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ABSTRACT

This document is intended as a technical note for PYOMPA version 0.3 (https://github.com/
nitrogenlab/pyompa/tree/v0.3.1.0-alpha), a python package for conducting optimum multi-
parameter (OMP) analysis. It is being made available in advance of a formal publication so that it
may be used as a reference for individuals who wish to use PYOMPA in their research today. The
focus of this document is on the mathematical formulation. Please refer to the github README for
usage instructions and examples.

Keywords Optimum Multi-Parameter Analysis · OMP · OMPA · PYOMPA · Convex Combination

1 Background on the OMP method

In this section, we will go over the OMP formulation currently available as a MATLAB implementation at https:
//omp.geomar.de.

1.1 “Classical” OMP Analysis

Classical OMP analysis [Tomczak, 1981, Thompson and Edwards, 1981] attempts to explain the measured properties
(or “tracers”) of a given sample as a mixture of several end-members (or “water types”), where it is assumed that the
property values are conserved by mixing. Formally, let eip denote the value of property p for end-member i (e.g. we will
use e1

T to denote the value of the temperature parameter T for end-member 1), let sjp denote the value of property p in
measured sample j, and let xij denote the estimated fraction of end-member i in sample j. In the ideal case where the
properties of end-members are exactly known and the properties of the sample can be explained perfectly, we would
have

∑
i e

i
px

i
j = sjp. However, in practice there may be uncertainty both in the end-member properties eip and in the

measured sample properties sjp. In such a situation, our best estimates of the end-member fractions xij may not be able
to perfectly explain the sample properties sjp, resulting in a residual. Let us use εjp to denote the residual in explaining
property p for sample j. If we modify our earlier equation to include residuals, we have:∑

i

eipx
i
j = sjp + εjp (1)

How do we solve for the values of xij? Classical OMP analysis does this by minimizing the residuals in a least-squares
objective - however, the residuals that are minimized are not the same as the residuals εjp above (which are presented in
terms of the original parameter values). Rather, classical OMP analysis first normalizes the different parameters prior to
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calculating the residuals, and then further reweights the residuals prior to doing the least-squares minimization. To
explain the normalization procedure used, we will introduce three new symbols: µp to denote a mean value for parameter
p across the end-members, σp to denote the population standard deviation of parameter p across the end-members.
Letting M represents the total number of end-members, the quantities µp and σp are calculated as follows:

µp :=
1

M

∑
i

eip (2)

σp :=

√
1

M − 1

∑
i

(eip − µp)2 (3)

After subtracting the mean and normalizing by the variance, the normalized end-member parameter values become
ei,norm
p := (eip − µp)/σp and the normalized sample property values become sj,norm

p := (sjp − µp)/σp. As mentioned,
the residuals used in the least-squares objective function of classical OMP analysis are in terms of the normalized
property values, and are additionally scaled up by a user-specified weight that we will denote with W user

p . Putting it all
together, we have:

εj,classic
p :=W user

p

((∑
i

ei,norm
p xij

)
− sj,norm

p

)

=W user
p

((∑
i

(eip − µp)

σp
xij

)
−

(sjp − µp)

σp

)

=
W user

p

σp

((∑
i

(eip − µp)xij

)
− (sjp − µp)

)
(4)

Written this way, we can see that the impact of dividing by the standard deviation is effectively to rescale the user-
provided weights W user

p by a factor of 1/σp.

We are almost ready to describe the objective used in classical OMP analysis, but we must first discuss one last detail
pertaining to the quantities xij . Recall that xij represents the fraction of end-member i to sample j. In order for xij to
have a valid interpretation as a fractional contribution, two things must be true: the fraction must be non-negative, and
the fractions must sum to 1. Classical OMP analysis satisfies non-negativity by performing constrained least-squares
optimization on - that is, it only searches for solutions where xij ≥ 0. Curiously, it does not similarly apply a strict
constraint to only search for solutions where the end-member fractions exactly sum to 1; instead, the summation of
xij to 1 is only approximately achieved by minimizing a mass conservation residual. Let us use εj,classic

M to denote this
mass-conservation residual, defined as:

εj,classic
M := W user

M

((∑
i

xij

)
− 1

)
(5)

We are now ready to fully specify the least-squares optimization procedure used by classical OMP analysis to find
solutions. We will first write the cost function (i.e. the quantity that is minimized by the least-squares solver; also
known as an “objective function”) used in classical OMP analysis as:

Cclassic
j =

(
εj,classic
M

)2

+
∑
p

(
εj,classic
p

)2
(6)

The cost function alone does not explicitly say what constraints are used. In order to succinctly describe the constraints,
we will introduce the use of bold symbols to denote vector quantities - for example, we will use xj = (x1

j , x
2
j , ...) to

denote a vector of end-member fractions. We will also use xclassic
j to denote the solution obtained by classical OMP

analysis for the vector of end-member fractions in sample j. If we adopt the notation “argminxj
[...]” to denote the

value of xj that minimizes the quantity [...], we can write the full optimization objective for classical OMP analysis as:

2
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xclassic
j := argmin

xj

[(
εj,classic
M

)2

+
∑
p

(
εj,classic
p

)2]
(7)

subject to the constraints:

xij ≥ 0 for all i

1.1.1 Specifying the user-defined weights

The objective above depends on user-defined weights (denoted as W user
p ), and a natural question that arises is how these

weights should be specified. As evidenced by Eqn. 4, these weights play a role in scaling the magnitude of the residuals
associated with particular parameters, and consequently determine how heavily a particular parameter will feature in
the objective function. This implies that a higher weight should be given to those parameters that are likely to have
small residuals in a correct solution. There are two main considerations that go into whether a correct solution is likely
to have low residuals for a particular parameter: the first is whether the parameter has been measured precisely, and the
second is whether the end-member definitions for the parameter are sufficiently accurate. For example, if one is very
confident in the sample measurement of temperature, and is very confident that the correct definitions of temperature
have been provided in the end-member file, it would stand to reason that temperature should have a small residual
in a correct OMP solution (assuming, of course, that all the end-members necessary to explain the sample have been
provided in the first place). Ultimately, the choice of weighting is subjective; however, we recommend performing
a sensitivity analysis [Peters et al., 2018] to ensure that the ideal solution does not change dramatically with slight
changes to the parameter weights.

Note that the absolute magnitudes of the parameter weights don’t matter; only the relative magnitudes matter. However,
avoid setting weights that have very large magnitudes as this can cause numerical instabilities (specifically, it can cause
the system of equations to have a poor condition number).

1.2 “Extended” OMP analysis

Classical OMP analysis relies on the assumption that all the parameters used in the analysis are conserved by mixing.
While this generally holds true for parameters such as temperature or salinity, parameters such as oxygen, phosphate,
nitrate and silicate can be subject to biogeochemical processes that can incorporate them into or release them from
organic matter. Thus, if viewed solely in terms of their concentrations in their dissolved inorganic form, these parameters
will not appear to be conserved.

How can we account for such biogeochemical processes? In “extended” OMP analysis [Karstensen and Tomczak,
1998], this is handled by assuming that these nutrients are exchanged with oxygen in a fixed ratio (the “Redfield ratio”).
Formally, let us denote the exchange ratio of a parameter p w.r.t. phosphate as rPO4

p . For example, the default value of
rPO4

O2
used in the MATLAB OMP implementation is −170 (oxygen has a negative sign because it is consumed when

nitrate/phosphate are produced), while the default value of rPO4

NO3
is 16. If we use the variable ∆j

PO4
to denote the

amount of phosphate that is remineralized from organic matter into dissolved inorganic matter in sample j, we can
model the effect of remineralization as:

(∑
i

eipx
i
j

)
+ rPO4

p ∆PO4
j = sjp + εjp (8)

The term in blue highlights how the equation above differs the corresponding Eqn. 1 from classical OMP analysis.
Note that rPO4

PO4
will equal 1. Further, if a particular parameter (like salinity) is modeled as being unaffected by

remineralization, rPO4
p for that parameter would simply be 0. Based on this formulation, we can write the normalized &

weighted residuals used in the optimization objective of extended OMP analysis as:

εj,ext
p =

W user
p

σp

((∑
i

(eip − µp)xij

)
+ rPO4

p ∆PO4
j − (sjp − µp)

)
(9)

Once again, the term in blue highlights how the equation above differs from the corresponding Eqn. 4 from Classical
OMP analysis.

3
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One important point to note about the MATLAB OMP implementation is that ∆PO4
j is restricted to being positive,

meaning that the MATLAB OMP implementation can model only remineralization (or, alternatively, can model only
assimilation, if the user were to flip the sign of rPO4

p for all the parameters). If we reuse our definition of εj,classic
M from

Eqn. 5, we can write the optimization objective used in extended OMP analysis as:

xext
j ,∆

PO4
j := argmin

xj ,∆
PO4
j

(
εj,classic
M

)2

+
∑
p

(
εj,ext
p

)2
(10)

subject to the constraints:

xij ≥ 0 for all i and

∆PO4
j ≥ 0

As a final aside, the current MATLAB OMP implementation appears to report the value of ∆PO4
j in terms of oxygen-

equivalent units (that is, it appears to report −rPO4

O2
∆PO4

j ) to the user in the “biogeo” field of .mat file written out in
the solution.

1.2.1 Modeling remineralization within “Classical” OMP analysis using variables like PO and NO

One way to account for these biogeochemical processes while remaining within the classical OMP formulation is to
instead use the “semiconserved” parameters of PO, NO, etc. To derive the formula for these semiconserved quantities,
let us consider the case where we have measurements for two specific remineralized parameters, which we will denote
as p1 and p2. Referring back to Eqn. 8, we can write:

(∑
i

eip1
xij

)
+ rPO4

p1
∆PO4

j = sjp1
+ εjp1(∑

i

eip2
xij

)
+ rPO4

p2
∆PO4

j = sjp2
+ εjp2

If we multiply the second equation by rPO4
p1

/rPO4
p2

and subtract it from the first equation, we get:

(∑
i

(
eip1

−
rPO4
p1

rPO4
p2

eip2

)
xij

)
=

(
sjp1

−
rPO4
p1

rPO4
p2

sjp2

)
+

(
εjp1

−
rPO4
p1

rPO4
p2

εjp2

)
(11)

Note that Eqn. 11 does not involve ∆PO4
j . If we define a new variable p1,2 as:

p1,2 := p1 −
rPO4
p1

rPO4
p2

p2 (12)

We can write:

(∑
i

eip1,2
xij

)
= sjp1,2

+ εjp1,2
(13)

Note that Eqn. 13 has the same form as Eqn. 1, and thus fits perfectly into the paradigm of “Classical” OMP analysis.
In the literature, OMP parameters that have the form of Eqn. 12 have been constructed using Oxygen & Phosphate

(i.e. [PO] = [O2] + rPO4

O2
[PO4]) and Oxygen & Nitrate (i.e. [NO] = [O2] +

r
PO4
O2

r
PO4
NO3

[NO3]), such as in Peters et al.

[2018]. As we have seen here, similar equations can be constructed using any two pairs of variables that are subject to
remineralization.
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What are the reasons to favor the “classical” OMP formulation over the “extended” OMP formulation? As we noted
earlier, the MATLAB implementation of “extended” OMP analysis places the restriction ∆PO4

j ≥ 0; by constrast,
Eqn. 11 makes no such assumption, and is therefore capable of accounting for both assimilation and remineralization.
However, a more subtle difference in using the classical formulation is that the solution obtained by minimizing the

combined residual εjp1,2
= εjp1

− rPO4
p1

r
PO4
p2

εjp2
may be different from the solution obtained by minimizing εjp1

and εjp2

independently - indeed, it is conceivable that, for some solutions, the residuals in p1 and p2 might “cancel out” to yield
a low residual in p1,2; these solutions might be favored under the classical OMP formulation but might correctly be
identified as undesirable under the extended formulation. Our recommendation is that the user favor the “extended”
formulation where possible; note that the PYOMPA implementation (unlike the MATLAB implementation) does not
enforce the restriction that ∆PO4

j ≥ 0, and is thus capable of modeling both assimilation and remineralization.

2 PYOMPA’s OMP formulation (as of version 0.3)

There are currently four key ways in which PYOMPA’s formulation differs from the OMP formulation described in Sec.
1. We will discuss each in turn, and will finish by presenting the overall optimization objective.

2.1 A hard constraint on mass conservation

2.1.1 Impact of mass conservation residuals in the original OMP formulation

In section 1.1, we noted that the MATLAB OMP implementation does not enforce that the mass conservation residuals
be zero. To our knowledge, it has not previously been noted that this failure to exactly satisfy mass conservation is
the reason that the MATLAB OMP solution is affected by the mean normalization. In our opinion, a major caveat of
having a solution that is sensitive to mean normalization is that even though a particular solution might have small
residuals in terms of the mean-normalized parameter values, the residuals could be very large in terms of the original
(non-mean-normalized) parameter values. We will illustrate this first with a mathematical proof, and then with a
concrete example.

Let us reproduce the formula for the residuals used in classical OMP analysis (Eqn. 4) below - as before, sjp represents
the value of parameter p for sample j, eip represents the value of parameter p for end-member i, xij represent the fraction
of end-member i in sample j, and µp denote the mean value for parameter p. We had:

εj,classic
p :=

W user
p

σp

((∑
i

(eip − µp)xij

)
− (sjp − µp)

)

Our goal is to rearrange this equation to show the relationship between εj,classic
p and εp, where εp := (

∑
i e

i
px

i
j) − sjp

(from Eqn. 1) is the residual in the original parameter space. Note that the mass conservation residual in the original
parameter space is simply εM = (

∑
i xi) − 1. We have:
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εj,classic
p :=

W user
p

σp

((∑
i

(eip − µp)xij

)
− (sjp − µp)

)

=
W user

p

σp

((∑
i

eipx
i
j

)
−

(∑
i

µpx
i
j

)
− (sjp − µp)

)

=
W user

p

σp

(((∑
i

eipx
i
j

)
− sjp

)
−

((∑
i

µpx
i
j

)
− µp

))
(Rearranging terms)

=
W user

p

σp

(((∑
i

eipx
i
j

)
− sjp

)
− µp

((∑
i

xij

)
− 1

))
(Factoring out µp)

=
W user

p

σp
(εp − µpεM ) (Substituting the definitions for εp and εM )

This gives:

εj,classic
p

(
σp
W user

p

)
+ µpεM = εp (14)

Let’s reflect on the implications of Eqn. 14. Note that even when εj,classic
p is relatively small, if µpεM is large, εp will

be large. Further note that even if εM appears to be small, a large value of µp can result in a sizeable value for µpεM .
Thus, allowing a residual in the mass conservation makes it possible to have large residuals in the original parameter
space even when εj,classic

p appears small.

The issue can be illustrated with a simple example. Considered the case of 2-end-member mixing with one measured
parameter - salinity (S). Let us imagine that our end-members e1 and e2 have salinity values of e1

S = 32 and e2
S = 34,

and that the mean value for S is µS = 33. Let us also consider an observation s with a salinity value of sS = 31.5.
After mean-normalization, the salinity values are ē1

S = −1, ē2
S = 1, and s̄S = −1.5. For added simplicitly, in order

to focus on the impact of mean normalization, let us ignore the rescaling by the standard deviation in this example
(i.e. let us pretend the standard deviation is 1). If the mass conservation equation is given the same weight as the
salinity equation (which is the case according to the default coefficients from the MATLAB OMP package), then
the solution that minimizes the sum of the squared residuals (Eqn. 7; this involves both the salinity residual and the
mass conservation residual) is x1 = 1.25 and x2 = 0, which corresponds to εM = 0.25. The residual in terms of
mean-normalized salinity here is ε̄S = 0.25 (i.e. it is equal to the mass conservation residual; this is expected if the
residuals for mass conservation and salinity are given equal weight), but the residual in terms of the original salinity is
32 ∗ 1.25 − 31.5 = 8.5 - a very large residual for salinity! For parameters that can have even larger values of µp (e.g.
parameters such as PO or NO), this discrepancy between the residuals in the mean-normalized parameter space and the
residuals in the original parameter space can be even more striking.

2.1.2 PYOMPA’s solution: enforcing mass conservation as a hard constraint

The analysis in the previous section illustrates what (to our knowledge) is a previously unappreciated drawback of
allowing residuals in the mass conservation equation. It is sometimes argued that it is important to allow residuals in
the mass conservation equation because the analysis may have missing end-members - however, we contend that the
possibility of missing end-members is already accounted for by allowing residuals in the tracer conservation equations.
Thus, it is not clear why allowing a residual in the mass conservation equation would improve the quality of the
solutions. For these reasons, we argue that mass conservation should ideally be strictly enforced in the solution.

In theory, one could achieve a near-zero mass conservation residual within the MATLAB OMP implementation by
setting the weight W user

M of the mass conservation equation to be very high. However, this would cause the resulting
system of equations to have a poor condition number, which would in turn lead to numerical difficulties during
optimization. Fortunately, modern least squares solvers (such as MATLAB’s lsqlin) have support for enforcing linear
equality constraints, and these can be leveraged to strictly satisfy mass conservation without running into numerical
difficulties. PYOMPA uses this formulation; specifically, we use linear constraints with the OSQP solver [Stellato et al.,
2020], which is called via the cvxpy python package [Diamond and Boyd, 2016, Agrawal et al., 2018] (OSQP is the
default cvxpy solver for quadratic programs). As an aside, the OSQP solver has support for a variety of languages
including MATLAB, R, Julia, and C/C++.

6
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Revisiting our previous example of two end-members with salinity values of e1
S = 32 and e2

S = 34, PYOMPA would
produce the solution x1 = 1 and x2 = 0 to explain an observation with salinity sS = 31.5. This would correspond to
salinity residual of 0.5, both in terms of the mean-normalized salinity values and the original salinity values.

2.2 Modeling both assimilation and remineralization in “extended” OMP analysis

As mentioned in section 1.2, the MATLAB OMP implementation for extended OMP analysis includes the ∆PO4
j term

in its non-negativity constraint, thereby restricting the term to modeling only remineralization and not assimilation.
PYOMPA’s formulation of extended OMP analysis does not impose this restriction; thus, the equivalent term of
∆PO4

j can adopt either positive or negative signs. As an aside, this remineralization variable is currently labeled as
“oxygen deficit” in pyompa’s plotting functions and the codebase, meaning that it is intended to represent −∆O2

j .
However, depending on the exchange ratios that the users specified, this variable could be used to represent any
remineralized/assimilated quantity (e.g. if the user specified the exchange ratios in terms of phosphate rather than
oxygen, this would cause the variable to effectively represent ∆PO4

j , even if it was labeled as “oxygen deficit” in the
code). In later versions of PYOMPA, the user will be allowed to define what the variable should be called, and will
further be given an option to restrict the sign of this remineralization parameter to be only positive (consistent with the
MATLAB OMP formulation).

2.3 Support for flexible nutrient exchange ratios

Traditional OMP analysis presumes that variables are remineralized in fixed “redfield ratios” - however, it is known that
the nutrient ratios can vary. For example, phytoplankton growing in phosphate-limited waters are known to use less
phosphate per unit of nitrate [Mills and Arrigo, 2010]. Modeling flexibility in the nutrient exchange ratio allows us to
account for such deviations.

How can we achieve flexibility in the exchange ratios? One idea is that we could define the equivalent of “end-members”
for exchange ratios, and then structure our formulation such that the “effective” exchange ratio is a linear combination
of the exchange-ratio “end-members”. How do we do this? Let us first consider what happens if we introduce multiple
remineralization variables per sample. We will denote the kth remineralization variable for sample j as ∆PO4,k

j . Let
us further presume that each remineralization variable is associated with its own exchange ratio; we will denote the
exchange ratio of parameter p to PO4 for the kth remineralization variable as rPO4,k

p . The OMP equations then become:(∑
i

eipx
i
j

)
+

(∑
k

rPO4,k
p ∆PO4,k

j

)
= sjp + εjp (15)

What is the “effective” exchange ratio for sample j according to this system of equations? Let us use ∆PO4,tot
j =∑

k ∆PO4,k
j to denote the total amount of phosphate remineralized/assimilated for sample j. Accordingly, the total

quantity of parameter p that is remineralized is ∆p,tot
j =

∑
k r

PO4,k
p ∆PO4,k

j ; thus, the effective exchange ratio of
parameter p to PO4 becomes:

rPO4,eff
p,j = ∆p,tot

j /∆PO4,tot
j

= (
∑
k

rPO4,k
p ∆PO4,k

j )/∆PO4,tot
j

=
∑
k

rPO4,k
p (∆PO4,k

j /∆PO4,tot
j ) (16)

Observe what happens if we assume that all ∆PO4,k
j have the same sign for all k; in that case, we are guaranteed

that ∆PO4,tot
j will have the same sign as ∆PO4,k

j , and so the ratio (∆PO4,k
j /∆PO4,tot

j ) will be nonnegative. Combined
with the fact that

∑
k(∆PO4,k

j /∆PO4,tot
j ) = (∆PO4,tot

j /∆PO4,tot
j ) = 1, we can conclude that constraining ∆PO4,k

j to
have the same sign for all k means that we can interpret (∆PO4,k

j /∆PO4,tot
j ) as the proportion of phosphate that is

remineralized in the exchange ratio associated with the kth remineralization variable. Note here that there is now an
analogy to end-member mixing; in the same way that eip represented the value of property p for end-member i, we can
say that rPO4,k

p represents the value of the exchange ratio rPO4
p for the kth “exchange-ratio end-member”; further, in the

7
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same way that xij represented the proportion of the ith end-member in sample j, we now have that (∆PO4,k
j /∆PO4,tot

j )

represents the proportion of the kth “exchange-ratio end-member” in sample j. Thus, we conclude that the effective
exchange ratio rPO4,eff

p,j is a linear mixture (or, formally, a convex combination1) of the k “exchange-ratio end-members”,
and the only requirement for this conclusion is that ∆PO4,k

j must have the same sign for all k. In PYOMPA, we meet
this requirement by computing the solution twice; once with ∆PO4,k

j ≥ 0 for all k, and once with ∆PO4,k
j ≤ 0 for all k,

and we report the solution that achieves lower residuals.

2.4 Soft end-member usage penalties

In the situation where the number of unknowns being solved for exceeds the number of OMP equations (including
both the parameter conservation equations and the mass conservation constraint), there can be ambiguity in the ideal
solution. Prior work (e.g. Evans et al. [2020] and Peters et al. [2018], to name a couple) has avoided this ambiguity by
separating the analysis into discrete sections (e.g. separating “intermediate” waters from “deep” waters), where only
certain end-members are permitted to contribute to the observations from a particular section. However, this can result
in high residuals at the boundaries separating different sections [Peters et al., 2018].

As an alternative to hard boundaries between sections, we propose introducing sample-specific penalties that encode
prior knowledge of the likely end-member distributions. These penalties would be zero in regions where a water type is
expected to occur, positive but small in regions where there is some uncertainty about whether a water type can occur,
and high in regions where a water type is not expected to occur. They can be viewed as a generalization of the hard
boundaries used in prior work, because the hard boundaries effectively correspond to a penalty of zero in sections that
are allowed to contain a particular water type, and infinity in sections that are not allowed to contain the water type.
Formally, let P i

j denote the penalty on the presence of water type i for sample j. Building on our notation from the
previous sections, where xij represents the fraction of end-member i in sample j, we can define the following additional
residuals terms:

εj,penalty
i := P i

jx
i
j (17)

These residual terms will be included in the least squares minimization objective - in effect, εj,penalty
i can be thought of

as the “cost” associated with the penalty P i
j . By introducing additional residual equations into the OMP analysis in this

way, the ambiguity in the optimal solution is reduced.

2.5 Summarizing the PYOMPA objective

Bringing it all together, we can fully specify PYOMPA’s optimization objective. As noted in section 2.2, PYOMPA’s
codebase currently calls the remineralization variable “oxygen deficit”, but ultimately the remineralization variable
could be taken to represent a surplus/deficit of any exchanged nutrient depending on how the user specifies the associated
exchange ratios. To reflect this, we will just use the symbol Q to denote the remineralized quantity - be it an oxygen
deficit, a phosphate surplus, or whatever else the user chooses to specify.

In Eqn. 17 from Sec. 2.4, we defined the residuals associated with end-member usage penalties. Here, we additionally
define the updated parameter residual equation used in PYOMPA that accomodates flexible nutrient exchange ratios
(Sec. 2.3):

εj,pyompa
p := W user

p

((∑
i

eipx
i
j

)
−

(∑
k

rQ,k
p ∆Q,k

j

)
− sjp

)
(18)

Notice that Eqn. 18 does not involve normalization by µp and σp; the reason for this is discussed in Sec. 2.5.1.

As before, we will use xj = (x1
j , x

2
j , ...) to denote a vector of fractional end-member contributions. Additionally, we

will introduce ∆Q
j = (∆Q,1

j ,∆Q,2
j , ...) to denote a vector of remineralization variables. The pyompa solution can then

be written as follows:

1a convex combination is a linear combination where all the coefficients are non-negative and sum to 1

8
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x
pyompa
j ,∆

Q,pyompa
j := argmin

xj ,∆
Q
j

[(∑
p

(
εj,pyompa
p

)2)
+

(∑
i

(εj,penalty
i )2

)]
(19)

Subject to the constraints:

xij ≥ 0 for all i and∑
i

xij = 1 and

EITHER ∆Q,k
j ≥ 0 for all k OR ∆Q,k

j ≤ 0 for all k

Note that if the user chooses to work only with parameters that are conserved (analogous to the “classical” OMP
formulation), then ∆Q

j will simply be an empty vector; thus, the optimization equation above encapsulates both the
“classical” and the “extended” OMP formulations.

2.5.1 On the absence of explicit normalization of the PYOMPA residuals

Unlike the MATLAB OMP residuals from Eqn. 4, the PYOMPA residual equation (Eqn. 18) does not involve any
normalization by µp or σp. Regarding the choice to not subtract µp: as discussed in Sec. 2.1, when the residual in the
mass conservation is zero (as is achieved in PYOMPA by using a hard constraint), the optimal solution is invariant
to mean normalization. Regarding the choice to not divide by σp: as noted in Sec. 1.1, the impact of dividing by the
standard deviation is effectively to rescale the user-provided weights W user

p by a factor of 1/σp; thus, rescaling by
the standard deviation is equivalent to the user having provided slightly different weights. To improve transparency,
PYOMPA does not do this rescaling by the standard deviation, such that the “effective” residual weighting is equivalent
to the user-provided weights; in a sense, one could think of the 1/σp as being “included in” PYOMPA’s user-provided
weights. We designed the package this way because it allows the user to tweak their end-member definitions at will
without worrying about how the altered end-member definitions will impact the parameter weightings. In subsequent
PYOMPA versions, there will be settings to allow the user to reproduce the MATLAB OMP implementation exactly.

Because of the choice to let the user have full control over the effective weights, a third consideration arises when
deciding how to select weights, and that is: what is the inherent range of variation of the parameters? If a parameter
varies over a large range, its residuals will likely also tend to be larger (for example: if you were to change the units
of a parameter such that all the terms got multiplied by a factor of 1000, the residuals for that parameter would also
become 1000 times larger); however, parameters that happen to vary over a larger range need not inherently contain
more information. We recommend keeping this consideration in mind when setting the weights; as a starting point, a
user could initially set the weights to be inversely proportional to the range over which each parameter tends to vary,
and can then further increase the weights for those parameters that the user believes to be more informative (as per the
considerations discussed in Section 1.1.1).
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Avanti Shrikumar conceived of PYOMPA’s mathematical formulation and developed the package. Rian Lawrence
helped apply pyompa to GP15 data, which motivated the creation of PYOMPA’s key features. Karen Casciotti provided
guidance and feedback. Avanti Shrikumar wrote this technical note, with input from Rian Lawrence and Karen Casciotti.
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