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Abstract22

The continuous redistribution of water mass involved in the hydrologic cycle leads23

to deformation of the solid Earth. On a global scale, this deformation is well explained24

by redistribution in surface loading and can be quantified to first order with space-based25

gravimetric and geodetic measurements. At the regional scale, however, aquifer systems26

also undergo poroelastic deformation in response to groundwater fluctuations. Disentan-27

gling these related but distinct 3D deformation fields from geodetic time series is essen-28

tial to accurately invert for changes in continental water mass, to understand the me-29

chanical response of aquifers to internal pressure changes as well as to correct time se-30

ries for these known e↵ects. Here, we demonstrate a methodology to accomplish this task31

by considering the example of the well-instrumented Ozark Plateaus Aquifer System (OPAS)32

in central United States. We begin by characterizing the most important sources of sig-33

nal in the spatially heterogeneous groundwater level dataset using an Independent Com-34

ponent Analysis. Then, to estimate the associated poroelastic displacements, we project35

geodetic time series corrected for surface loading e↵ects onto orthogonalized versions of36

the groundwater temporal functions. We interpret the extracted displacements in light37

of analytical solutions and a 2D model relating groundwater level variations to surface38

displacements. In particular, the relatively low estimates of elastic moduli inferred from39

the poroelastic displacements and groundwater fluctuations may be indicative of surfi-40

cial layers with a high fracture density. Our findings suggest that OPAS undergoes sig-41

nificant poroelastic deformation, including highly heterogeneous horizontal poroelastic42

displacements.43

1 Introduction44

Hydrological processes occurring at the surface of the Earth redistribute continen-45

tal water mass and deform the solid Earth. The resulting, primarily seasonal, deforma-46

tion can be measured with space-based geodetic techniques such as GNSS (Global Nav-47

igation Satellite System)(Blewitt et al., 2001; van Dam et al., 2001; Dong et al., 2002).48

It is thus possible to infer fluctuations in continental water storage from GNSS time se-49

ries (Ouellette et al., 2013; Argus et al., 2014, 2017; Borsa et al., 2014; Fu et al., 2015;50

Adusumilli et al., 2019; Ferreira et al., 2019) assuming that the regional deformation field51

induced by hydrology can be separated from other geodetic signals and/or systematic52

errors (Chanard et al., 2020). Such regional-scale constraints on hydrological fluctuations53

help bridge the gap between in situ measurements (e.g., groundwater monitoring wells,54

stream gauges) and continental-scale observations from the Gravity Recovery and Cli-55

mate Experiment (GRACE) mission (Tapley et al., 2004).56

However, at a global scale, seasonal signals in geodetic time series are not entirely57

explained by hydrological loads measured by GRACE (Chanard et al., 2018). Additional58

deformation mechanisms related to groundwater and temperature variations are thought59

to explain a significant fraction of this seasonal variance (Tsai, 2011). In particular, aquifer60

basins - which store roughly 30% of Earth’s freshwater reserves (Shiklomanov, 1993) -61

are prone to poroelastic swelling in addition to hydrological loading (Wang, 2000). A re-62

duction in total water storage translates to a release of load which leads to uplift and63

horizontal displacements pointing away from the released load (Boussinesq, 1885; Ver-64

ruijt, 2009) (Figure 1A). A reduction in groundwater storage, on the other hand, also65

lowers pore pressure within the aquifer, which leads to subsidence and radially inward66

displacements as support of the overburden weight is transferred from the pore fluid to67

the compressible porous rock (King et al., 2007; Wisely & Schmidt, 2010; Galloway &68

Burbey, 2011) (Figure 1B).69

Separating the contributions of hydrological loading and poroelasticity in geode-70

tic time series is crucial to better understand the physics of either deformation processes71

and quantify fluctuations in total water storage. Extracting the poroelastic deformation72
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field has direct implications for inferring, at the field scale, the hydromechanical prop-73

erties of aquifer systems which are tightly linked to hydrodynamical properties. Indeed,74

surface deformation provides information about internal aquifer processes which are gen-75

erally not accessible otherwise. Such insight could improve the representation of ground-76

water within global and regional hydrological models and hence strengthen their predic-77

tive ability (Gleeson et al., 2021). Estimates of e↵ective elastic moduli obtained through78

geodesy also provide measurements at a scale and loading rate (i.e., quasi-static) rele-79

vant for geohydrologic processes and complementary to those obtained through seismol-80

ogy and laboratory experiments (Carlson et al., 2020). Beyond hydrological applications,81

characterizing the seasonal content of geodetic time series is also essential to isolate the82

deformation associated with tectonic processes (Michel et al., 2019; Vergnolle et al., 2010)83

and to investigate the response of seismicity to seasonal loading (Bettinelli et al., 2008;84

Craig et al., 2017; C. W. Johnson et al., 2017).85

A number of studies, mostly using Interferometric Synthetic Aperture Radar (In-86

SAR), have demonstrated the feasibility of documenting aquifer dynamics and inferring87

their mechanical properties based on remote sensing measurements of surface deforma-88

tion and in situ measurements of groundwater levels (Amelung et al., 1999; Bell et al.,89

2008; Wisely & Schmidt, 2010; Galloway & Burbey, 2011; Chaussard et al., 2014, 2017;90

Miller et al., 2017; Ojha et al., 2018; Riel et al., 2018; Alghamdi et al., 2020; Hu & Bürgmann,91

2020; Gualandi & Liu, 2021). Most of these studies focused on aquifer basins where the92

poroelastic response dominates the local deformation field. At a regional scale, however,93

both deformation fields vary spatially and are not easily separated given the codepen-94

dency of these deformation processes.95

Here, we propose a methodology to isolate the poroelastic contribution in GNSS96

time series with the help of GRACE and groundwater level measurements. Focusing on97

GNSS data as opposed to InSAR provides (1) a complementary set of geodetic obser-98

vations with di↵erent systematic errors, (2) the opportunity to study larger aquifer sys-99

tems at which InSAR processing becomes challenging and (3) a means to correct for known100

hydrological e↵ects in GNSS time series extensively used in tectonic studies. Indeed, GNSS101

provides insight into the 3D surface deformation field complementary to InSAR, partic-102

ularly when it comes to horizontal displacements. This is important because, as we em-103

phasize in this work, horizontal and vertical deformation fields arising from di↵erent mech-104

anisms can have distinct spatial signatures.105

In this manuscript, we first introduce the geohydrological setting and data sets of106

our test region: the Ozark Plateaus Aquifer System (OPAS) in central United States.107

We selected this particular aquifer system to carry out our investigation because of its108

relative tectonic quiescence (Craig & Calais, 2014; Calais et al., 2016), data availabil-109

ity and the existing geohydrological literature in the region (e.g., Imes & Emmett, 1994;110

Hays et al., 2016; Westerman et al., 2016; Knierim et al., 2017). We then extract the de-111

formation signals related to hydrology using GNSS time series, a GRACE-derived load-112

ing model and groundwater level data with a statistical Blind Source Separation (BSS)113

technique. We compare the extracted horizontal displacements with the predictions of114

a 2D analytical poroelastic model and infer elastic properties of the aquifer layers from115

the vertical poroelastic displacements and groundwater level variations. We conclude with116

a discussion of the merits and limitations of the methodology.117

2 Regional setting and data sets118

2.1 The Ozark Plateaus Aquifer System (OPAS)119

OPAS is a large system of aquifers and confining units in the Mississippi River basin120

in central United States (Figure 2). The system is bounded by the Mississippi River and121

its alluvial plain, the Missouri River and Arkansas River to the east, north and south,122
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respectively, and by a saline to freshwater transition zone to the west (Imes & Emmett,123

1994) (Figure 2A). Although it is a significant source of water for agricultural and pub-124

lic supply in the region, groundwater use in OPAS represents a relatively small portion125

of the hydrologic budget – about 2% of aquifer recharge (Hays et al., 2016). Most ground-126

water recharge flows laterally, feeding other aquifers and sustaining streams, lakes and127

wetlands (Hays et al., 2016). Nonetheless, groundwater pumping does cause localized128

cones of depression around certain urban areas such as Springfield, Missouri (Imes, 1989).129

OPAS is composed of interbedded layers of carbonate and clastic deposits around130

the topographic high Ozark dome (Hays et al., 2016; Westerman et al., 2016). The sys-131

tem is underlaid by a basement confining unit which outcrops at the Ozark dome in east-132

central Missouri (Figure 2AC). The Ozark aquifer system (OAS) – the most important133

water-bearing unit of the system – crops out at the center of the system and is other-134

wise overlaid by the Springfield Plateau aquifer system (SPAS) and/or the Western In-135

terior Plains confining system (WIPCS). North of the Missouri - Arkansas border, carbonate-136

rich units such as SPAS and OAS present rich karst features (Hays et al., 2016).137

Other aquifer systems surrounding OPAS are also shown in Figure 2. The Missis-138

sippi Embayment Aquifer System and the shallower Mississippi River Valley Aquifer south-139

east of OPAS supply much of the irrigation water for the agriculture-intensive region (Hart140

et al., 2008). The Mississippian Aquifers and glacial deposits from the Laurentide Ice141

Sheet occupy the north and northeastern boundaries of the study area (Bayless et al.,142

2017).143

2.2 Data sets144

2.2.1 Groundwater level time series145

Groundwater monitoring wells (i.e., piezometers) record the temporal evolution of146

hydraulic head at a given depth. In this study, we take advantage of the piezometric net-147

work maintained by the United States Geological Survey which provides daily observa-148

tions of water level depth (USGS Water Services; https://waterservices.usgs.gov). Of the149

312 wells in the study area, we retain the 167 sites with 60% or more data completeness150

during the 2007 to 2017 timespan and further exclude seven stations classified as anoma-151

lous after visual inspection (Figure S1). For example, two time series with a typical ground-152

water pumping signature (Figure S1) are excluded from the analysis because these sig-153

nals are expected to be very local (tens of meters) - as they represent the aquifer response154

to local forcings - and to bias the analysis due to their large amplitudes. We subtract155

the altitude at each well location to obtain the hydraulic head, detrend the time series156

and compute monthly averages to facilitate comparison with the other data sets used157

in this study. The positions of the 160 selected wells are shown in Figure 3A and exam-158

ples of retained time series are presented in Figure 3B. They present seasonal and multi-159

annual water level oscillations from a few to tens of meters in amplitude.160

2.2.2 GRACE-derived displacement time series161

GRACE satellites monitor space and time variations in Earth’s gravity field from162

which changes in continental water storage can be inferred and expressed in units of equiv-163

alent water height (EWH). At the global scale, GRACE-based models have been shown164

to better explain the seasonal signals in GNSS datasets than hydrology-based models165

(Li et al., 2016). Here, we make use of the Level 2 (Release 06) spherical harmonics GRACE166

solution provided by the Center for Space Research (CSR) (Bettadpur, 2018; GRACE,167

2018) and DDK5-filtered to minimize north-south striping noise (Kusche et al., 2009).168

We add back the atmospheric and non-tidal oceanic contributions as these e↵ects are not169

corrected in the GNSS data set and detrend the resulting time series. The colormap in170

Figure 3A shows the average annual EWH peak-to-peak amplitudes observed during the171
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2007 to 2017 timespan and reveals an important large-scale NW to SE gradient in re-172

gional water storage changes, with higher amplitudes concentrated around the Missis-173

sippi Alluvial Valley.174

To enable direct comparison with the GNSS displacement time series, we compute175

the deformation expected from GRACE-inferred surface loads at the GNSS sites using176

a spherical elastic layered Earth model based on the Love number formalism (Farrell,177

1972; Chanard et al., 2018). Examples of these predicted time series are compared to178

the corresponding GNSS measurements in Figure S2.179

2.2.3 GNSS displacement time series180

GNSS tracks the vertical and horizontal displacements of geodetic monuments an-181

chored a few meters below the ground surface (or on top of buildings for fewer than 15%182

of stations). In this analysis, we start from the time series processed by the Nevada Geode-183

tic Laboratory and expressed in the IGS14 reference frame (International GNSS Service),184

based on the latest release of the International Terrestrial Reference Frame (ITRF2014),185

(Altamimi et al., 2016; Blewitt et al., 2018, http://geodesy.unr.edu). Of the 315 sta-186

tions located in the study area which is delimited by longitudes -96º to -89º and latitudes187

34.5º to 40.5º, we retain the 92 stations with at least 60% of daily data between 2007188

and 2017. After visual inspection, six additional stations (CVMS, MOGF, MOMK, MOSI,189

NWCC, and SAL5) are discarded due to spurious large amplitude signals. The positions190

of the remaining 86 stations are shown in Figures 3A and S3.191

For each time series, we fit a trajectory model (Bevis & Brown, 2014) with a lin-192

ear trend, annual and semi-annual terms and step functions to account for material changes193

and potential coseismic displacements (http://geodesy.unr.edu/NGLStationPages/steps.txt)194

as well as visually obvious o↵sets. We subtract the best-fit linear trend and step func-195

tions from the time series but do not correct for the periodic terms. Next, we identify196

and eliminate outliers defined as points that exceed three times the average deviation197

from the 90-day median for any of the three directions (east, north, vertical). The time198

series are then monthly averaged to match the GRACE temporal resolution. Finally, the199

spherical harmonic degree-1 deformation field is estimated from a global network of 1150200

GNSS stations and subtracted from retained GNSS time series to allow for a direct com-201

parison with GRACE observations which do not capture degree-1 mass changes (Cha-202

nard et al., 2018). Examples of the resulting time series are provided in Figure S2.203

3 Fluctuations in groundwater levels204

The first step towards extracting poroelastic signals from our GNSS dataset is to205

characterize the groundwater fluctuations responsible for the deformation. This requires206

some form of spatial interpolation since piezometers only probe groundwater levels at207

discrete points in space and are generally not co-located with GNSS stations. We de-208

termine that directly interpolating between the piezometric sensors is not warranted in209

this case given the heterogeneous nature of aquifers and the variable depth of wells (Fig-210

ure 3). For example, neighboring piezometers GW1 and GW2 in Figure 3B reveal very211

di↵erent temporal signatures. On the other hand, GW2 and GW3 - which are over 200212

km apart - have highly correlated time series. Groundwater fluctuations at GW4 also213

correlate with GW2 and GW3 but are of much higher amplitude. The groundwater dataset214

thus contains both regional- and local-scale signals with peak-to-peak amplitudes that215

span two orders of magnitude (⇠0.5 to 50 m).216

3.1 Extracting groundwater signals with ICA217

In light of these observations, we perform an Independent Component Analysis (ICA)218

on the groundwater dataset to extract the main modes of variability before proceeding219

–5–



manuscript submitted to JGR: Solid Earth

with the spatial interpolation. ICA algorithms seek to recover the statistically indepen-220

dent sources of signal assumed to generate the linearly mixed time series at each sen-221

sor (Roberts & Everson, 2001). In particular, variational Bayesian ICA (vbICA) (Choudrey,222

2002) has been shown to perform well to recover geophysical signals (e.g., postseismic,223

hydrology-induced and common mode error) from synthetic and real GNSS data sets (Gua-224

landi et al., 2016; Larochelle et al., 2018). Once an independent component (IC) - i.e.225

a source of signal - i is isolated, it can be expressed with space and time vectors as IC
i

=226

U

i

S

i

V

T

i

where U

i

is a normalized spatial distribution, S
i

is a weighting factor and V

i

is227

a normalized temporal function.228

Figure 4 shows the temporal functions (A), weighting factors (A) and spatial dis-229

tributions (B-D) obtained from a 3 components vbICA of the groundwater dataset. We230

use a triangulation-based natural neighbor algorithm (MATLAB, 2017) to interpolate231

the spatial distributions from the discrete data points (Figure 4B-D). We choose to limit232

our analysis to 3 components since analyses with more components (e.g., see Figure S4233

for a 5 components analysis) yield similar IC1-3 and additional lower-amplitude ICs with234

spurious temporal functions that only explain a limited portion of data variance. The235

retained temporal functions all display a mix of multiannual and seasonal frequencies.236

IC1, the component which explains the greatest share of data variance, has an over-237

all positive spatial distribution and is observed at almost all wells including those out-238

side OPAS (Figure 4B). This spatial distribution is indicative of a regional income of wa-239

ter linked to recharge processes (Longuevergne et al., 2007). The large fluctuations oc-240

curring in southern Missouri (e.g., at station GW4 (Figure 3)) are likely linked to the241

high storage capacity of thick limestone layers with limited karstification (Figure 4B).242

Figure 5 also reveals a first order spatial correlation between sinkhole density, which sug-243

gests a higher ability to recharge the aquifer system, and wells with high S1U1 values.244

IC2 and IC3 represent seasonal and multi-annual signals with di↵erent phases than IC1245

and exhibit heterogeneous spatial distributions with positive and negative values (Fig-246

ure 4CD). These components probably compensate for local deviations from the regional247

behavior due to the delayed response of deeper aquifers, di↵ering recharge and discharge248

mechanisms and groundwater pumping.249

3.2 Comparing regional-scale hydrological signals across datasets250

Given that IC1 spans the entire study region, we expect to find a similar signal in251

the GRACE dataset. Performing a vbICA on the GRACE-predicted vertical displace-252

ments, the temporal function of the first and most important component indeed corre-253

lates very well with V

GW

1 (⇢ = 0.81)(Figure 6A). Downward motion occurs concurrently254

with rising groundwater levels because GRACE-derived vertical displacements reflect stor-255

age changes which drives the elastic deformation (Figure 1A), but not the poroelastic256

deformation (Figure 1B). The associated spatial response (Figure 6B) reflects the north-257

west to southwest gradient of surface loading.258

By contrast, GNSS vertical time series should comprise both deformation fields.259

Performing a similar analysis on the GNSS dataset results in a lower but still significant260

correlation - ⇢ = 0.52 - with V

GW

1 (Figure 6A). Note that a significant portion of GNSS261

stations sitting on top of OPAS were not installed until 2010 or 2011 as indicated by the262

grey shading in Figure 6A. Although the GNSS spatial distribution displays the same263

overall gradient as the GRACE-derived model with generally higher amplitudes around264

the Mississippi Alluvial Valley, the response is much more heterogeneous (Figure 6B).265

This comparison exercise demonstrates that the dominant temporal functions of266

all three datasets are in phase on a monthly timescale. This is consistent with a rela-267

tively uniform regional recharge of the aquifer system (Figure 4B) and with the system’s268

karstic nature which allows for rapid communication between surface water and ground-269

water (Hays et al., 2016), suggesting that the aquifer global behavior can be considered270
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as unconfined. Although OPAS is a complex aquifer system with both confined and un-271

confined units (Figure 3A), and that di↵erent hydrogeologic processes might interact to272

generate surface deformation, in this work we assume that OPAS is an unconfined sys-273

tem.274

Note that we do not rely on ICA to separate the elastic loading and poroelastic sig-275

nals from GNSS time series because the temporal variations in groundwater and total276

water storage (derived from GRACE) are highly correlated (Figure 6A) and hence not277

statistically independent in this case. ICA algorithms might be better able to accom-278

plish this task in other contexts where groundwater levels are controlled by anthropogenic279

pumping as opposed to background hydrology.280

4 Poroelastic deformation281

4.1 Elastic loading vs poroelastic eigenstrain: Analytical solutions for282

surface displacements283

To gain intuition about the elastic and poroelastic deformation fields we expect to284

find in the vicinity of an unconfined aquifer, we first develop and compare analytical so-285

lutions for surface displacements associated with the simple disk scenarios in an elastic286

half-space shown in Figure 1. We then extend the poroelastic solution to an arbitrary287

2D loading distribution which we use to predict horizontal poroelastic displacements in288

Section 4.4.289

4.1.1 Disk loading of an elastic half-space290

Figure 1A shows a disk load of radius a and uniform pressure P at the surface of291

an elastic half-space with Young’s modulus E
deep

, representative of surface hydrologi-292

cal loading. The corresponding vertical and horizontal surface displacements were de-293

rived by Johnson (1987) and Verruijt (2009) as:294

u
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where u

z

(r) and u

r

(r) are the vertical and horizontal displacements as a function of ra-295

dial distance r and K and E are the complete elliptic integral of the first and second kind,296

respectively.297

Figure 7A shows the deformation resulting from 100 km and 250 km-radius disks298

uniformly loaded with 150 mm of water, representative of OPAS’s spatial extent and EWH299

variations derived from GRACE. Both the vertical and horizontal displacements extend300

beyond the loaded region with the maximum vertical and horizontal displacements oc-301

curring at the center of the disk and at the load boundary, respectively. Note that the302

amplitude of deformation depends on the spatial wavelength of the load: Displacements303

grow with increasing disk radius.304

4.1.2 Poroelastic eigenstrain in a disk within an elastic half-space305

Poroelastic deformation arises from dilational eigenstrains (Mura, 1982) associated306

with changes in pore pressure, analogous to thermoelastic deformation resulting from307

changes in temperature. Eigenstrains refer to internal strains which, in the absence of308
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external stresses resisting them, would lead to isotropic expansion or contraction of the309

body. In the poroelastic case, eigenstrains are related to changes in pore pressure, �p,310

and hence in groundwater level, �h, as:311

"

eig

=
��p(1� 2⌫)

E

surf

=
�⇢g�h(1� 2⌫)

E

surf

(3)

where �, ⌫ and E

surf

are the Biot-Willis coe�cient, Poisson’s ratio and Young’s mod-312

ulus of the aquifer layers, respectively, while ⇢ is water density and g is the gravitational313

acceleration.314

Given the relatively high hydraulic conductivity of karstified sedimentary rocks (Domenico315

& Schwartz, 1998; Hays et al., 2016), in this work we assume that there is no significant316

time delay between changes in pore pressure and the resulting deformation. We also as-317

sume that deformation is entirely elastic and neglect permanent deformation as clay min-318

erals often responsible for inelastic processes are seldom found in OPAS (Westerman et319

al., 2016).320

Linear elastic constitutive equations accounting for eigenstrains are as follows (Wang,321

2000):322
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Given that lateral motion is restrained by the elastic medium below, it can be shown that323

horizontal strains within the aquifer layers, "
rr

and "

✓✓

, are negligible compared to "

eig

324

(Fleitout & Chanard, 2018). Under this assumption, lateral stresses, �
rr

and �

✓✓

, can325

be approximated as:326
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�
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is the change in total vertical stress associated with a change in groundwater level327

�h:328

�

zz

= ��⇢g�h (8)

where � is the porosity of the aquifer layers. Note that negative stresses correspond to329

compressive stresses in this work. Substituting Equations (3), (7) and (8) into (4) and330

integrating the vertical strain over an aquifer of thickness b and radius a yields the fol-331

lowing vertical deformation field at the surface:332

u
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Note that the poroelastic expansion described by Equation (9) accounts for changes in333

water weight (�⇢g�h) associated with pore pressure fluctuations.334

While we assume horizontal deformation to be negligible within the thickness of335

the aquifer layers, eigenstrains impose shear stresses at the base of the aquifer which re-336

sults in both horizontal and vertical displacements. We can solve for this basal shear stress,337

�

rz

(z = b), by considering the stress equilibrium equations for an axisymmetric prob-338

lem in cylindrical coordinates (Wang, 2000):339
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340
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Substituting Equation (7) into (11) and integrating with respect to z yields:341
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where342

I(r) =

Z
b

0

E

surf

"

eig

� ⌫�

zz

1� ⌫

@z (14)

is the fundamental quantity driving poroelastic deformation (Fleitout & Chanard, 2018).343

Assuming that E
surf

, "
eig

, ⌫ and �

zz

are constant with depth and applying a zero shear344

stress boundary condition at the surface (�
rz

(z = 0)), Equation (12) becomes:345

�

rz

(z = b) =
@

@r


(E

surf

"

eig

� ⌫�

zz

)b

1� ⌫

�
(15)

=
(�(1� 2⌫) + �⌫)⇢g�hb

(1� ⌫)

@

@r

[H(r � a)� 1)] (16)

= I�(r � a) (17)

where H and � are the Heaviside and Dirac delta functions, respectively. Finally, we pre-346

dict the deformation induced by �

rz

(z = b) with the expressions derived by Johnson347

(1987) for surface displacements due to an axisymmetric shear stress distribution, q(t):348

u

z,shear

(r) =

8
<

:
� (1� 2⌫)(1 + ⌫)

⇡E

deep

Z
a

r

q(t)dt, r  a

0, r > a

(18)

u

r,shear

(r) =
4(1� ⌫
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⇡E

deep

Z
a
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t

t+ r

q(t)

✓
2

k

2
� 1

◆
K(k)� 2

k

2
E(k)

�
dt (19)

where k

2 = 4tr/(t + r)2. Using �

rz

(z = b) as q(t), inclusive limits of integration and349

the sifting property of the Dirac delta function results in:350

u

z,shear

(r) =

8
<

:
� (1� 2⌫)(1 + ⌫)

⇡E

deep

I, r  a

0, r > a

(20)

u

r,shear

(r) =
4(1� ⌫

2)

⇡E

deep

I

a

a+ r
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2

k

2
� 1

◆
K(k)� 2

k

2
E(k)

�
(21)

where k

2 = 4ar/(a + r)2. Since K(k) diverges when r = a, we express and evaluate351

the K(k) and E(k) terms with infinite series as:352

✓
2

k

2
� 1

◆
K(k)� 2

k

2
E(k) = ⇡

2

1X

n=0

n

n+ 1

✓
(2n)!

22n(n!)2

◆2

k

2n (22)

To obtain an order of magnitude estimate of the poroelastic displacements expected353

in OPAS, we compute the poroelastic deformation generated by a 40 m increase in ground-354

water level - the largest fluctuation observed in OPAS - in unconfined disk aquifers with355

radii of 100 km and 250 km and a thickness of 1000 m (Figure 7B). The vertical displace-356

ment is largely due to poroelastic expansion and is bounded by the aquifer. The hori-357

zontal poroelastic displacement, on the other hand, is entirely shear-induced and extend358

beyond the aquifer. Moreover, the amplitude of deformation is independent of the wave-359

length of pore pressure perturbation in contrast to the surface loading case. Indeed, the360

100 km and 250 km disks result in displacements of the same amplitude.361
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4.1.3 Arbitrary 2D poroelastic eigenstrains in an elastic half-space362

When the 2D spatial distribution of quantity I (Equation (14)) is arbitrary - as is363

the case for OPAS - we can first decompose I(x, y) into its Fourier components as:364

I(x, y) =
X

k

x

,k

y

A1(kx, ky) cos(kxx) cos(kyy) +A2(kx, ky) cos(kxx) sin(kyy)

+A3(kx, ky) sin(kxx) cos(kyy) +A4(kx, ky) sin(kxx) sin(kyy) (23)

where k

x

and k

y

are the wavenumbers in the x and y directions. Similar to Equation (21),365

the horizontal displacement field can then be computed as:366

u

x

=
2(1� ⌫

2)

E

deep

X

k

x

,k

y

�A1(kx, ky) sin(kxx) cos(kyy)�A2(kx, ky) sin(kxx) sin(kyy)

+A3(kx, ky) cos(kxx) cos(kyy) +A4(kx, ky) cos(kxx) sin(kyy) (24)
367

u

y

=
2(1� ⌫

2)

E

deep

X

k

x

,k

y

�A1(kx, ky) cos(kxx) sin(kyy) +A2(kx, ky) cos(kxx) cos(kyy)

�A3(kx, ky) sin(kxx) sin(kyy) +A4(kx, ky) sin(kxx) cos(kyy) (25)

4.2 Extraction of geodetic poroelastic displacements368

In order to extract poroelastic deformation from GNSS time series, we first assume369

that deformation from hydrological loading is well reproduced by the GRACE model and370

hence focus on the GNSS - GRACE residual time series. This assumption is supported371

by a comparison of the vertical time series in Figures 8 and S2. The geodetic deforma-372

tion at station ZKC1 located outside OPAS and other aquifer systems (Figure 3A) is well373

explained by the GRACE model and presents very little residual seasonal displacements374

(Figure 8A). This is consistent with Chanard et al. (2018)’s finding that vertical displace-375

ments observed by GNSS are generally well explained by a GRACE loading model at376

a global scale because most stations are located at bedrock sites. At station MOWS at377

the center of OPAS, on the other hand, the GNSS vertical displacements deviate from378

that predicted from loading e↵ects and the residuals show clear seasonal and multian-379

nual features (Figure 8B).380

For the horizontal components, we also estimate and remove the common mode de-381

formation from the GNSS-GRACE residual time series to isolate OPAS’s poroelastic re-382

sponse. We estimate the common mode by taking the average of the horizontal GNSS-383

GRACE residual time series. This step is necessary as Figure S5 illustrates that neigh-384

bouring aquifers can induce significant horizontal poroelastic deformation within the study385

region. Although the horizontal displacements in OPAS caused by the synthetic poroe-386

lastic loading in Figure S5D are a↵ected by boundary e↵ects and vary with distance from387

the load, most stations do move in the same direction, similar to the displacements ex-388

tracted through our methodology but without removing the common mode (Figure S5C).389

Subtracting the common mode from GNSS-GRACE residual time series should thus ac-390

count for the first order e↵ects of neighbouring aquifers.391

We posit that at least part of these seasonal and multiannual residuals can be at-392

tributed to instantaneous poroelastic deformation and should therefore be proportional393

to and in phase with groundwater fluctuations. Since we know the dominant temporal394

functions that make up the groundwater fluctuations, we can test this hypothesis by pro-395

jecting the residual geodetic time series onto these functions. However, unlike the related396

Principal Component Analysis (PCA) technique, ICA yields independent components397

which are not constrained to be orthogonal. Before proceeding with the projection, we398

must thus orthogonalize vectors V GW

1 , V GW

2 and V

GW

3 from Section 3.1 via the Gram-399

Schmidt process to obtain an orthogonal basis, enabling us to sum the contribution of400
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each basis vector as follows:401

P

j

=
R

j

·W1

kW1k2 W1 +
R

j

·W2

kW2k2 W2 +
R

j

·W3

kW3k2 W3 (26)

where P

j

is the inferred poroelastic displacement for direction j (i.e., east, north or up),402

R

j

is the GNSS-GRACE residual time series and W1,W2,W3 are the orthogonalized ver-403

sions of V GW

1 , V

GW

2 , V

GW

3 . Figure S6 reveals that the V

GW

i

’s were not far from orthog-404

onality to start with since W2 and W3 only di↵er marginally from V

GW

2 and V

GW

3 , re-405

spectively.406

The resulting P

j

’s are shown in yellow in Figure 8 and Figure S2. The recovered407

vertical poroelastic deformation is relatively small at station ZKC1 outside of aquifer sys-408

tems and relatively large at station MOWS at the center of OPAS. However, both sta-409

tions exhibit similar amplitudes of horizontal poroelastic deformation. This behavior is410

consistent with the analytical solutions developed in Section 4.1.411

4.3 Vertical poroelastic displacements412

Figure 9 illustrates the amplitudes of the poroelastic signals extracted with each413

groundwater temporal function W

i

. Similar to the groundwater spatial distributions in414

Figure 4, the vertical poroelastic signal recovered with W1 is mostly positive and is more415

extensive and of higher amplitude than the signals recovered with W2 and W3. The poroe-416

lastic signals associated with W2 and W3 present both positive and negative values like417

the S2U2 and S3U3 distributions of groundwater.418

Focusing on this regional signal, Figure 9A shows that many stations outside OPAS419

exhibit amplitudes comparable to those inside OPAS. We attribute these poroelastic dis-420

placements to the other major aquifer systems present in the region (Figure 2). West-421

ernmost stations (e.g., ZKC1) where major aquifer structures are sparse or non-existent422

display some of the smallest amplitudes. However, it is di�cult to know whether or not423

a GNSS station is sitting on top of an aquifer system since the map in Figures 2 and S3424

only indicates the surface outcrops of these aquifer systems. The particularly large sea-425

sonal displacements at station OKMU (Figure S2C) at the southwestern edge of OPAS426

might be due to intensive groundwater pumping. Unfortunately there is no nearby ground-427

water monitoring well active during this time period to test this hypothesis. Finally, as428

Eq. (9) suggests, the range of vertical poroelastic amplitudes observed within OPAS -429

from about 2 to 14 mm - may reflect di↵erences in poroelastic (�, �, E
surf

) properties,430

groundwater variations (�h) or aquifer thickness (b). We discuss this further in Section431

5.432

4.4 Horizontal poroelastic displacements433

As for horizontal displacements, Figure 9D-F suggests that all three temporal func-434

tions W
i

’s are associated with spatially heterogeneous poroelastic deformation on the435

order of a few millimeters. According to Equation (21), poroelastic horizontal displace-436

ments are governed by deep elastic parameters as opposed to the surficial properties rel-437

evant for vertical poroelastic expansion. Elastic properties are believed to be more lat-438

erally homogeneous at depth than at the surface. Indeed, as discussed in Section 5.2, sur-439

ficial layers are more prone to fracturing which can alter elastic moduli. We thus approx-440

imate E

deep

with a constant value of 80 GPa and use Equations (24) and (25) for a spa-441

tially variable 2D distribution I(x, y) to predict the horizontal poroelastic deformation442

induced by the observed groundwater fluctuations.443

The colormaps in Figure 9D-F show the spatial distributions of I(x, y) interpolated444

within OPAS for each groundwater IC as well as the resulting displacements at the GNSS445

sites (red arrows). Although the model predictions associated with W1 match the ob-446

served displacements to first order at a handful of stations within OPAS, the observa-447
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tions are more heterogeneous than predicted (Figure 9D). For example, station MOBW448

undergoes a 7 mm displacement to the southwest whereas the model predicts a sub-millimetric449

eastward displacement (Figure S2D). The models for W2 and W3, on the other hand, fail450

at matching the extracted displacements (Figure 9EF).451

There are a number of potential reasons for these discrepancies. First and foremost,452

horizontal poroelastic displacements are highly sensitive to local variations in ground-453

water levels since they depend on the gradient of the groundwater field (e.g., Eq. 13) and454

do not attenuate with decreasingly small perturbation wavelengths. Hence, the spatial455

resolution of the piezometric network might be insu�cient to accurately model the hor-456

izontal deformation. Some of the large horizontal displacements might also be due to hy-457

drogeologic phenomena not included in the present model. For example, Silverii et al.458

(2016) and Serpelloni et al. (2018) explain horizontal transient signals observed around459

karstic aquifers with the opening and closing of vertical tensile dislocations due to ground-460

water variations. One way to improve the model would be to refine the spatial resolu-461

tion of surface deformation measurements using InSAR.462

Finally, our projection methodology might be capturing sources of seasonal and multi-463

annual signals not associated with groundwater. In particular, Fleitout & Chanard (2018)464

show that important horizontal thermoelastic displacements can result from sharp vari-465

ations in elastic properties. Heterogeneities in hydrological loading not captured by GRACE466

might also be responsible for some of the discrepancy. However, this would require rel-467

atively strong heterogeneities since, as demonstrated in Figure 7A and as opposed to poroe-468

lastic deformation, the amplitude of deformation associated with elastic loading decreases469

with decreasing load size.470

5 Aquifer mechanical properties471

5.1 Estimating surficial elastic parameters from vertical geodetic mea-472

surements473

As discussed in Section 4, vertical poroelastic displacement is primarily due to the474

expansion and contraction of surficial layers in response to groundwater fluctuations. As-475

suming that the system is unconfined to first order and that the ICs extracted in Sec-476

tion 3 indeed capture the groundwater variations responsible for the poroelastic defor-477

mation, we can estimate an e↵ective surficial Young modulus E
surf

directly below each478

GNSS station by rearranging Eq. (9) as:479

E

surf

=
(1 + ⌫)(1� 2⌫)

(1� ⌫)

(� � �)⇢g�hb

u

z,exp

(27)

To this end, we compare the interpolated groundwater fluctuations from Section480

3 to the inferred vertical poroelastic deformation from Section 4. For each GNSS sta-481

tion where both datasets are available, we consider the slope and coe�cient of determi-482

nation, R2, of the best-fit line through the displacement vs groundwater level space (Fig-483

ure S7). The slope represents the ratio of vertical displacement to groundwater varia-484

tion, u
z,exp

/�h, whose inverse enters Eq. (27) and R

2 quantifies the fit of the linear re-485

gression. The higher R2 is, the more correlated the two datasets are and, hence, the more486

confident we are in the E

surf

estimate. Figure 10A shows examples of vertical displace-487

ment and groundwater level time series with di↵erent R2 values and Figure 10B illus-488

trates the spatial distribution of R2. We only retain stations with R

2
> 0.35 such as489

MOC3, ARBT and MOSD to estimate E

surf

. Station ARHR illustrates a case where490

the time series are too incoherent to infer a meaningful value of E
surf

.491

For the thickness b, we assume that there is significant hydraulic connectivity be-492

tween the di↵erent aquifer units making up OPAS (as evidenced by the temporal cor-493

relation in Figure 6A) and sum their thicknesses. Figure 10C shows the total thickness494

–12–



manuscript submitted to JGR: Solid Earth

derived from Westerman et al. (2016)’s hydrogeological model. We extrapolate this thick-495

ness distribution for GNSS stations that are within 0.2°of the OPAS surface trace. Fi-496

nally, assuming representative constant values of � = 0.80 and � = 0.25 (Domenico497

& Schwartz, 1998), we can obtain an estimate of E
surf

at the 30 retained sites where498

all three datasets (�h, b and u

z,exp

) are available (Figure 10D). We also interpolate be-499

tween stations given that the vertical poroelastic field is governed by the relatively ho-500

mogeneous spatial distribution associated with W1 (Figure 9A). The inset in Figure 10D501

reveals that the distribution of E
surf

mostly falls between 1 and 10 GPa. We discuss these502

values further in Section 5.2.503

Stations with low R

2 might reflect localities where spatial interpolation of the ground-504

water ICs fails to reproduce the actual variations in groundwater levels. For example,505

station ARHR and two of its neighbours which also display low R

2 values are all located506

in a region with relatively few piezometric measurements. Nevertheless, the fact that we507

obtain coherent (R2
> 0.35) geodetic and groundwater time series and realistic values508

of E
surf

at 30 out of the 41 eligible GNSS stations within OPAS, suggests that our method-509

ology is adequate for most sites.510

5.2 Explaining low field estimates of Esurf511

In Section 5.1 we estimated a spatial distribution for E
surf

with values ranging from512

0.5 to 20 GPa. These values are lower than the laboratory-constrained elastic moduli513

of the principal rocks found in OPAS: limestone, dolomite, sandstone and shale (West-514

erman et al., 2016). For example, Ge & Garven (1992) suggest values of 125, 68, 9 and515

11 GPa for the Young modulus of Blair Dolomite, Maxville Limestone, Berea Sandstone516

and Chattanooga Shale, respectively (see Figure S8), pointing to an average Young mod-517

ulus of the order of 50 GPa.518

There is a growing body of evidence that laboratory-based values overpredict in519

situ estimates of e↵ective elastic moduli (e.g., Matonti et al., 2015; Bailly et al., 2019).520

Matonti et al. (2015), for instance, report seismic velocities, V
p

, measured on carbonate521

rock outcrops that are up to 70% smaller than those obtained on rock samples in the lab-522

oratory, implying a tenfold reduction in elastic moduli. Although part of the discrepancy523

is probably due to the greater porosity observed in the field (e.g., due to karstic features524

in this case), Fortin et al. (2007) and Bailly et al. (2019) have shown that seismic veloc-525

ities - and hence elastic moduli - are more sensitive to geological features with high as-526

pect ratios such as cracks, fractures, bedding plane and faults because they are more com-527

pliant to deformation than spherical pores.528

Following the e↵ective medium theory framework of Fortin et al. (2007), the ra-529

tio of e↵ective bulk modulus K to bulk modulus of the intact rock, K
o

, can be described530

in terms of porosity, �, and fracture density, f , defined as f = Nc

3
/V where N is the531

number of fracture characterized by a radius c, embedded in a volume V (Walsh, 1965):532

K

o

K

= 1 +
3

2

(1� ⌫

o

)

(1� 2⌫
o

)
�+

16

9

(1� ⌫

2
o

)

(1� 2⌫
o

)
f (28)

where ⌫

o

is the Poisson ratio of the intact rock. Assuming ⌫

o

= 0.25, Eq. (28) reduces533

to:534

K

o

K

= 1 + 2.25�+ 3.33f (29)

Thus, a fourfold reduction in elastic modulus (K
o

/K = 4) for example would re-535

quire - assuming a spherical pore porosity of 25% - a fracture density f of 0.7, a com-536

mon value reported in fractured reservoirs (Bailly et al., 2019). We thus conclude that537

the reduction in elastic moduli is mostly due to the presence of fracture-like geological538

features as in previous studies (Matonti et al., 2015; Bailly et al., 2019).539
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6 Discussion and Conclusions540

To summarize, in this study, we characterized the spatiotemporal variations of OPAS’s541

groundwater levels with three independent components. In particular, we uncovered a542

regional-scale groundwater signal that is temporally correlated with geodetic observa-543

tions. Then, by assuming that hydrological loading displacements are well described by544

a GRACE-based model and that poroelastic deformation is in phase with groundwater545

fluctuations, we extracted vertical and horizontal poroelastic displacement fields from546

GNSS time series by projecting onto the groundwater components. We also quantified547

the amplitudes of displacements induced by hydrological vs poroelastic loading with an-548

alytical solutions and developed a 2D poroelastic model to relate groundwater pertur-549

bations in an unconfined aquifer system to surface displacements. Finally, we found that550

the extracted groundwater variations and vertical poroelastic displacements imply an het-551

erogeneous spatial distribution of Young modulus ranging from 0.5 to 20 GPa.552

Our findings have important implications in the fields of hydrology, geodesy and553

seismology. First, the excellent correlation between the GRACE and groundwater tem-554

poral functions indicates that there is consistency between the water mass fluctuations555

observed at the local and continental scales. Filtering groundwater levels dataset with556

ICA could also lead to improved piezometric maps free of aberrant local signals. In terms557

of poroelastic displacements, the OPAS example clearly demonstrates that both hydro-558

logical loading and poroelastic e↵ects can induce significant geodetic deformation in the559

vertical and horizontal directions - hence the need to account for both deformation fields560

when correcting GNSS time series for hydrological e↵ects. Since the two types of defor-561

mation can interfere destructively, failing to account for poroelastic e↵ects in hydrogeode-562

tic inversions could result in underestimation of total water storage variations. The no-563

tion that poroelastic stresses may be locally stronger than those generated from elastic564

loading (due to their relative amplitudes at small perturbation wavelengths) also war-565

rants revisiting the role of both sources of stress in triggering seasonal seismicity (Craig566

et al., 2017). Lastly, our relatively low geodetic estimates of Young modulus motivates567

further investigation into surficial elastic parameters and their e↵ect on global surface568

loading models (Chanard et al., 2018).569

While this study is clarifying the signature of large aquifer systems in GNSS time570

series, further work is certainly necessary to address the current limitations of our method-571

ology, starting with testing the validity of the method in other aquifer settings. In par-572

ticular, the methodology should be evaluated in non-karstic and/or confined aquifer en-573

vironments as well as in systems undergoing inelastic deformation. Furthermore, we rec-574

ognize that the signals we attribute to poroelastic origins may be contaminated by other575

sources of seasonal signals, either due to deformation from thermal, atmospheric and resid-576

ual hydrological loading e↵ects or to systematic errors in the GRACE and GNSS data577

processing. Chanard et al. (2020) report draconitic signals, aliasing from mismodelled578

tides, tropospheric delays and other environmental e↵ects as potential sources of seasonal579

noise and systematic errors in GNSS datasets. Perhaps most importantly, our work sug-580

gests that horizontal poroelastic displacements are highly sensitive to spatial variations581

in groundwater, making it di�cult to accurately extract them from GNSS time series582

without a su�cient resolution of the piezometric surface. Future work will thus focus on583

characterizing the horizontal deformation field that would help identify possible local ef-584

fects in the vicinity of groundwater monitoring wells using InSAR displacement time se-585

ries. In particular, a more complete characterization of surface horizontal displacements586

at the surface should lead to an improved understanding of how water is stored in the587

di↵erent aquifers units of the Ozark system (confined-unconfined) as well as their con-588

nections.589
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590

591

Figure 1. Deformation due to surface hydrological loading vs poroelastic eigen-

strain. A. The addition of water mass causes ground subsidence and horizontal motion towards

the added load. The surface vertical displacement expected from a circular load on an elastic

half-space is shown. B. An increase in pore pressure in an aquifer leads to upward vertical and

outward horizontal displacements. While most of the vertical deformation comes from poroelastic

expansion, surface horizontal and vertical displacements also result from basal shear stresses.
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Figure 2. Regional hydrogeological setting. A. Simplified outcrop map of the Ozark

Plateaus Aquifer System (OPAS) based on physiographic sections (modified from Hays et al.

(2016) and Knierim et al. (2017)) and neighbouring aquifer systems (from USGS map of Princi-

pal Aquifers). B. Geographical location of OPAS. C. Hydrogeological cross-section at the dashed

line in A based on Westerman et al. (2016).
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Figure 3. GNSS, GRACE and groundwater data sets. A. Annual EWH peak-to-peak

amplitudes derived from GRACE and locations of GNSS stations and groundwater monitoring

wells used in this study. The color of the well markers indicates the aquifer system at the base of

a well and the shape describes the type of aquifer(s) - i.e., confined or unconfined - encountered

by a well (as classified by the USGS). B. Example of groundwater time series at di↵erent loca-

tions across OPAS. Note that time series GW4 was divided by a factor of 10. Well depths are

indicated in parenthesis. The featured wells correspond to USGS site numbers 373955091065901

(GW1), 372853091061801 (GW2), 373701093151601 (GW3) and 364324091515001 (GW4).

–17–



manuscript submitted to JGR: Solid Earth

Figure 4. ICA decomposition of the groundwater dataset. A. Temporal evolution

and weighting factors of the three components ICA. The variance of the groundwater dataset

explained by each component is also indicated in parenthesis. B-D Weighted spatial distributions

of the three components (circles). Spatial interpolation of the distributions is also shown.
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Figure 5. Spatial correlation between sinkholes (proxy for karstification) and

groundwater IC1. Purple dots indicate the location of known sinkholes in Missouri as reported

by the Missouri Geological Survey (https://dnr.mo.gov/geology/geosrv/envgeo/sinkholes.htm).

The spatial distribution of IC1 groundwater (same as Figure 4B) is shown for comparison.
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Figure 6. Temporal correlation between the first independent component of

groundwater and the GRACE-predicted and GNSS vertical displacements. A. Tem-

poral evolution and weighting factor (and variance explained) for each dataset. The 3 temporal

functions are replotted at the bottom of the figure (note that the groundwater function is flipped)

to facilitate visual comparison. The grey shaded area indicates the timespan prior to the installa-

tion of most GNSS stations sitting on top of OPAS from 2010 to 2011. B. Spatial distribution of

the GRACE-predicted (outer circles) and GNSS (inner circles) vertical displacement datasets.
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Figure 7. Surface displacements due to elastic loading vs poroelastic eigenstrain.

Vertical and horizontal surface displacements induced by (A) a disk load at the surface of an

elastic half-space and (B) poroelastic eigenstrain in a circular unconfined aquifer as illustrated

in Figure 1 for disks of radius a = 100 km (left) and a = 250 km (right) as indicated by the

grey-shaded areas. For the vertical poroelastic deformation, the dashed line represents the shear-

induced deformation while the solid line represents the total poroelastic displacement. We use the

maximum EWH (150 mm) and groundwater level (40 m) fluctuations observed in OPAS for P

and �h, respectively. Other parameter values are: ⌫ = 0.25, Edeep = 80 GPa, Esurf = 10 GPa,

� = 0.8, � = 0.25, b = 1000 m.
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Figure 8. Extracting the OPAS’s poroelastic signal from GNSS time series. Black

lines with grey error bars are GNSS time series (corrected for degree 1). A common mode has

been removed in the East and North components. Red lines are the GRACE predictions. Black

dots are the GNSS-GRACE residuals. Yellow lines are the projection of the GNSS-GRACE

residuals onto the Wi from the groundwater ICA.
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Figure 9. Inferred poroelastic displacements and poroelastic model predictions

Vertical (A-C) and horizontal (D-F) poroelastic displacement extracted by projecting onto the

di↵erent temporal functions Wi. D-F. Distribution of I(x, y) from each groundwater IC and

resulting horizontal poroelastic displacement (red arrows).
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Figure 10. Estimating surficial Young modulus from vertical poroelastic displace-

ment and groundwater level variations A. Examples of vertical poroelastic displacement

time series and groundwater level change extracted with ICA and interpolated at the GNSS

stations location. B. Coe�cient of determination (R

2
) of a linear fit through poroelastic displace-

ment vs change in groundwater level. The higher R

2
, the better the Esurf estimate. C. Total

thickness of the aquifer layers. D. Young’s Modulus computed for R

2
> 0.35 and where all three

input variables are available. Inset: Distribution of Young’s modulus
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