligible annual variations in the study 274 

area (Pompeo, 1990).  275 

 276 

2.7 Granger Causality Test (GC) 277 

The Granger causality definition is based on the increase of predictive power of an 278 

autoregressive model by including an additional variable, candidate to present a causal 279 

relationship, with a certain time lag (Granger, 1969). Some considerations to make such 280 

definition applicable are that the data are generated according to a linear, Gaussian, and 281 

stationary autoregressive process. In the simplest, bivariate case, two models are considered: the 282 

unrestricted (Equation 3), with the past values of the variables X and Y; and the restricted 283 

(Equation 4), only with the past values of the variable Y. 284 

 285 

yut
= cu +  ∑[ϕ1jyt−j + ϕ2jxt−j]  + 𝜖𝑡 ,   ϵt ~ N(0, 𝑣𝑢)

p

j=1

 (3) 

 286 

yrt
= cr +  ∑ ϕ1jyt−j + 𝜖𝑡 ,   𝜖t ~ N(0, 𝑣𝑟)

p

j=1

 (4) 

in which cu, cr, ϕ1j e ϕ2j are model parameters, and ϵt is a Gaussian error, with variance 𝑣.  287 

The null hypothesis is accepted when ϕ2j = 0 for j =1, 2, …, p, meaning that X does not 288 

cause Y in the Granger sense. Conversely the null hypothesis is rejected when ϕ2j  ≠ 0 for a j 289 

between 1 and p.  290 

The open source library Statsmodels 0.9.0 (Seabold & Perktold, 2010) was used for the 291 

computational implementation of the method. The algorithm executes the test for multiple time 292 

lags (up to the maximum lag length) between pairs of variables and examines the corresponding 293 

statistical significance of the causal relationships based on the likelihood ratio test (Equation 5).  294 

 295 

LR = −2 log [
ℒr(θ̂0)

ℒu(θ̂1)
]   ~ χ2 (d.f. = p

u
-p

r
) (5) 

 296 

in which LR is the likelihood ratio, 𝜃𝑖 indicates the maximum likelihood estimation of 𝜃𝑖 (model 297 

parameters) under the hypothesis 𝑖, ℒ indicates the likelihood function, and the subscripts u and 298 

r refer to the unrestricted and restricted model, respectively. The LR follows approximately a 299 

chi-square distribution, with degrees of freedom (d.f.) equal to the difference between the 300 

number of parameters of the unrestricted (pu) and restricted (pr) models (Wilks, 1938).  301 
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 302 

2.8 Time-lagged normalized mutual information (NMI) 303 

The mutual information I (X; Y) is defined as the relative entropy between the joint 304 

distribution and the product distribution (Cover & Thomas, 2005): 305 

 306 

I(X; Y) = ∑ ∑ pXY(x, y) log2

pXY(x, y)

pX(x)pY(y)
y∈𝒴x∈𝒳

= H(X) + H(Y) − H(X, Y) (6) 

in which pX, pY and pXY are marginal and joint probability mass functions, and H(X), H(Y) and 307 

H(X,Y) are the entropy and joint entropy of the discrete random variables X and Y. The mutual 308 

information I (X; Y) measures the general dependence (linear and non-linear) between two 309 

variables and can be seen as the reduction of the uncertainty of variable X (or Y) due to 310 

knowledge of variable Y (or X). By adopting some time lag between the variables under 311 

analysis, mutual information can be used to detect the direction and intensity of interaction 312 

between linear or non-linear processes (Li et al., 2018). 313 

 314 

TLMI(X; Y, τ) =  − ∑ ∑ pXY(xt, yt+τ) log2

pXY(xt, yt+τ)

pX(xt)pY(yt+τ)
  

 (7) 

in which TLMI is the time-lagged mutual information, and τ is the time lag between the cause 315 

(X) and effect (Y) variable. A normalized metric, presented in Equation 8, was used here. 316 

 317 

0 ≤  NMI(X, Y; τ) =
TLMI(X, Y; τ)

min[H(X), H(Y)]
≤ 1 

(8) 

in which H(X) and H(Y) are the entropy of X and Y.  318 

The marginal and joint probability distributions were estimated from histograms (Li et 319 

al., 2017). For each pair of variables (X, Y), the number of bins was set as the geometric average 320 

of the numbers individually determined by the Freedman-Diaconis rule (Freedman; Diaconis, 321 

1981).  322 

  323 

2.9 Verification Assessment 324 

The verification strategy presented here aimed to identify errors in the computational 325 

implementation and to understand the results for situations in which the temporal dependencies 326 

between cause and effect are well-known. Synthetic time series, generated according to 327 

Equation 9 (Wt, a simple summation function) and Equation 10 (Zt, a discrete convolution 328 

operation), were investigated by both the Granger causality test and the normalized time-lagged 329 

mutual information.  330 

 331 
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Wt = max (0 ; 0.20 + 1 × 10−4 × ∑ [PPt−τ∗+j]
a

m

j= −m

+ ϵt) , ϵt ~ N(0, d2σPP
2 ) 

(9) 

 332 

Zt = ∑ PPt−jUHj

∞

j= −∞

 + ϵt,  UHt  =
(t/k)n−1 exp(−t/k)

k (n − 1)!
, E[UHt] = n. k;  ϵt ~ N(0, d2σPP

2 ) 
(10) 

in which PPt [mm] is the mean areal daily precipitation time series in the study area, 𝜎𝑃𝑃 is the 333 

sample standard deviation of PP (~9 mm), E[UHt] is the expected value of the gamma 334 

distribution function UHt (Besbes & de Marsily, 1984), and 𝜖𝑡 is an uncorrelated Gaussian noise. 335 

The parameter arrays, (a, m, 𝜏∗, d) for Wt and (n, k, d) for Zt, were set as shown in Table 2. The 336 

ranges intended to assess the methods under diverse conditions. The premise is that the methods 337 

were capable to identify the lags LW = 𝜏∗ for Wt, and LZ = n × k for Zt.  338 

 339 

 340 

Table 2. Parameters adopted to generate the W and Z synthetic time series.  341 

Time 

series 

Group 

ID 

Fixed 

Parameters 

Variable 

Parameter  

W 

1 

a = 1 

d = 1 

𝜏∗ = 200 

mj = 1; 10; 100 

2 

m = 1 

d = 1 

 𝜏∗ = 200 

aj = 0.1; 0.5; 2 

3 

a = 1 

m = 1 

𝜏∗ = 200 

dj = 0.01; 0.10; 10 

4 

a = 1 

m = 1 

d = 1 

𝜏𝑗
∗ = 200; 500; 800 

Z 

1 
n = 10 

d = 0.01 
kj = 10; 20; 30 

2 
k = 10 

d = 0.01 
nj = 5; 20; 30 

3 
n = 14 

k = 14 
dj = 0.001; 0.1; 1.0 

 342 

 343 

2.10 Analysis of Observed Data 344 

The Granger causality test and the normalized lagged mutual information were calculated 345 

in a pairwise setup. The pairs were defined as: in a first set, precipitation and evapotranspiration 346 

as source (‘cause’) variables, whereas streamflow, baseflow, and groundwater level as target 347 

(‘response’) variables; and in a second set,  reference evapotranspiration, enhanced vegetation 348 

index and groundwater level as sources, while streamflow and baseflow as targets. Incremental 349 

lags, from 1 up to 1000 days, were considered. These pairs were defined based on likely or 350 
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possible cause-effect relationships in the hydrological system. For example, it is expected that 351 

precipitation directly influences groundwater levels and streamflow.  352 

All the observed time series were affected by uncorrelated Gaussian noise to compensate 353 

for uncertainties in the deterministic estimations of the hydrological processes. Due to data 354 

insufficiency and for the purpose intended here, the statistical properties of errors were taken as 355 

fixed approximations. A coefficient of variation (relative uncertainty) of 15% was adopted for 356 

streamflow, baseflow, and evapotranspiration estimates, whereas fixed standard deviations of 357 

10 mm, 0.02 m, and 0.06 were set for precipitation, groundwater level and EVI data, 358 

respectively.  359 

The statistical significance of the mutual information values was verified using a shuffled 360 

surrogate method (Ruddell & Kumar, 2009; Franzen et al., 2020). In this method, the time series 361 

data are shuffled to destroy time dependencies between the variables, and the mutual information 362 

is calculated using both the shuffled and the original data. Thirty iterations of shuffled data were 363 

used to compute a critical value associated with a 95% confidence level. Gaussian distribution 364 

was assumed. When the mutual information calculated for the observed data is greater than the 365 

critical value (calculated based on the shuffled sequences), the mutual information value is 366 

considered statistically significant.  367 

 368 

3 Results 369 

3.1 Water Balance Dynamics 370 

Figure 2 shows the time series from 2009 to 2019 of the streamflow (total, Q and 371 

baseflow, Qb), precipitation (PP), estimated actual evapotranspiration (AET), enhanced 372 

vegetation index (EVI) and average groundwater level (GWL). There is a groundwater 373 

dominance in the streamflow dynamics, with a baseflow index greater than 0.85. The ratio of 374 

reference evapotranspiration by annual precipitation is 0.87, and the ratio of AET by annual 375 

precipitation, 0.70. Trend analysis was not the focus here, however, it is possible to see a slight 376 

downwards trend in Q, Qb, and GWL time series data, and also an apparent upwards trend in the 377 

AET.   378 

The water year 2013-2014 was marked by a meteorological drought (Coelho et al., 2016; 379 

Marengo et al., 2015), with annual precipitation 20% lesser than the average. The impacts on 380 

groundwater levels and streamflow can be readily observed. Minimum groundwater levels were 381 

reached in January 2015, and minimum streamflow, in September 2015.  382 

From October 2009 to September 2019, the average groundwater level experienced a 383 

reduction from 716.13 to 714.90 m a.s.l. Considering a mean specific yield of 0.10, this 384 

groundwater level change represents a water storage reduction of 123 mm in the phreatic zone. 385 

In the water balance, when the parameter c used to estimate the AET is taken as 0.220, the 386 

accumulated water storage changes in the watershed varied from -4 to -125 mm in the same 387 

period. This reasonable water balance closure suggests that the estimates presented in Figure 2 388 

are consistent and can be used in our causal analyses.  389 
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 390 

Figure 2. Water balance components and vegetation index time series in the study area. The 391 

actual evapotranspiration calculated with c = 0.220 (continuous red line) led to a water balance 392 

consistent with the groundwater level variation from October 2009 to September 2019. Mean 393 

annual rates in the study period: precipitation = 1403 mm/a; streamflow = 384 mm/a (0.63 m³/s); 394 

baseflow = 324 mm/a (0.54 m³/s); reference evapotranspiration = 1220 mm/a; and actual 395 

evapotranspiration = 985 mm/a. Horizontal lines indicate initial values.  396 

 397 

3.2 Synthetic Time Series 398 

The methods were effective to characterize the time delay mechanisms that generated the 399 

synthetic time series W (derived from a summation function) and Z (derived from a convolution 400 

operation), as shown in Figures 3 and 4. When the p-value (GC) is greater than 0.05 (adopted 401 

significance level), there is statistical evidence that the lagged time series does not present a 402 

causal relationship in the Granger sense. Complementary, the intensity of the functional 403 

connectivity, or causal interaction, between the lagged time series is proportional to the NMI 404 

metric. When the results are analyzed simultaneously, we realize that they were capable to 405 

identify the time lags in practically all instances. Exceptions happened for the cases in which 406 

large noise variances were used to generate the response time series (Figure 3i, Figure 4i), 407 

affecting especially the mutual information-based method. GC worked well for most of the 408 

cases. The most relevant inconsistencies were found in Figure 3c and Figure 3l, situations in 409 
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which the causal relationships in the Granger sense were identified for time lags about 100 and 410 

400 days, respectively, shorter than they should be.  411 

 412 

 413 

 414 

Figure 3. Causal detection in the synthetic time series W. For the Granger causality analysis 415 

(GC, results indicated by the dotted red lines), the null hypothesis (absence of causal interaction 416 

in the Granger sense) is rejected when p-value < 0.05. The normalized time-lagged mutual 417 

information NMI (indicated by the blue lines) shows the functional connectivity dynamics 418 

between the time series (PP and Wj). The time lags in which global peaks occur correspond to 419 

the time lags (τ*) used to generate the synthetic time series. In most of the instances, the GC and 420 

NMI methods correctly detected the time lags τ*. The exceptions are found in plots c, i and l. 421 

 422 
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 423 

Figure 4. Causal detection in the synthetic time series Z. The NMI metric correctly detected in 424 

most of the cases the mean time-delay (n.k) of the unit hydrographs used to generate the time 425 

series, while the Granger causality analysis detected the causal relationships (p-value < 0.05) 426 

with some anticipation (between 50 and 150 days).  427 

 428 

The Granger causality test, despite being designed to detect linear causal relationships, 429 

was capable to identify the lags in series W2-1, W2-2 and W2-3, in which non-linear functions 430 

of PP were used.  431 

 432 

3.3 Observed Time Series 433 

The Granger causality (GC) test confirmed that meteorological variables are influencing 434 

groundwater levels (GWL) and streamflow (total or baseflow) for practically all cases, with 435 

different time lags. A summary of the results is presented in Table 3. The precipitation affects (p-436 

value < 0.05) the streamflow and the water level at practically all monitoring wells, even for 437 

short time lags (starting from 1 day). A singular behavior was found in the deepest water table 438 

(well W9), in which the causal interaction between precipitation and water level started to be 439 

confirmed only for time lags greater than 150 days.  440 
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Each well presented a unique GC response to evapotranspiration, regardless of the 441 

surrounding land cover, suggesting that the water table depth and the soil properties are together 442 

controlling the minimum time lag required to detect a causal interaction. 443 

When analyzed as a response of the precipitation or as a cause of groundwater level 444 

changes, the EVI presented two disconnected intervals with p-value < 0.05.  445 

Similarly to the presented for the synthetic time series, GC analysis only determines 446 

whether a causal interaction exists between time series, identifying the time-delay associated 447 

with them. As an additional source of information, the NMI measure shows details related to the 448 

strength and dynamics of functional connectivities between processes.  449 

 450 

Table 3. Results of the Granger causality.  451 

Causal interaction Time lag intervals with 

 p-value < 0.05  

(M = 1000 days) Cause Response 

PP → 

Q or Qb  [1, M]  

GWLj (j = 4, 5,13, 14, 15, 16, 

19)  
[1, M] 

GWL9 [150, M] 

EVI [1, 50] ∪ [265, M] 

AET → 

Q  [1, M] 

Qb [100, M] 

GWL14 [1, M] 

GWL4,16 [10, M] 

GWL5 [20, M]  

GWL13, 15 [30, M] 

GWL19 [100, M] 

GWL9 [260, M] 

EVI → 

Q  [300, M] 

Qb [370, M] 

GWLmean [1, 30] ∪ [270, M] 

GWL → Q or Qb [1, M] 

 452 

 453 

Figure 5 presents NMI curves considering precipitation and evapotranspiration as causes 454 

and the groundwater levels as responses. To facilitate the visualization, simple moving averages 455 

of the NMI values, with a time period of 5 days, were plotted. The upwards trend observed in 456 

most of the curves occurs because the time-lagged mutual information, unlike GC analysis, does 457 

not eliminate the effects induced by the own response time series memory (dependency on 458 

previous states).  459 

The results were examined individually. Considering first the precipitation, the wells W4 460 

and W5, which are 30 m apart and installed in a pasture area, presented a similar pattern despite 461 

the depth difference (~10 m, Table 1). This suggests that location and soil characteristics may be 462 

a critical factor to understand the results because they are monitoring different aquifers (mean 463 

water level equal to 16.5 m b.g.l. at W4, and 6.3 m b.g.l. at W5). The earliest local NMI peaks 464 
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occurred at 240 and 140 days for W4 and W5, respectively. These time lags seem to be related to 465 

the mean time required to the water reach the respective water tables.  466 

Only the well W9 did not present statistically significant NMI. That well is located out of 467 

the watershed, 500 m away from the water divide and surrounded by a Eucalyptus plantation. 468 

The great depth of the water table (20.2 m b.g.l., Table 1) may be one of the reasons that 469 

contributed to the singular behavior. 470 

The wells W13 and W14, 100 m apart in a sugarcane crop area, followed a similar 471 

general shape, with the earliest NMI peaks at 100 and 75 days.  472 

The well W15, located in a citrus orchard, presented a trending NMI curve, without any 473 

relevant peaks. For the wells W16 and W19, which are in a Eucalyptus plantation area and 474 

located 150 and 500 m away from the Onça Creek (main stream), the NMI curves showed 475 

similar patterns, with earliest local (and global) peaks at 115 and 175 days, respectively.  476 

When examining the interaction between groundwater levels and evapotranspiration 477 

(AET) (Figure 6), the water levels at wells close to each other (W4 and W5; W13 and W14; W16 478 

and W19) exhibited similar NMI patterns. Such patterns are characterized by multiple local 479 

peaks, which overall did not coincide with the peaks found in the analyses with precipitation.  480 

When comparing the time lags in which local NMI peaks occurred with those lags 481 

detected by the GC analysis (Table 3), no wells showed inconsistency, that is, all peaks occurred 482 

in intervals with causal interaction confirmed in the Granger sense. 483 

 484 

 485 

 486 
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 487 

Figure 5. Normalized time-lagged mutual information (NMI) of the interaction between 488 

precipitation (PP) and groundwater level at the monitoring wells (GWLj) for time delays (τ) up to 489 

1000 days. (S, T): indicates the NMI curves for the source (cause) and target (response) 490 

variables, generated using their respective mean values and uncertainties, and (Ss, Ts): indicates 491 

the NMI curves for the shuffled time series.  492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 
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 501 

Figure 6. Normalized time-lagged mutual information (NMI) of the interaction between 502 

evapotranspiration (AET) and groundwater level at the monitoring wells (GWLj) for time delays 503 

(τ) up to 1000 days. (S, T): indicates the NMI curves for the source (cause) and target (response) 504 

variables, generated using their respective mean values and uncertainties, and (Ss, Ts): indicates 505 

the NMI curves for the shuffled time series. 506 

 507 

Figure 7 shows how precipitation, evapotranspiration, EVI and mean GWL interact with 508 

total streamflow (a) and baseflow (b) over different time delays. The hydraulic connectivity 509 

between the aquifer and the stream is evidenced by the high NMI values for early time lags. The 510 

NMI curve for the relationship between precipitation and streamflow drops rapidly in the first 5 511 

days of delay, and it develops two local peaks at 380 and 765 days. The NMI curve for the 512 

baseflow as a response of the precipitation presented local maxima at 50, 415, 780, and 845 days. 513 

The evapotranspiration presented slight peaks every ~ 180 days. 514 

 515 

 516 

 517 
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 518 

Figure 7. NMI metric between meteorological/vegetation forcings (precipitation-PP, reference 519 

evapotranspiration-RET, enhanced vegetation index-EVI, estimated actual evapotranspiration-520 

AET) or groundwater states (mean groundwater level-GWL) and streamflow (Q) and baseflow 521 

(Qb) responses. (S, T): indicates the NMI curves for source (cause) and target (response) 522 

variables, generated using their respective mean values and uncertainties, and (Ss, Ts): indicates 523 

the NMI curves for the shuffled time series. 524 

 525 

To support the interpretation of the results showed in Figures 5, 6 and 7, especially to 526 

better know the memory timescale and the persistence of the hydrological processes, the time-527 

lagged mutual information was also calculated for each variable, determining a ‘self-528 

information’ (Figure 8). Notably, the mean groundwater level (GWL) has the highest 529 

persistence, followed by the baseflow and streamflow. The memory timescale, if estimated by 530 

the first local minimum of the time-lagged mutual information, was about 200 days for GWL, Q, 531 

and Qb, and about 100 days for EVI and AET. The precipitation did not present statistically 532 

significant results.  533 
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 534 

 535 

Figure 8. Time-lagged mutual information series comparing each variable to itself at various 536 

lags. (S, T): indicates the NMI curves for source (cause) and target (response) variables, 537 

generated using their respective mean values and uncertainties, and (Ss, Ts): indicates the NMI 538 

curves for the shuffled time series. 539 

 540 

4 Discussion 541 

The time-lagged mutual information and the Granger causality test proved to be effective 542 

to detect relevant time lags in synthetic time series. Simple and convergent interpretations were 543 

possible in our assessment. When analyzing the watershed data, however, the results were 544 

diverse, without a clear pattern. The Granger test seemed to be useful to detect processes that 545 

demand a large time delay to establish a connection. Since our study area is relatively small (~ 546 

52 km²), in most of the cases, the causal interaction was detected even for 1-day lag (Table 3). 547 

These results could be expected since all local processes are structurally connected, sometimes 548 

with an intermediate reservoir (e.g., soil). Nevertheless, the innovative information we obtain 549 

from them is very limited. The NMI curves presented multiple and statistically significant local 550 

peaks, which are likely attributed to the memory of the response time series itself (Li et al., 551 

2017). The causal information flow may be limited only to the first local peak, mainly when we 552 

try to give a physical interpretation. For example, the results from the pairs formed by 553 

precipitation and groundwater level (Figure 5) suggest that the first peak is the mean time 554 

required for the rainwater to reach the water table, while the second and third peaks are products 555 

of the seasonality of the variables. The diversity of patterns in the NMI curves also suggest that 556 

location, soil characteristics and land cover are all contributing to the responses of groundwater 557 

levels. Streamflow is highly dependent on the groundwater (Figure 7), validating the physical 558 

knowledge (or conceptual model) we have about the system (Machado et al., 2016; Wendland et 559 

al., 2015).  560 
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For the same watershed studied here, the study by Gómez et al. (2018) applied correlation 561 

and wavelet transform based techniques and found a response time of approximately 2 years of 562 

the baseflow to precipitation events. This result seems to correspond to that presented in Figure 563 

6b (global NMI peak at ~750 days). Nevertheless, when considering the general upwards trend 564 

of the mutual information observed in practically all pairwise analyses, we understand that only 565 

the first local peak has a potential physical meaning related to response time, whereas the other 566 

peaks are associated with the auto dependency found in the precipitation data (Figure 8f) or in 567 

other driving variables. This interpretation is reinforced by the groundwater level responses to 568 

precipitation (Figure 5) once the first NMI peaks occur in the same range of 50 to 100 days of 569 

time lag. We noticed the importance of using different methods, as suggested by Rinderer et al. 570 

(2018), to characterize data interdependencies and minimize subjectivity in the interpretations.  571 

Although the interactions in the hydrologic system are generally nonlinear, the Granger 572 

causality test revealed the existence of causal interactions in most of the pairwise analyses, even 573 

for very short time lags. Similar capability of detecting nonlinear dependencies in 574 

hydrometeorological systems using the Granger test was reported by Ombadi et al. (2020). In our 575 

case, the detections may have been facilitated by the high connectivity between the hydrological 576 

processes. In some instances, the Granger test was useful to detect low connectivity between 577 

causes and responses (e.g., GWL9). We did not find a clear pattern in the results that could be 578 

associated with a physical interpretation of the lags detected. Although the Granger causality test 579 

seems to not be as useful as other information theoretic-based methods when assessing the 580 

connectivity between processes, it still provides some information. One utility we defend is 581 

precisely the opportunity to reduce uncertainties related to the interpretations. For example, a 582 

local peak in the NMI curve between the variables S and T for a time lag in which there is no 583 

causality in the Granger sense possibly will not have a relevant meaning.  584 

 585 

4.1 Limitations and Future Directions 586 

This study consists of a practical application of causal analysis to a hydrologic system. 587 

The meaning of the multiple peaks of the NMI measure and the possible physical interpretation 588 

associated with the results require further clarification. Even in a scenario with doubts about 589 

these meanings and interpretations, we understand that the methods have potential to show 590 

relevant characteristics of the hydrologic system behavior and could be useful for the 591 

development and evaluation of models.  592 

The reproduction of hydrologic responses and their time-lagged dependencies 593 

(connectivity)  with driving variables seems to be an attractive criterion to be considered in 594 

future research. Time lagged mutual information (with the issues related to the memory effects), 595 

or even a more complex measure such as the transfer entropy (Bennett et al., 2019), may serve as 596 

an additional metric to evaluate the consistency and adequacy of hydrologic models. 597 

Another potential application based on the results here presented refer to the construction 598 

of tools for real-time streamflow forecasts because many of these tools use a combination of 599 

lagged precipitation and streamflow data to perform the predictions (Gómez et al., 2019; 600 

Jahandideh-Tehrani et al., 2020; Lv et al., 2020). Mutual information measures can be useful to 601 

define the ‘optimal’ time lags to be considered. 602 
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Our dataset is relatively short (10 years of daily data) to detect eventual variations in the 603 

way that the hydrologic variables interact with each other over time, such as done in the study by 604 

Franzen et al. (2020). Undoubtedly, understanding how connectivity measures change over time 605 

and how environmental changes (e.g., land use, climate variability) influence the connectivity 606 

between hydrological processes are relevant topics to be addressed in future studies.    607 

 608 

5 Conclusions 609 

Two causal discovery methods (Granger’s causality and mutual information) were 610 

assessed and used to characterize pairwise time-lagged dependencies of daily data observed in a 611 

small sub-tropical watershed. The water balance closure was verified considering the 612 

groundwater storage dynamics. Unsurprisingly, statistically significant causal interactions were 613 

confirmed between most of the water balance components. The analysis conducted allowed us to 614 

characterize temporal interdependencies with long time windows, to identify some patterns, to 615 

explore the strength of connectivity between hydrological processes, and to estimate the memory 616 

timescale of variables.  617 

Despite these capabilities, further studies are required to constrain the possible 618 

interpretations and to create a connection between statistical results and the hydrologic system 619 

dynamics. The option of using data from a watershed, an open system with many associated 620 

uncertainties, and insufficient characterization, made it unfeasible to advance in that sense. This 621 

is an opportunity, however, to advance combined field hydrology and modeling studies to move 622 

from abstract statistical results to objective physical interpretations. 623 

Throughout this paper, the potential of causal methods in characterizing the connectivity 624 

between variables was evidenced. Real-world applications, with examples of how such methods 625 

can contribute to hydrological science and applied hydrology, considering data limitations, seem 626 

to be essential to engage the community. In future studies, one can test, for instance, if a model 627 

accurately reproduces the connectivity patterns found in observed data, even when the reasons 628 

behind the patterns are unknown. Similar approaches can improve the adequacy and performance 629 

of predictive tools and constrain uncertainties. 630 

 631 

 632 

Data Availability 633 

 634 

Hydrologic data used in this research is publicly available at 635 

https://github.com/kalylgc/causebro/tree/Data/ 636 

 637 
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