How runoff will change as atmospheric CO2 rises depends upon several difficult to project factors, including CO2 fertilization, lengthened growing seasons, and vegetation greening. However, geologic records of the hydrological response to past carbon cycle perturbations indicate large increases in runoff with higher CO2. We demonstrate that the fact that the Earth has remained habitable since life emerged sets a lower-bound on the sensitivity of runoff to CO2 changes. The recovery of the Earth system from perturbations is attributed to silicate weathering, which transfers CO2 to the oceans as alkalinity via runoff. Though many factors mediate weathering rates, runoff determines the total flux of silicate-derived cations and hence the removal flux of excess CO2. Using a carbon cycle model that parameterizes weathering as a function of rock reactivity, runoff, temperature, and soil CO2, we show that recovery from a perturbation is only possible if the lower-bound for the sensitivity of runoff to atmospheric CO2 is 0%/K. Using proxy data for the Paleocene-Eocene Thermal Maximum, we find that to match the marine d13C record requires a runoff sensitivity greater than 0%/K and similar to estimates of the modern runoff sensitivity derived from an ensemble of Earth system models. These results suggest that the processes that enhance global runoff are likely to prevail over processes that tend to dampen runoff. In turn, that the Earth has always recovered from perturbations suggests that, though the runoff response is spatially complex, global discharge has never declined in response to warming, despite quite varied paleogeographies.

Erica D Erlanger

and 4 more

Mixed siliciclastic and carbonate active orogens are common on Earth’s surface, yet most studies have focused on physical erosion and chemical weathering in silicate-rich landscapes. Relative to purely siliciclastic landscapes, the response of erosion and weathering to uplift may differ in mixed-lithology regions. However, our knowledge of weathering and erosion in mixed carbonate-silicate lithologies is limited and thus our understanding of the mechanistic coupling between uplift, chemical weathering, and the carbon cycle. Here, we partition the denudation fluxes into erosion and weathering fluxes of carbonates and silicates in the Northern Apennine Mountains of Italy—a mixed siliciclastic-carbonate active orogen—using dissolved solutes, the fraction of carbonate sand in sediments, and existing 10Be denudation rates. Erosion fluxes are generally an order of magnitude higher than weathering fluxes and dominate total denudation. The contribution of carbonate and silicate minerals to erosion varies between lithologic units, but weathering fluxes are systematically dominated by carbonates. Silicate weathering may be limited by reaction rates, whereas carbonate weathering may be limited by acidity of the rivers that drain the orogen. Precipitation of secondary calcite from super-saturated streams leads to the loss of up to 90% of dissolved Ca2+ from carbonate-rich catchments. Thus, in the weathering zone, [Ca2+] is exceptionally high, likely driven by high soil pCO2; however, re-equilibration with atmospheric pCO2 in rivers converts solutes back into solid grains that become part of the physical denudation flux. Limits on weathering in this landscape therefore differ between the subsurface weathering zone and what is exported by rivers.

Tyler Kukla

and 5 more

The shift from denser forests to open, grass-dominated vegetation in west-central North America between 26 and 15 million years ago is a major ecological transition with no clear driving force. This open habitat transition (OHT) is considered by some to be evidence for drier summers, more seasonal precipitation, or a cooler climate, but others have proposed that wetter conditions and/or warming initiated the OHT. Here, we use published (n=2065) and new (n=173) oxygen isotope measurements (δ18O) in authigenic clays and soil carbonates to test the hypothesis that the OHT is linked to increasing wintertime aridity. Oxygen isotope ratios in meteoric water (δ18Op) vary seasonally, and clays and carbonates often form at different times of the year. Therefore, a change in precipitation seasonality can be recorded differently in each mineral. We find that oxygen isotope ratios of clay minerals increase across the OHT while carbonate oxygen isotope ratios show no change or decrease. This result cannot be explained solely by changes in global temperature or a shift to drier summers. Instead, it is consistent with a decrease in winter precipitation that increases annual mean δ18Op (and clay δ18O) but has a smaller or negligible effect on soil carbonates that primarily form in warmer months. We suggest that forest communities in west-central North America were adapted to a wet-winter precipitation regime for most of the Cenozoic, and they subsequently struggled to meet water demands when winters became drier, resulting in the observed open habitat expansion.