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Abstract15

In recent years, global kilometer-scale convection-permitting models have shown promising16

results in producing realistic convection and precipitation. Cold pools, which can be rep-17

resented by km-scale models, are identified as one of the significant mesoscale processes18

responsible for modulating the life cycle of mesoscale organized convection. However, there19

is still a lack of understanding about cold pool properties across the spatio-temporal scales,20

as well as their representation in models. In this study, a 2.5 km global Icosahedral Nonhy-21

drostatic (ICON) model simulation run for 40 days (06 UTC 01 Aug - 23 UTC 10 Sep 2016)22

from the Dynamics of the Atmospheric general circulation Modeled On Non-hydrostatic23

Domains (DYAMOND) initiative is used to identify thermal cold pools (using Tv) over the24

tropical oceans. The diurnal cycle of simulated thermal cold pools is compared against25

NASA’s RapidScat-observed gradient feature (GF) frequency and IMERG precipitation.26

ICON and IMERG exhibit morning peaks in cold pool activity similar to RapidScat GF27

frequency but miss the RapidScat-observed afternoon peak. EUMETSAT’s Advanced Scat-28

terometer (ASCAT) and RapidScat GF spatial climatology is also compared to ICON cold29

pools, where ICON shows more cold pools over the Indo-Pacific and western Atlantic basins.30

ICON TF size and precipitation percentiles are validated with ASCAT and RapidScat GF31

size and precipitation, and the simulated cold pool properties depict similar regional vari-32

ability in cold pool properties with a smaller order of magnitude. Random forest regression33

is applied to identify critical environmental properties with column water vapor found out34

to be most important for controlling cold pool number, size, and intensity. Regional differ-35

ences between cold pool properties are explored, where easterly waves dominate the eastern36

Pacific and Atlantic cold pool activity. The western Pacific and the Indian Ocean cold pools37

are controlled by local mesoscale forcing and intraseasonal oscillations. Thus, a holistic38

conceptual framework is established to explain the simulated cold pool characteristics over39

tropical oceans.40

Plain Language Summary41

Cold pools are the cooler-than-ambient temperature regions formed when precipitation42

reaches near-surface and cools the air in the vicinity. Their boundaries act as density currents43

due to the difference in the ambient environment and in-pool air density. Air can lift on44

these boundaries to initiate secondary convection, and thus these cold pools are important45

for moist convection. There is still a lack of understanding about the relationship between46

cold pools and their ambient environment. Storm-resolving models are an excellent tool to47

analyze cold pools in a near-realistic atmospheric state, thus motivating this study. The48

first objective is to identify thermal cold pools in a global high-resolution storm-resolving49

model and validate against satellite-observed cold pool climatology. Understanding biases in50

simulated cold pool properties is essential to improve the model physics further. Secondly,51

a thorough analysis of cold pools and their environmental properties such as total moisture52

and vertical wind shear is carried out using novel machine learning methods to illustrate53

better how cold pools relate to their storm environment in a high-resolution model. Lastly,54

a conceptual understanding is established to explain the controls on cold pool activity over55

different oceanic basins.56

1 Introduction57

Global cloud-resolving models (GCRMs) are a recent advance in modeling that can58

resolve non-hydrostatic accelerations over the global domain with kilometer-scale resolu-59

tion (Satoh et al., 2019; Stevens et al., 2019). In other words, CRMs use non-hydrostatic60

equation numerics, which can permit convective cloud buoyancy. In reality, CRMs allow61

the mesoscale dynamics of precipitating storm systems and are not necessarily able to well-62

resolve convective updrafts and downdrafts, and thus are also termed as storm-resolving63

models or SRMs (Guichard & Couvreux, 2017; Satoh et al., 2019). These SRM simulations64
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can be an excellent tool to interpret observations, especially over the oceanic regions where in65

situ observations are sparse in nature (Guichard & Couvreux, 2017), despite under-resolving66

convective motions. A first-ever intercomparison of a range of GSRMs such as Icosahedral67

Nonhydrostatic (ICON), Model for Prediction Across Scales (MPAS), and System for Atmo-68

spheric Modeling (SAM) was carried out as a part of the Dynamics of the Atmospheric gen-69

eral circulation Modeled On Non-hydrostatic Domains (DYAMOND) initiative as explained70

in Stevens et al. (2019). This intercomparison initiative is one-of-its-kind and provides an71

opportunity to test a range of hypotheses related to deep convective dynamics. Although72

these simulations can act as a bridge between observations and parameterized models, such73

high-resolution models need to be validated against independent observations to understand74

the bias and uncertainty in resolving transient convection-precipitation processes (Stevens75

et al., 2019).76

Cold pools are envelopes of air produced by precipitating downdrafts, which upon77

reaching the surface, spreads out and creates a gust front boundary (Simpson, 1969; Simpson78

et al., 1977). Due to the difference between the density of ambient environmental air and79

in-pool air, a cold pool acts as a density current. Warmer environmental air can lift on the80

boundary of these density currents and can initiate secondary convection (Charba, 1974;81

Wakimoto, 1982; Kingsmill, 1995; Knupp, 2006). During the Global Atmospheric Research82

Program Atlantic Tropical Experiments (GATE) in the early 1970s, R. A. Houze and Betts83

(1981) observed that cold pools are integral in modulating air-sea exchanges over the tropical84

oceans. Since then, an increased curiosity in observing and characterizing cold pools with85

respect to tropical cloud and precipitation mesoscale organization has been observed (Mapes86

et al., 2006; Tao et al., 2007; Holloway & Neelin, 2009; Nasuno et al., 2009; Feng et al.,87

2015; Rowe & Houze, 2015; Kilpatrick & Xie, 2015; Ruppert & Johnson, 2016; de Szoeke88

et al., 2017; Garg et al., 2020; Cheng et al., 2020; Garg et al., 2021). Mesoscale cold89

pools have not been appropriately resolved in numerical weather prediction models in the90

past (Olson, 1985; Stensrud & Fritsch, 1994; Spencer & Stensrud, 1998). Cold pools have91

also been observed to have a strong relationship with the convective organization, heavy92

precipitation, and flash flood events (Maddox et al., 1979) and thus including information93

about cold pool strength, density and location improved heavy precipitation prediction94

in the models. Numerical model studies such as Cortinas and Stensrud (1995); Trapp and95

Woznicki (2017) and (Borque et al., 2020), found out that cold pools alter the environmental96

properties (e.g, CAPE, surface fluxes) and thus an accurate knowledge of the size, intensity,97

and frequency of cold pools is important for robust model prediction of precipitation. Over98

tropical oceans, cold pools have been hypothesized to play a crucial role within shallow-to-99

deep transitions and also in modulating surface energy fluxes (Feng et al., 2015; Chandra100

et al., 2018; Pei et al., 2018). Also, accurate characterization of cold pools within the101

tropical environment is essential to correct the erroneous diurnal cycle of precipitation and102

convection in global climate models (Schlemmer & Hohenegger, 2014; Pei et al., 2018).103

Therefore, to guide the models to predict the convection-precipitation relationship better,104

thorough comparisons with available observations need to be carried out, thus leading to105

the motivation behind this study.106

Long-term satellite observations have allowed us to observe the atmosphere-ocean in-107

teractions at a range of spatio-temporal resolutions. Space-borne scatterometers (e.g.,108

QuikScat, ASCAT, RapidScat) have provided ocean vector winds across the global oceans109

and have been used to identify oceanic cold pools utilizing a range of metrics such as hori-110

zontal wind divergence (e.g., Mapes et al., 2009; Kilpatrick & Xie, 2015) and wind gradient111

(Garg et al., 2020, 2021). RapidScat, in particular, was in a non-sun-synchronous orbit on-112

board the International Space Station (ISS) from 2014-2016 and provided diurnally resolved113

observations of ocean vector winds. This dataset allows the validation of model-simulated114

cold pool properties within the diurnal range. RapidScat-identified GF dataset can be an115

efficient tool for understanding bias in simulated cold pool characteristics regarding den-116

sity, size, intensity, and the diurnal cycle. Since precipitation, convection, and cold pool117

activity are tightly linked, analyzing these properties together will help understand their118
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relationships. Tropical Rainfall Measurement Mission (TRMM) and its successor Global119

Precipitation Measurement (GPM) have been providing near-real-time precipitation data120

across the globe since 1998. The Integrated Multi-satellite Retrievals for GPM (IMERG)121

combined precipitation information from the entire GPM satellite constellation and is an122

instrumental dataset over the observation-sparse regions (e.g., tropical oceans). IMERG123

provides retrievals of the diurnal cycle of precipitation. Thus, comparing it with cold pool124

activity from observations and models will prove to be highly beneficial for both the remote125

sensing and modeling community.126

Convective parameterizations have been an integral part of global climate models127

(GCMs) since Manabe et al. (1965), but they still suffer from uncertainties in resolving128

precipitation processes. Convection in most GCMs is activated through a trigger func-129

tion within these convective parameterization schemes. Due to a gap in understanding of130

convective processes on a subgrid-scale, unrealistic simulations of the diurnal cycle of con-131

vection, Madden-Julian Oscillation (MJO), and the intertropical convergence zone (ITCZ)132

have been observed in previous studies (e.g., Xie et al., 2004; Lin et al., 2008; Liu et al.,133

2010). Recently, CRMs have been identified as an efficient tool to identify statistical rela-134

tionships between environment and convective processes (e.g., convective initiation, MCS135

life cycle) using a range of machine learning (ML) methods. Once these relationships are136

identified, GCM convective parameterizations are replaced by ML-based statistical models,137

and an improvement in resolving precipitation and cloud dynamic processes has been ob-138

served (Brenowitz & Bretherton, 2018; Gentine et al., 2018; Rasp et al., 2018; O’Gorman &139

Dwyer, 2018; Ukkonen & Mäkelä, 2019). Regression and classification methods within the140

ML framework thus can be successfully implemented to learn how environmental properties141

(e.g., CAPE. wind shear, relative humidity) affect cold pool properties (e.g., number and142

intensity) from a CRM simulation. This exercise can result in obtaining information about143

which features have a higher weightage in producing cold pools and thus will be extremely144

useful to improve cold pool parameterization in GCMs. The difference in convective dy-145

namics over different oceanic basins can cause different relationships between the ambient146

environment and cold pools. Thus basin-specific understanding needs to be established to147

create more physically coherent and robust model architectures.148

The objectives of this study are twofold. First, global climatological properties of cold149

pools are analyzed from the 40-day global high-resolution ICON model simulation obtained150

from the DYAMOND protocol and are compared with ASCAT and RapidScat cold pool151

climatology from Garg et al. (2020) and Garg et al. (2021). Cold pool size and precipitation152

percentiles are also compared with ASCAT- and RapidScat-identified cold pools to gauge153

how well ICON can produce cold pools compared to climatological variability. The diur-154

nal cycle of ICON-simulated cold pools is compared to RapidScat-identified cold pool and155

IMERG-observed precipitation diurnal cycle. In the second objective, once an observation-156

model comparison is obtained, ML regression is applied to identify the importance of features157

relevant to cold pool number density, size, and intensity. Regional differences in cold pool158

properties are identified, and possible physical mechanisms are explored. This study is orga-159

nized as follows. Section 2 covers the datasets and methodology used in this analysis. Section160

3 depicts the global climatologies of cold pools and their attributed environmental proper-161

ties. Section 3 also shows the comparison between ICON, ASCAT, and RapidScat-identified162

cold pools. Section 4 explores the diurnal cycle of ICON-simulated and RapidScat-observed163

cold pools with IMERG precipitation. Section 5 shows the application of ML regression164

to identify important environmental parameters for cold pool dynamics. Section 6 explores165

the regional differences in the cold pool-environment relationship. Section 7 summarizes the166

results and concludes the study.167
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2 Data and Methodology168

2.1 Satellite Datasets169

NASA’s RapidScat was a Ku-band (13.4 GHz), conically scanning two-beam space-170

borne scatterometer onboard the ISS from 03 October 2014 - 19 August 2016 in a non-sun-171

synchronous orbit. RapidScat retrieved 10 m ocean vector winds at 12.5 km field of view172

(FOV) during the two years of the operational period. The ground swath width was 900173

km with an incidence angle of 49o and a slant range of 600 km. The satellite operated at174

92.5% uptime with instrument outages related to ISS vehicular docking (Lang, 2017). Most175

of the reductions in the observational quality of the data was due to change in the altitude176

and attitude of ISS. This study uses level 2B 12.5 km FOV version 1.0 climate quality177

ocean wind vectors provided by NASA - Physical Oceanography Distributed Active Archive178

Center (NASA PODAAC; SeaPAC, 2015) for the entire operational period of RapidScat.179

Cold pools are identified by applying the gradient feature (GF) algorithm from Garg et al.180

(2020) on the RapidScat vector wind data, as depicted in Garg et al. (2021). Advanced181

Scatterometer (ASCAT) was in a sun-synchronous orbit onboard European organization for182

the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operational -183

A (MetOp-A) satellite from 2007-2021 and provided 10 m surface winds at 12.5 km FOV.184

ASCAT has two swaths of 500 km separated by a distance of 360 km in between and crosses185

geolocation twice a day (approx. 9 AM and 9 PM local time). Due to a longer temporal186

record, this study also uses Advanced Scatterometer (ASCAT) GFs from Garg et al. (2020)187

from 01 Aug - 10 Sep for 2007-2018 to compare ICON TF frequency with GF frequency188

climatology.189

IMERG precipitation data is a globally merged dataset consisting of all satellite mi-190

crowave precipitation estimates with microwave calibrated infrared (IR) satellite estimates191

and precipitation gauge analyses for the TRMM and GPM time period across the globe.192

This study uses 30-min, 0.1o, IMERG precipitation data from 2000-2020 obtained from193

NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Huff-194

man et al., 2019). Note that all land area is masked to perform the precipitation analysis in195

this study. All the data from RapidScat and IMERG is converted from UTC to local time196

(LT) to perform the diurnal analysis in this study.197

2.2 ICON Model Simulation198

The DYAMOND experimental protocol ran a simulation of 40 days and 40 nights from199

00 UTC 1 August 2016 with a range of GSRMs at a grid spacing of 5 km or less. The200

protocol used the initialization date of 1 August 2016 to link the DYAMOND runs with201

previous large-domain SRM simulation runs supporting field campaigns over the Northern202

Atlantic (Klocke et al., 2017; Stevens et al., 2019). This 40-day period also coincided with203

the northern hemispheric monsoon and an active tropical cyclone season. All the modeling204

groups applied a hierarchical approach of frequent 2D outputs and relatively less frequent 3D205

outputs. The simulations produced many MCSs, thus allowing a detailed characterization206

of the mesoscale convective organization over both land and ocean. All the output fields207

and postprocessing framework were provided by the German Climate Computing Center208

(DKRZ; Stevens et al., 2019).209

ICON model uses an unstructured triangular grid based on the successive refinement210

of a spherical icosahedron in which 20 equilateral triangles are present, each of equal size211

(Zängl et al., 2015). The grid spacing in the ICON model corresponds to the square root of212

the mean cell area of the model triangles (Hohenegger et al., 2020). The dynamical set of213

equations in ICON is based on Gassmann and Herzog (2008) in which local mass, energy,214

and Ertel’s potential vorticity (EPV) conservation are achieved by using formulations in215

the turbulence-averaged form of the relevant turbulent fluxes, radiation fluxes, and by de-216

scribing a model atmosphere of dry air and water in gaseous, liquid, and solid form. ICON217

simulation within the DYAMOND protocol follows Hohenegger et al. (2020) where convec-218
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tion and gravity wave drag parameterizations were not used, and graupel was utilized as an219

additional prognostic variable in the bulk microphysics scheme consisting of rain and cloud220

water, cloud ice, and snow as well. Thus, the ICON simulations used in this study were221

convection-permitting for both shallow and deep convection. This study uses R2B10 (2.5222

km) resolution for the analysis performed here out of all the available grid spacings. The223

temporal resolution of 2D and 3D fields was 15 minutes and 3 hours, respectively. The data224

was regridded from icosahedral grid to regular lat-lon grid before using it for the analysis225

using climate data operators (CDO; Schulzweida et al., 2006) tool provided by DKRZ on the226

Mistral supercomputing cluster. In the vertical, ICON used 90 levels with the model top at227

75 km with damping beginning in the 77th layer, above 44 km. The 40-day simulation was228

initialized using European Center for Medium-Range Weather Forecasts (ECMWF) runs at229

00 UTC 01 August 2016. Prescribed SST and sea ice cover were used for the initialization.230

The model time step was 22.5 s for 2.5 km resolution. Data for the bottom boundary con-231

dition was recreated by aggregating climatological mean near-surface temperature, aerosol232

optical depth, soil albedos, soil texture, normalized differential vegetation index, and re-233

maining albedo values. Table 1 summarizes the physical parameterizations used for ICON234

simulation within the DYAMOND protocol as mentioned in Hohenegger et al. (2020). These235

schemes are derived from the Consortium for Small-scale Modeling (COSMO) model, which236

has been used to run simulations at smaller resolutions (Fuhrer et al., 2018). Cold pools237

in the ICON simulation are identified using virtual temperature anomaly (Tv), similar to238

Garg et al. (2020) WRF-based cold pool identification using equation 1 below. A Gaussian239

filter with σ of 100 was applied on the raw (Tv) field calculated using equation 1. To be240

consistent with the GF terminology in Garg et al. (2020), Tv-identified cold pools are called241

temperature features or TFs throughout this study.242

Tv = (1 + 0.61q)T (1)

Where q and T are 2m specific humidity and air temperature, respectively.243

3 Global Tropical Oceanic Cold Pool Climatology244

3.1 ICON-Simulated Cold Pools and their Characteristics245

Scatterometer-observed cold pool number density, size, and precipitation climatology246

in Garg et al. (2020) and Garg et al. (2021) match well with the global MCS distribution247

analyzed in previous studies (Nesbitt et al., 2006; Houze et al., 2015; Huang et al., 2018;248

Feng et al., 2021). ASCAT- and RapidScat-observed cold pool properties are compared with249

ICON-simulated cold pool spatial climatology. All 40-day ICON-simulated cold pool mean250

climatologies in Fig. 1-3 are calculated in a 0.5o grid box. Fig. 1a shows the western Pacific251

(WPAC), eastern Pacific (EPAC), Atlantic (AO), and Indian (IO) ocean basin analysis252

regions similar to Garg et al. (2021). Table 2 shows the latitude and longitude of all four253

region edges. All values below 10th percentile of TF number density in a grid box are removed254

from the analyses to only observe the mean values of cold pool-attributed properties which255

do not suffer from low count bias. In Fig. 1a, the highest TF density is within the northern256

Pacific and Atlantic ITCZ (3500 and above), followed by the western Pacific warm pool257

region (3000 - 3800), the SPCZ (2000 - 3000) and the Indian Ocean (1500 - 3000). These258

numbers correspond well spatially with the regions of active, organized deep convection259

(Nesbitt et al., 2006; Houze et al., 2015; Feng et al., 2021). Comparing trade wind regions260

with ITCZ, especially the southeastern and northeastern Pacific and Atlantic, have negligible261

TF activity compared to the ITCZ and SPCZ. This number density signature matches well262

with the ASCAT- and RapidScat-observed GF climatology in Garg et al. (2020) and Garg263

et al. (2021), where most of the mesoscale GFs were within the ITCZ and SPCZ. Note that264

since this is only a 40-day climatology, the seasonal migration of ITCZ will not be visible in265

the results here as compared to satellite-observed GF climatology, where GFs were visible266

in both Northern and Southern Hemisphere ITCZ.267
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Figure 1b shows another cold pool parameter; TF size (km2). Mean largest TFs are268

observed over the Bay of Bengal (≥ 200 km2), northern Indian Ocean (175 - 200 km2),269

Maritime Continent (175 - 200 km2), and western Pacific tropical cyclone region (150 - 175270

km2). Interestingly, all other regions over the tropical oceans have TFs between 50 - 125271

km2, except the Atlantic ITCZ having relatively larger GFs (150 - 190 km2) than the rest of272

the Atlantic basin. Mean larger TFs in the model simulation can be attributed to the active273

boreal monsoonal circulation over the Bay of Bengal, the Indian Ocean, and the Maritime274

Continent. Also, ICON simulated a number of tropical cyclones over the Bay of Bengal,275

Maritime Continent, and the western Pacific (Stevens et al., 2019), which could have led276

to intense convective activity in the region, thus resulting into larger cold pools within the277

outer rain bands of tropical cyclones and MCSs. TF size in Fig. 1b differs from ASCAT-278

and RapidScat-observed GF size climatology (Garg et al., 2020, 2021) as the largest GFs279

were observed over eastern-central Pacific, followed by WPAC, Indian Ocean and Atlantic280

Ocean in the scatterometer-observed cold pool climatology. This difference between the281

simulated TF and observed GF size climatology could be due to the simulation not being282

able to capture intra-seasonal to interannual oscillations, as it is only a 40-day simulation.283

However, TF size makes physical sense in terms of organized convective activity as shown284

in Stevens et al. (2019) where the authors observed vigorous convection over Indo-Pacific285

warm pool and Maritime Continent.286

Mean precipitation within the TF polygons is shown in Fig. 1c. The eastern Pacific287

basin shows the heaviest TF precipitation (≥ 12.5 mm hr-1), followed by coastal regions288

across the tropical oceans (10 - 17 mm hr-1). Heavier TF precipitation over the eastern289

Pacific could be due to longer-lasting convective clusters and synoptic wave patterns leading290

to organized convection (Hohenegger et al., 2020). Note the enhancement in TF-attributed291

precipitation along the coasts of the Bay of Bengal, Maritime Continent, Papua New Guinea,292

and North and South Americas. This enhanced precipitation on coastlines is likely associated293

with land-sea breeze circulations observed in previous studies (Yang & Slingo, 2001; Mori et294

al., 2004; Tang et al., 2019). Other regions of the tropical oceans observe moderately heavy295

precipitation (5 - 10 mm hr-1) for all the TFs simulated during the entire period.296

Total column water vapor (TCWV) has been identified as one of the critical environ-297

mental parameters responsible for modulating MCS strength and life cycle (Bretherton et298

al., 2004; Holloway & Neelin, 2009; Schiro et al., 2016; Schiro & Neelin, 2019). Fig. 1d299

shows the simulated maximum TCWV corresponding to TFs. Within the ITCZ and SPCZ,300

the mean maximum TCWV values are above 55 kg m-2 which is close to what was observed301

in Schiro and Neelin (2019) and Garg et al. (2021). TCWV maxima are observed over302

the Maritime Continent, Bay of Bengal, Arabian Sea, and western Pacific tropical cyclone303

region. Note that these are the regions of larger TFs observed in Fig. 1b. Overall, the304

TCWV values depict that TCWV is relatively similar when compared between different305

basins within the regions of deep tropical convection. The key takeaway points from Fig.306

1 are that (a) number of TFs are higher in the region of frequent deep convection, (b) TF307

size is relatively independent of TF number density as in Garg et al. (2020) and Garg et308

al. (2021), (c) heavier precipitation does not necessarily result in numerous or larger cold309

pools, (d) water vapor is a critical parameter in modulating cold pool number and size.310

TFs in ICON are identified using Tv anomaly. In order to identify where the model311

produces the most intense cold pools, the mean Tv anomaly for all TFs in a grid box is shown312

in Fig. 2a. Also, horizontal wind gradient has been used as an identification parameter in313

Garg et al. (2020, 2021). Therefore, looking at Tv anomaly and wind gradient (Fig. 2b)314

together would provide us an idea about the location of colder (warmer) cold pools with315

stronger (weaker) wind gradients. Comparing Fig. 2a-b, it can be seen that the coldest TFs316

(≤ -1.85 K) and strongest wind gradient (≥ 1 × 10-3 s-1) are over the western Pacific ITCZ317

and tropical cyclogenesis region, SPCZ, Indian Ocean ITCZ, Arabian Sea, Bay of Bengal,318

and northwestern Atlantic near the Gulf of Mexico, and the Caribbean Sea. Note that these319

are the regions of high TF number density observed in Fig. 1a, which makes sense as colder320
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cold pools would produce stronger wind gradients at their boundary (Wills et al., 2021) and321

result in secondary cold pool formation in the vicinity, thus increasing the number of TFs in322

these regions. Good correspondence between Tv anomaly and wind gradient provides further323

validation to the GF hypothesis (Garg et al., 2020) as well. Fig. 2c shows relative humidity324

(RH) within the TFs. The primary aim to look at RH in addition to TCWV is that TCWV325

is a measure of total gaseous water contained in a vertical column in the atmosphere, while326

RH is the net amount of water vapor in the air relative to the amount of water vapor the air327

is capable of holding. Therefore, RH can provide information about the available amount of328

water within the cold pool rather than the total water vapor. Hence, RH (Fig. 2c) depicts329

a different signal than TCWV (Fig. 1d), where the highest RH (≥ 0.94) is over the eastern330

Pacific and Atlantic Ocean basins while TCWV maxima are over the Maritime Continent331

and the Indian Ocean. However, over the region of intense convection and cold pool activity,332

RH is over 0.9 in general, which is similar in principle to TCWV, where deep tropics have333

consistent values of ∼ 55 kg m-2 across different basins.334

CAPE is generally defined as the vertically integrated buoyancy of adiabatically lifted335

sub-cloud air and has been a good predictor of thunderstorm severity (Brooks et al., 1994),336

lightning flash rates (Williams et al., 1992), and precipitation extremes (Lepore et al., 2015,337

2018). CAPE is also used in most convective parameterizations in contemporary GCMs338

to compute the cloud base mass flux, which is responsible for controlling the convective339

heating and coverage in climate scale simulations (Lin & Neelin, 2003; Diffenbaugh et al.,340

2013; Romps et al., 2014; Seeley & Romps, 2015). Since cold pools affect the buoyancy of341

environment air parcels, CAPE is an important parameter for analyzing cold pool properties342

across the global tropics. Fig. 2d shows the mean maximum CAPE within a 2o buffer of343

TF polygons since maximum CAPE does not necessarily exist within the cold pool. In this344

way, maximum CAPE is identified within the respective TF regions with an added buffer.345

High values of CAPE are observed over the Gulf of Mexico near the coastal United States346

and the Caribbean Sea (≥ 1000 J kg-1), followed by western Pacific ITCZ and tropical347

cyclogenesis regions, SPCZ, and Indian Ocean ITCZ (800 - 1000 J kg-1). Over the rest of348

the deep tropics, the CAPE values are in the range of 400 and 600 J kg-1. Bhat et al. (1996)349

used datasets from tropical sounding sites and observed that CAPE, which depends on the350

surface and upper-air thermodynamic properties, is an integral quantity to link deep moist351

convection with surface properties over tropical oceans. Comparing Fig. 2d with Fig. 2a-b,352

it can be seen that a maximum in CAPE coincides with colder Tv anomaly and a higher353

wind gradient, thus suggesting that a higher CAPE should result in more intense cold pools354

at the surface. The key points from Fig. 2 are that (a) colder cold pools have stronger355

wind gradients at their boundary and coincide with the number density of TFs, (b) most of356

the deep tropics have cold pool humidity above 90%, but the RH maxima have a different357

location than TCWV maxima, and (c) CAPE is an important environmental parameter358

crucial for defining cold pool intensity at the surface.359

Cold pools have been observed to modify surface sensible (SHF) and latent heat (LHF)360

fluxes in a range of observational and model-based studies (e.g., Feng et al., 2015; de Szoeke361

et al., 2017; Zuidema et al., 2017). In the bulk aerodynamic formulae, SHF is a function362

of wind speeds and the difference between air and sea surface temperature while LHF is a363

function of wind speeds and the difference between atmospheric and sea surface humidity364

(Vickers & Mahrt, 2006). Since cold pools affect temperature, humidity, and wind speeds,365

surface fluxes are important in understanding atmosphere-ocean exchange processes during366

and after the passage of cold pools. Fig. 3a-b shows the mean SHF and LHF within TFs367

for the entire simulation. Comparing Figs. 3a-b, it can be seen that there are regions in the368

southern hemisphere (the Indian Ocean, near Australian coastal regions, southern Pacific,369

and the Atlantic Ocean), where both SHF and LHF show similar signatures, which could370

mean that these areas are dominated by the change in wind speeds due to cold pool passage371

as both the fluxes have wind speed effect in common. In Fig. 3a, most of the deep tropics372

have moderate SHF between 40 - 70 Wm-2 with pockets of maxima over the Bay of Bengal,373

Maritime Continent, and coastal United States (values around 75 - 80 Wm-2). These local374
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maxima signify an enhanced temperature gradient between the sea surface and atmosphere375

due to cold pool activity and coincide with TF density (Fig. 2a), size (Fig. 1b), and CAPE376

(Fig. 2d). Fig. 3b shows the LHF maxima over the Bay of Bengal, Maritime Continent,377

western Pacific tropical cyclone region (≥ 250 Wm-2), followed by the eastern and western378

coast of the United States and Caribbean Sea (200 - 250 Wm-2). All other tropical oceanic379

regions have LHF values in the range of 100 - 200 Wm-2. LHF maxima coincide with TF size380

(Fig. 1b) and TCWV (Fig. 1d) maxima, in particular, suggesting that humidity gradient381

between the atmosphere and the ocean play a crucial role in modulating the area of cold382

pools in these regions and vice versa.383

Vertical wind shear plays a critical role in organizing atmospheric moist convection384

into a variety of systems ranging from supercells to tropical cloud clusters and squall lines385

(Cotton et al., 1995; Houze et al., 1993). Rotunno et al. (1988) and Weisman et al. (1988)386

argued that cold pool - wind shear interaction could prolong the lifetime of squall lines387

and influence their intensity. It has also been observed that when the cold pool is roughly388

balanced with wind shear (also known as the optimal state), the system can maintain an389

upright updraft and can initiate secondary convection on the leading edge of the cold pool390

boundary (Xu & Randall, 1996; Xue, 2000; Robe & Emanuel, 2001). Fig. 3c-d shows the391

vertical wind shear between surface - 600 hPa and surface - 300 hPa, respectively. The aim392

of looking at these wind shear profiles is to understand the relationship of mid-tropospheric393

and upper-tropospheric wind shear with TF properties. In both Fig. 3c-d, the Southern394

hemisphere (south of 20oS) has highest vertical wind shear; 15 - 20 ms-1 and ≥ 30 ms-1 for395

the mid-and upper-troposphere respectively. The high wind shear values in surface - 300396

hPa (Fig. 3d) signify the seasonal mean location of the subtropical jet stream in the southern397

hemisphere (e.g., Gallego et al., 2005). Apart from this southern hemispheric region, the398

mid-tropospheric wind shear (Fig. 3c) is between 5 - 10 ms-1 and upper-tropospheric wind399

shear (Fig. 3d) is between 5 - 20 ms-1 across the tropical oceanic basins. Mid-tropospheric400

wind shear (Fig. 3c) shows relatively higher values near the equator than trade wind regions401

with maxima over the eastern Pacific followed by the Bay of Bengal, Arabian Sea, and the402

Atlantic Ocean. Note the relatively strong upper-tropospheric wind shear (Fig. 3d) over403

the Indian Ocean and Maritime Continent shows a signal of the tropical easterly jet (TEJ),404

which is commonly observed during the Indian summer monsoon (ISM) season (Koteswaram405

& George, 1958; Roja Raman et al., 2009; Huang et al., 2021). Also, the northeastern Pacific406

and Atlantic Ocean (north of 20oN) show enhanced wind shear in surface - 300 hPa layer407

(Fig. 3d), suggesting the presence of the subtropical jet stream over these tropical regions408

(e.g., Nakamura et al., 2004). Overall, the vertical wind shear profiles examined in these409

two layers showed that most cold pools within the regions of deep moist convection over410

tropical oceans have low-to-moderate vertical wind shear for both surface to 600 and 300411

hPa. Comparing wind shear (Fig. 3c-d) with TF size (Fig. 1b) and TCWV (Fig. 1d), it can412

be said that the relatively high wind shear over the Indian Ocean and Maritime Continent413

corresponds well with larger and relatively moister TFs. The key takeaway points from Fig. 3414

are (a) SHF and LHF maxima signify a larger variation in winds, humidity, and temperature415

gradient between the ocean and atmosphere and exists in the region of larger and moister416

TFs with higher CAPE, and (b) relatively moderate-to-high vertical wind shear between the417

surface to mid-and upper-troposphere relates well with larger and relatively moister TFs.418

3.2 Comparison between ICON TFs and RapidScat and ASCAT GFs419

Although the ICON TF climatology is physically self-consistent across the global trop-420

ics, validation with observations would further provide a comprehensive outlook about the421

TF properties. In Figure 4, ASCAT’s 12-year (2007-2018) and RapidScat’s 2-year (2014-422

2016) GF climatology for 01 Aug - 10 Sep is used to compare with ICON TFs 40-day423

climatology. Note that only TFs greater than the smallest GFs (300 km2) are being used to424

compare the two datasets spatially. Both the datasets are gridded in a 5o grid-box and are425

normalized by the GF and TF maximum frequency. Figure 4 shows the percentage difference426

between ASCAT, RapidScat GFs and ICON TFs variation from their respective maximum427
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occurrence frequency, where blues represent higher TF frequency while reds represent more428

GFs in the grid box. Overall, Fig. 4 suggests that more GFs are observed across most of429

the global tropics except the Bay of Bengal, Indo-Pacific region, Maritime Continent, west-430

central Pacific, and western Atlantic. Comparing Fig. 4 with Fig. 1a-b, it can be said that431

ICON simulation during the Northern Hemisphere summer resulted in frequent mesoscale432

convection due to the passage of intraseasonal oscillations, thus producing numerous, larger433

thermal cold pools over the northwestern Pacific, Bay of Bengal, and Maritime Continent.434

More TFs in the western Atlantic can be due to a number of tropical cyclones produced in435

the simulation where cold pools may have been produced in the outermost rainbands of TCs,436

resulting in higher TF frequency (Stevens et al., 2019). Also, these differences could be due437

to the temporal differences and biases in the model in representing cold pools. Comparing438

Fig. 4a and 4b, note that the difference in RapidScat and ICON (Fig. 4b) is relatively less439

than ASCAT and ICON in Fig. 4a. This relatively less difference in GF and TF frequency in440

Fig. 4b could be due to the fact that RapidScat was able to sample diurnally and thus was441

able to observe cold pools of different intensities as compared to ASCAT which could only442

observe cold pools twice a day. Another reason could be that RapidScat had a continuous443

swath while ASCAT had a gap in between two swaths and thus RapidScat would miss less444

number of GFs as compared to ASCAT. This observation-model comparison is important445

in understanding biases in model simulation, which would help further to improve the rep-446

resentation of convective processes in these SRMs. Overall, the comparison suggests that447

both climatologies do not deviate significantly from each other, thus providing confidence448

in using ICON simulation to observe global tropical oceanic cold pool characteristics.449

The relative frequency of ICON TFs with ASCAT and RapidScat GFs is shown in450

Fig. 5, which is calculated by dividing TFs (GFs) frequency within each basin with the451

total TFs (GFs). In the case of WPAC, ICON has relatively more TFs than RapidScat,452

followed by ASCAT. This observation makes sense as ICON’s western Pacific warm pool453

was quite active during the simulation period, resulting in more convective systems and454

associated cold pools than the climatological number of GFs from either scatterometer. For455

EPAC, RapidScat’s climatological frequency leads ICON TFs and ASCAT GFs. Stronger456

convective activity over the eastern Pacific is governed by a range of factors such as the457

El Niño Southern Oscillation (ENSO) phase and tropical wave activity (D. J. Raymond458

et al., 2003). During 2014-2016, ENSO was in the positive phase with significant warming459

over the equatorial eastern Pacific (L’Heureux et al., 2017) and RapidScat’s period coincides460

with this warm anomaly, which might have led to stronger convective events over EPAC and461

thus more cold pools. ICON’s simulation period was in August-September 2016 when ENSO462

phase transitioned to a negative phase and thus relatively less number of TFs compared to463

RapidScat GFs. For both WPAC and EPAC, ASCAT GFs are relatively lower in number as464

compared to rest of the two datasets, thus indicating that a longer period (2007-2018) may465

have led to a more mean ”climatological” cold pool frequency in this analysis. However,466

ASCAT GFs lead in case of the AO, closely followed by RapidScat and then ICON. The467

hypothesis remains consistent in this case as a longer temporal observations would provide468

a more ”mean” value of cold pool frequency in terms of ASCAT while for ICON, the model469

did not produce strong, deep convection over the Atlantic (Stevens et al., 2019), thus leading470

to smaller number of TFs in the basin. In the case of IO, RapidScat GFs lead in relative471

frequency, very closely trailed by ASCAT GFs and then ICON TFs. Convection over the472

Indian ocean is dominated by the frequent passage of monsoonal intraseasonal oscillations,473

MJO, and boreal summer intraseasonal oscillations (BSISO). Both ICON and ASCAT depict474

a similar number of cold pools, thus suggesting that ICON was able to simulate mesoscale475

convection closer to long-term mean. The slightly higher number of cold pools depicted by476

RapidScat over Indo-Pacific warm pool may have been due to relatively stronger convective477

activity as observed in Dong and McPhaden (2018). Overall, the comparison suggests that478

ICON did not significantly deviate from either ASCAT or RapidScat in terms of producing479

total number of cold pools in each basin except over the Atlantic, thus suggesting the480

applicability of this simulation in understanding the relationship between mesoscale cold481

pools and their respective environment in the coming sections.482
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In addition to the cold pool frequency, comparing the size of cold pools and precipi-483

tation between the simulation and satellite observations will help understand how well the484

model can produce cold pool properties. Figure 6 shows the percentile range from 5th to485

99th percentiles of size and precipitation for ASCAT, RapidScat, and ICON where the in-486

crement is 5% between 5 and 95% and 4% between 95-99%. Comparing Fig. 6a-b, it can be487

seen that ICON TF sizes compare well with both RapidScat (Fig. 6a) and ASCAT (Fig. 6b)488

with IO exhibiting the largest TFs and GFs for ICON and RapidScat, followed by tropical489

average, WPAC, AO, and IO. ASCAT-ICON size distribution is similar to RapidScat-ICON490

except that IO exhibits a smaller cold pool size for ASCAT. This size comparison suggests491

that although ICON-simulated cold pools are smaller than satellite-derived cold pools, the492

model reproduced inter-basin variability well. In the case of precipitation, Fig. 6c-d suggests493

that the percentile distribution is more linear than for size, especially in tropical average494

and EPAC, thus suggesting a quasi-monotonic relationship between TF and GF precipi-495

tation. Note that ICON TF precipitation is greater in range than both RapidScat and496

ASCAT GF precipitation. WPAC and IO have the highest precipitation in both Fig. 6c-d,497

thus implying that ICON-simulated cold pools within Indo-Pacific warm pool convection498

have similar distribution as scatterometer-identified cold pools and their parent convection.499

ICON relatively overestimates precipitation as compared to RapidScat over the AO (Fig.500

6c) and ASCAT over the EPAC (Fig. 6d). This could be due to the frequent tropical east-501

erly wave-attributed convection produced in these basins, which is further discussed below.502

Note that TFs are smaller but rainier than the GFs. The hypothesis behind smaller TFs is503

that as cold pools move over the ocean, the temperature deficit may recover while the wind504

gradient signal in GFs can persist longer, thus resulting in a much larger and longer-lasting505

outflow boundary. Previous studies have shown that cold pools can last longer than their506

parent convection (Zuidema et al., 2017; Grant et al., 2018; Vogel et al., 2021) and thus it507

is possible that scatterometers are able to observe the GFs which have moved away from508

their respective parent systems (Garg et al., 2020). Also, the difference in spatial resolution509

of ICON and RapidScat/ASCAT would be another reason that ICON represents smaller510

cold pools than either scatterometer’s GFs. In the case of daily precipitation, Stevens et al.511

(2020) showed that ICON, even at 2.5 km, overestimated precipitation as SRM suffers in512

distinguishing shallow and deep convective regimes over open oceans as compared to obser-513

vations. However, ICON TFs are able to represent the inter-basin spread and variability in514

frequency, size, and precipitation well.515

Now that global TF properties are identified, the diurnal cycle of TF number density516

and other attributed properties will be analyzed in the following section.517

4 Diurnal Cycle of ICON-Simulated Cold Pools518

The diurnal cycle of convection and precipitation is one of the most important modes519

of variability across the global land and oceanic regions (e.g., Chapman, 1951; Haurwitz,520

1964; Brier, 1965). Several observational studies from a range of remote sensing and in situ521

observations have provided evidence of an early morning/late night peak and an afternoon522

peak in precipitation over global tropical oceans (Gray & Jacobson, 1977; Reed & Jaffe,523

1981; Albright et al., 1985; Augustine, 1984; Nesbitt & Zipser, 2003; Kikuchi & Wang,524

2008). Although the models have improved the representation of the diurnal variation of525

precipitation due to improvement in the parameterization of convective processes, there are526

still biases in model-simulated diurnal peaks in terms of intensity and timing (e.g., Giles et527

al., 2020; Wei et al., 2020). This section depicts the diurnal cycle of ICON-simulated cold528

pool properties and compares it with the climatological diurnal cycle of RapidScat-observed529

GF number density (Garg et al., 2021) and IMERG-observed precipitation. All diurnal530

analysis in this section is performed within the four boxes of the western Pacific (WPAC),531

eastern Pacific (EPAC), Atlantic (AO), and Indian Ocean (IO) as depicted in Fig. 1 (Garg532

et al., 2021).533
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The diurnal cycle of the number of cold pools from ICON (solid blue; 40-day), RapidScat534

(solid red; 2014-2016), and IMERG precipitation (dotted purple; 2000-2020) is shown in Fig.535

7 for all four boxes and the global tropical average. First, comparing the ICON TF with536

RapidScat GF diurnal cycle, it can be seen that TFs show an early morning/late night peak537

(0000 - 0600 LT) similar to RapidScat but with different timing and intensity for all basins538

and the tropical average. Second, ICON does not exhibit the afternoon peak in cold pool539

number as prominently as RapidScat for all basins except AO, where ICON shows a daytime540

peak at noon compared to RapidScat peak at 1600 LT. Third, IMERG precipitation does541

not show an afternoon maxima in precipitation corresponding to RapidScat GF number542

density. From the conceptual framework created in Garg et al. (2021) using RapidScat543

data, the early morning/late night peak is related to deep, organized moist convection544

(e.g., MCSs) while the afternoon peak pertains to the shallow cumulus congestus type of545

convection. Applying this conceptual framework to ICON-simulated TF number density546

and IMERG precipitation here, this analysis suggests that ICON and IMERG are missing547

precipitation from the cumulus congestus type of convection in general but can capture the548

TFs associated with mesoscale organized convection (e.g., MCSs) during night time/early549

morning. This result is consistent with (Stevens et al., 2019) showing a lack of shallow550

convection in the simulation.551

In addition to cold pool number, looking at the diurnal cycle of cold pool-attributed552

ambient environmental properties shown in Fig. 1-3 will help understand how environmental553

properties change during the day associated with cold pool activity. Figure 8 shows the554

interquartile range (IQR) of different cold pool-associated parameters. Overall, most of the555

parameters show a weak or moderate diurnal variation except TF size (Fig. 8a), precipitation556

(Fig. 8f), and CAPE (Fig. 8g). TF size and CAPE have maxima in the afternoon between557

1200-1800 LT, while TF precipitation has an early morning peak between 0000 - 0600 LT558

(similar to TF frequency in Fig. 7). Comparing TF number density (Fig. 7), size (Fig. 8a),559

and TF precipitation (Fig. 8f) with RapidScat-observed GF number, size, and precipitation560

in Fig. 10 of Garg et al. (2021), both have similar temporal co-variation as precipitation561

(late night) peaks first followed by cold pool frequency (early morning) and size (afternoon).562

Also, TF size peaks in the late morning/afternoon in both RapidScat (Garg et al., 2021)563

and ICON-observed cold pools, suggesting the role of upscale growth during the overnight564

and early morning hours resulting in the formation of new cold pools which can intersect565

and merge to form bigger cold pools later in the day. Previous studies have observed a566

maximum in CAPE during the afternoon-to-evening hours (e.g., Dai et al., 1999; Bechtold567

et al., 2004) as the sea surface warms in the presence of incoming solar radiation, resulting568

in stronger surface fluxes and CAPE in the environment. The similarity between TF size569

and CAPE diurnal cycle suggests that CAPE, in particular, can prove to be an important570

parameter in predicting TF size in convective parameterizations.571

To summarize, the diurnal cycle of ICON-simulated cold pool number density, size, and572

associated properties do show similar early morning peak timing with respect to RapidScat-573

observed GF properties but miss the afternoon peak in TF frequency. This can be because574

ICON at 2.5 km resolution might misrepresent shallow convective regions as it has been575

observed in multiple studies in the past that CRMs, even at kilometer resolution, can im-576

properly represent narrow updrafts associated with shallow convective clouds (Bryan &577

Morrison, 2012; Varble et al., 2014). Therefore, ICON can identify mesoscale downdrafts578

formed near MCS-type systems during the late night/early morning hours but may miss579

the afternoon signal in cold pool activity formed due to congestus-type systems. However,580

this should not affect the analysis of nocturnal deep convective cold pools. The next section581

presents the relationship between environmental properties and cold pool number, size, and582

intensity for mesoscale cold pools using a ML method.583
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5 Relationship between Environment and Cold Pool Properties584

Statistical methods such as simple and multiple linear regression have been used to585

identify and analyze the relationships between environmental conditions and convection-586

precipitation (Jung et al., 2010; Goyal et al., 2014). However, due to the nonlinearity in587

environmental variables, linear regression can underfit, resulting in difficulty deriving rela-588

tionships between the convection and its environment. Random forest (RF) regression and589

classification are based on decision trees (Breiman, 2001; Hastie et al., 2009) which produces590

numerous independent trees to obtain a final decision via two randomization approaches.591

One is through the selection of training samples and the other is by selecting important592

variables at each node of a tree. This randomization reduces typical drawbacks of decision593

trees such as overfitting problem and sensitivity of the output to the training sample con-594

figuration (Breiman, 2001). RF also provides the option of using out-of-bag (OOB) samples595

from random selection to provide internal cross-validation and relative importance of a vari-596

able when samples are drawn from the OOB (e.g., Stumpf & Kerle, 2011; Long et al., 2013;597

Kim et al., 2014; Maxwell et al., 2014). The final prediction from the RF approach is an598

average over all the trees used in the algorithm. O’Gorman and Dwyer (2018) used a ran-599

dom forest algorithm to replace convective parameterization in a GCM and observed that600

the RF approach was able to preserve physical constraints such as energy conservation, thus601

leading to accurate and stable simulations of climate in a GCM. In this study, a random602

forest regression approach is implemented to identify which environmental properties are603

most related to cold pool density, size, and intensity across the deep global tropics. All the604

analysis is carried out for deep tropics (-15o to 15o in latitude) to identify the most relevant605

features in the regions of moist vigorous convection. Also, TFs with 2m air temperature606

less than 293 K, precipitation less than 1 mm hr-1 and size less than 1000 km2 (all three607

conditions should be satisfied together) are removed from the analysis as it is hypothesized608

that these TFs are not related to the deep moist tropical convection after locating most of609

these systems in the Austral winter hemisphere (not shown). In this way, approximately 15610

million TFs are used in this analysis. All the features and predictands were standardized611

using z-scores in order to normalize the scale of the values. After applying the mentioned612

criterion, the training and validation sample is split 70-30 from the entire TF dataset used613

in this study.614

5.1 Random Forest Algorithm Structure615

Hyperparameters in an ML algorithm are configurations that are external to the ML616

model being used and cannot be derived from the data itself. In the case of RF, some617

hyperparameters are important to consider to improve the accuracy of any model. For618

example, the higher the number of trees, the better the results in terms of performance619

and precision, but for some predictive problems, adding trees diminishes the improvement620

in model accuracy. Other hyperparameters such as node size and sample size control the621

randomness of the RF and thus need to be properly evaluated before using the model for622

any classification or regression problem (Probst et al., 2019). Hyperparameter tuning is623

a method to obtain the combination of these configurations to obtain the best possible624

accuracy in the model. This study uses the python-based scikit-learn scikit-learn random625

forest regression tool to implement the RF algorithm. To train the RF algorithm, all the626

environmental features from ICON (TCWV, CAPE, surface - 600 hPa and surface - 300627

hPa wind shear, RH, wind gradient, precipitation, SHF, and LHF) in a 0.5o grid box (Fig.628

1-3) are used at this step to predict TF number density, size, and intensity (Tv anomaly).629

Scikit-learn’s RandomizedSearchCV (Pedregosa et al., 2011) method is first implemented on630

a permutation of a number of estimators, maximum features, maximum depth of the tree,631

minimum samples used to split, minimum samples on each leaf, and bootstrap configuration632

by running 100 iterations on a 3-fold cross-validation matrix. What this step essentially633

does is that it provides a combination of hyperparameter configuration, which has led to the634

most accurate prediction, but it is still randomized. To narrow down the hyperparameter635

space further, scikit-learn’s GridSearchCV (Pedregosa et al., 2011) is applied to a narrow636
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set of hyperparameters obtained from a random search in the previous step. GridSearchCV637

searches through every combination of the configuration provided to refine the results further638

and provide us with the most accurate result with low overfitting. This exercise provided639

values of hyperparameters which resulted in high R2 (correlation) and low root mean square640

error (RMSE) between predicted and true values of TF number density, size, and intensity.641

Table 3 shows the values of hyperparameters used for the RF algorithm in this study.642

5.2 Training the RF Regression Algorithm643

Unlike the multiple linear regression models, RF does not provide coefficients corre-644

sponding to each predictor used in the training algorithm since the nature of the random645

forest algorithm inherently leads to the destruction of any simple mathematical formula-646

tion as RF works by building decision trees and then aggregating them (Breiman, 2001).647

Therefore, to look at the working mechanism of the RF model, feature importance needs648

to be analyzed to understand which features affect predictand the most. Figure 9 provides649

the importance of all the features used in this study relevant for TF number density (Fig.650

9a), size (Fig. 9b), and intensity (Fig. 9c). For frequency of TFs in Fig. 9a, TCWV, pre-651

cipitation, CAPE, surface - 600 hPa, and surface - 300 hPa vertical wind shear are the652

five most important features whose relative importance sum up to be approximately 80%.653

Similarly, for TF size (Fig. 9b), TCWV, precipitation, CAPE, RH, and surface - 600 hPa654

wind shear contribute the most (approx 80%). Going back to Fig. 6 in Garg et al. (2021),655

where RapidScat-observed GF number density shows a strong correlation with TCWV and656

relating it to Fig. 9a where TCWV exhibits the strongest control on TF number density, it657

can be said that the total moisture present in the vertical column of the parent convective658

system is vital in characterizing cold pool number at the surface, as the occurrence of deep659

moist convection is shown to depend on TCWV (Schiro et al., 2016; Schiro & Neelin, 2019)660

and should have stronger downdraft mass flux. Similarly, TCWV shows the highest relative661

importance for TF size, thus suggesting the role of column moisture in providing positive662

feedback to cold pool production, which can merge to form larger cold pools at the surface.663

Precipitation has the second most important role for TF number density and size, as heavier664

precipitation should lead to more downdrafts at the surface, thus resulting in numerous and665

larger cold pools. CAPE is the third most relevant feature for both TF frequency and size,666

and as we saw in the global TF climatologies in Fig. 1-2, a higher CAPE coincides well with667

moister, numerous, and larger TFs. For the number of TFs, the next two important features668

are mid-tropospheric and upper-tropospheric wind shear. The Wind shear climatology in669

Fig. 3c-d shows that low-to-moderate wind shear is prominently observed over most deep,670

moist tropical convective regimes. This finding suggests that most of the tropical oceanic671

cold pools are formed in low-to-moderate shear environments. TF size has a similar weight672

to surface - 600 hPa wind shear as the number of TFs. Among the five most important673

features, the only difference between TF frequency and size is RH. It shows a higher weight674

than wind shear in controlling TF size, thus suggesting the importance of net available675

moisture in modulating cold pool size.676

In the case of TF intensity in Fig. 9c, CAPE has the strongest control followed by RH,677

wind gradient, LHF, and TCWV (total approx 82%). Comparing Tv anomaly in Fig. 2a678

with wind gradient (Fig. 2b), RH (Fig. 2c), LHF (Fig. 3b), and TCWV (Fig. 1d), coldest679

cold pools are observed in the areas of high CAPE, moisture, LHF, and wind gradient. Thus680

it makes sense that the RF algorithm has identified these features as the most important in681

controlling the intensity of cold pools at the surface. Physically, it suggests that when the682

environment has more moisture available, it should lead to higher CAPE as it is a function of683

temperature and moisture. These conditions should lead to the formation of deep convection684

with heavier precipitation, thus leading to colder Tv anomalies at the surface with strong685

wind gradients at their boundaries. Since LHF is essentially a function of moisture and686

wind speeds, it should be directly related to the cold pool-attributed changes. In this way,687

RF captured physically constrained environmental features important for cold pool activity688

over the global tropical oceans.689
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5.3 Validation of Trained RF Algorithm690

After the RF regression learned the relationship between the environmental parameters691

and cold pool properties, validation is carried out on an independent dataset (70-30 split) to692

obtain the R2 score and RMSE between true and predicted values, where predicted values693

are RF regression generated values of cold pool number density (or frequency), size, and694

Tv anomaly using the features in Fig. 9. Figure 10 shows the scatter plot of true versus695

predicted values of cold pool number density, size, and Tv anomaly using all the features696

in Fig. 9 and using the 5 most important features as well. Comparing the RMSE and R2
697

score between the scatter plots using all the features and the 5 most important features,698

it can be seen that Fig. 10d-f exhibits minor underperformance as compared to Fig. 10a-c.699

This suggests that although the remaining environmental features are important to produce700

accurate results, the 5 most important predictors are sufficient enough to predict the cold701

pool frequency, size, and Tv anomaly with high precision (low RMSE and high R2). Note702

that the RF algorithm performs the best in the case of TF frequency followed by intensity703

and size in both cases (Fig. 10a-c and Fig. 10d-f). This order suggests that RF regression704

learned the relationship between the environmental conditions and TF frequency and inten-705

sity better than the size. Garg et al. (2021) showed that RapidScat-observed GF size has a706

highly nonlinear relationship with GF number frequency, minimum brightness temperature707

(TB), and TCWV, as intersecting cold pools could play a significant role in defining the708

cold pool size as observed in Feng et al. (2015). On the other hand, RapidScat-observed709

GF frequency had a strong quasi-linear relationship with both minimum TB and TCWV,710

suggesting a strong control of convection type and moisture present in the environment. Ap-711

plying similar reasoning as above, TF frequency and intensity portray a strong relationship712

with the environment compared to size, which could have resulted in better performance of713

RF for these two cold pool properties.714

6 Exploring Regional Relationships between Features and Cold Pool715

Properties716

6.1 Correlation Matrix of Environment and Cold Pool Properties717

Understanding regional differences in the relationship between environmental proper-718

ties and cold pool characteristics are important to improve the physical parameterizations719

in the current weather and climate models. Even though the RF regression algorithm could720

interpret the physical relationships reasonably well across the global tropics, regional differ-721

ences in such statistics need to be analyzed to identify differences in convective processes722

within different ocean basins. Therefore, a Pearson’s correlation coefficient matrix at 95%723

significance level is presented in Fig. 11 for global tropical regions, deep tropics (as defined724

in the previous section), WPAC, EPAC, IO, and AO. Note that the white boxes in the lower725

triangular matrix signify no statistically significant relationship between the variables. Ta-726

ble 4 shows the sample size of TF grid points used to calculate these correlation values in727

each panel.728

Comparing the global tropics (Fig. 11a) with the deep tropics as defined in the previ-729

ous section (Fig. 11b), all features behave similarly with minor changes in correlation values730

between the two. However, over the Pacific Ocean, comparing WPAC (Fig. 11c) and EPAC731

(Fig. 11d), there are major differences in the correlation values. For instance, the number732

of TFs and TF size over WPAC have negative correlation values with TF precipitation733

compared to EPAC and all other regions shown in Fig. 11. Also, TF precipitation and734

TCWV negatively correlate with CAPE for WPAC, while both these variables exhibit a735

strong positive relationship for all other regions. The number of TFs and TF size also neg-736

atively correlate with RH over WPAC, while they positively correlate with RH over other737

regions. In the scatter matrix for WPAC (not shown), TF frequency and size depict a nar-738

row distribution with TF precipitation and RH, and thus although they are not necessarily739

negatively correlated, a weak negative correlation is present in Fig. 11c. Similarly, TCWV740
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and TF precipitation vary within a narrow distribution with CAPE, thus depicting a nega-741

tive correlation in Fig. 11c. EPAC (Fig. 11d), on the other hand, shows similar correlation742

values as deep (Fig. 11a) and global tropics (Fig. 11b).743

AO in Fig. 11e depicts a weakly positive correlation between Tv anomaly and TF density,744

size, precipitation, and TCWV, which is opposite to other basins and global tropics. AO745

also depicts a weak negative correlation between wind gradient and TF number density, size,746

precipitation, and TCWV. The scatter matrix for AO (not shown) suggests that Tv anomaly747

has a very narrow distribution around -2 K for these variables, which is not necessarily748

negatively correlated with the variables mentioned above. AO (Fig. 11e) also depicts a749

weak negative correlation between surface fluxes and TF size, precipitation, TCWV, and750

CAPE. The Scatter matrix further signifies that the relationship between SHF, LHF, and751

TF properties is nonlinear in nature, with most of the values concentrated in a narrow range,752

thus resulting in a weak negative correlation between these parameters.753

IO in Fig. 11f shows relatively similar values as global and deep tropics (Fig. 11a-b) with754

an exception in surface - 300 hPa wind shear showing a positive correlation with TF number755

density, size, precipitation, TCWV, and CAPE compared to the negative relationship in756

the global and deep tropics. Comparing this result with global climatology of surface -757

300 hPa wind shear in Fig. 3d, it can be seen that the Indian Ocean has relatively high758

upper tropospheric wind shear related to the TEJ, which is quite prominent during the759

South Asian monsoon regime. Therefore, it makes physical sense that most of the TFs are760

related to the relatively high upper tropospheric wind shear over IO. Hypothesized physical761

mechanisms explaining these differences are presented in the following section.762

6.2 Physical Mechanisms associated with Regional Difference in TF Prop-763

erties764

Regional differences in the relationships between TF and environmental properties were765

explored in the previous section using statistical methods. However, it is important to766

physically interpret the reasoning behind these regional differences to guide the physical767

parameterizations in the climate models. To understand the controls on cold pool properties768

over different basins, a Hovmöller diagram between longitude and time (binned by day) of769

TF number frequency anomaly (green markers) and 860 hPa meridional wind anomaly is770

shown in Fig. 12 for WPAC (Fig. 12a), EPAC (Fig. 12b), AO (Fig. 12c), and IO (Fig.771

12d). Figure 12 also depicts the time series of TF frequency for each basin on top of772

each Hovmöller diagram to identify the periodicity of TF occurrence. The anomalies are773

calculated by subtracting the mean along each longitude bin for all the time steps. Note that774

a weak MJO according to Realtime Multi-variate MJO (RMM) index was over the western775

Pacific and the Indian Ocean during the 40-day ICON simulation. Hovmöller diagram here776

can provide information about the wave activity governing the TFs in the model simulation.777

Comparing the four basins in Fig. 12, WPAC and IO show similar characteristics in778

Hovmöller diagrams and time series of TF distribution across longitude and time. Chen779

and Houze (1997) observed that the Indo-Pacific warm pool is the region of intense deep780

convection with longer lifetimes, and local-mesoscale forcing is dominant for convective781

initiation, sustenance, and longevity. Relating the observations of Chen and Houze (1997)782

with Fig. 12, it can be said that deep moist convection over the IO and WPAC is ubiquitous,783

leading to numerous cold pools at the surface, which would provide positive feedback to784

secondary convection. The time series of the number of TFs in Fig. 12 further shows785

that the number of TFs over WPAC (Fig. 12a) is relatively consistent over time with a786

minor temporal variation. IO (Fig. 12d) does exhibit an intra-seasonal variability in the787

TF frequency, which could be related to the active and break period of the boreal summer788

monsoon (Ramamurthy, 1969; Krishnan et al., 2000; Lawrence & Webster, 2002; Webster &789

Hoyos, 2004; Pattanaik et al., 2020). IO also depicts the BSISO in meridional wind anomaly790

variability consistent with the patterns associated with the BSISO in Fig. 12d represented791
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by blue patch around 08 Aug and then dark red patch around 02 Sep 2016. Even though the792

intraseasonal oscillation is visible over the IO, mesoscale controls due to longer-lived MCS793

type of systems play an important role in producing convective cold pools over the Indian794

Ocean as shown in Huang et al. (2018) and Roca and Fiolleau (2020). Fig. 12 therefore795

suggests that cold pools over the Indo-Pacific basin have a robust control through local796

mesoscale circulations with relatively less synoptic forcing.797

In the case of AO in Fig. 12c, the number of TFs exhibits a signature of tropical798

easterly waves (frequency of 3-5 days), which is one of the most common synoptic modes of799

variability over the Atlantic Ocean (e.g., Carlson, 1969; Reed et al., 1977; Avila & Pasch,800

1995; Kiladis et al., 2006; Mekonnen & Rossow, 2011). Time series in Fig. 12c further801

provides evidence of easterly waves-associated TF activity over the AO. EPAC (Fig. 12b)802

shows a similar easterly wave-related TF signature with the time series showing 8-10 days803

variability. Previous studies have attributed convection over the eastern tropical Pacific to804

easterly wave structures (Riehl, 1954; Yanai et al., 1968; Burpee, 1972; Molinari et al., 1997;805

D. D. Raymond et al., 1998; Zehnder et al., 1999; Molinari et al., 2000; Gu & Zhang, 2002;806

Serra & Houze Jr, 2002) during the boreal summer. Thus, it can be said that EPAC and807

AO TFs are primarily controlled through the synoptic easterly wave circulation compared808

to WPAC and IO, where mesoscale circulations play a crucial role in the convective system809

initiation and sustenance during the model simulation period.810

7 Summary and Conclusions811

Although cold pools and their associated characteristics have been analyzed in the812

past using a range of observational and modeling frameworks, a holistic global tropical813

oceanic cold pool analysis comparing global SRM and observations was yet to be carried814

out. With this motivation, this study used Tv anomaly to identify TFs in the ICON model815

for a 40-day simulation and identified approximately 16.5 million cold pools. The global816

simulated climatology of TF-attributed environmental properties (e.g., number density, size,817

precipitation, CAPE, wind shear, TCWV, etc.) was created and analyzed to examine818

the relationship between tropical oceanic cold pool activity and their environments. TF819

frequency matched well with ASCAT- (Garg et al., 2020) and RapidScat-observed (Garg820

et al., 2021) cold pool frequency climatologies. A comparative analysis between 12-year821

ASCAT and 2-year RapidScat GF climatology with ICON TF climatology shows that Indo-822

Pacific and western Atlantic identified more TFs than GFs due to enhanced mesoscale823

activity in the model during the boreal summer. Comparison of size and precipitation824

percentiles between ICON, ASCAT, and RapidScat further shows that model-simulated825

cold pools had similar inter-basin variability as the observed climatology but with different826

ranges of size and precipitation.827

The diurnal cycle of ICON-simulated TF frequency was compared against RapidScat-828

observed GF frequency. It was found that the ICON was able to simulate the early morn-829

ing/late night peak in TFs but missed the afternoon maxima in cold pool activity as observed830

in the RapidScat-associated GF climatology in Garg et al. (2021). These results are summa-831

rized through an illustration in Fig. 13; the top panel shows the characteristics of ICON-cold832

pool and IMERG-precipitation diurnal cycle, while the bottom panel depicts the RapidScat-833

observed GF diurnal cycle. The observed cold pool diurnal cycle in RapidScat (Fig. 13b)834

suggests that the observed shallow congestus convection produces cold pools of mesoscale di-835

mension. New convection triggering and surface-atmosphere exchanges in the vicinity of cold836

pools may provide the necessary ingredients for upscale growth into the evening, growing837

into mesoscale-organized deep convection overnight (e.g., MCSs). These MCSs further in-838

tensify cold pool number and cold pool areal coverage, likely enhancing surface-atmosphere839

moisture and energy exchanges. On the other hand, ICON (Fig. 13a) depicts MCS-type840

convection overnight similar to RapidScat (Fig. 13b) but it lacks congestus-type convection,841

which has implications for how the model represents both cloud-radiative interactions as842

well as surface-atmosphere exchanges in the afternoon prior to the evening oceanic upscale843
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growth period. This study also finds that despite observations of congestus clouds in infrared844

and GF observations, IMERG precipitation retrievals also lack an afternoon precipitation845

peak associated with mid-level convection.846

Systematic biases exist in the representation of cloud types critical for vertical trans-847

ports and latent heating, radiative forcing, and the organization of convection within the848

tropical diurnal radiative cycle. Therefore, it is an important topic of future work which849

should aim to better gauge how radiation, boundary layer, and microphysics schemes in850

storm resolving models such as the ICON model are working together to represent key as-851

pects of the diurnal cycle, including the shallow-to-deep convective transition and convective852

organization, and their effects on the tropical water cycle and energy budgets. It is expected853

that global SRMs may lack the spatial resolution to produce congestus convection at kilo-854

meter scales (e.g., Varble et al., 2014), however significant and insidious biases in weather855

and climate models resulting from misrepresenting the key processes involved in congestus856

type convection should be further investigated.857

Once it was established that ICON could represent nocturnal mesoscale convective858

cold pools well, a random forest regression algorithm was applied to environmental features859

(CAPE, mid-and upper tropospheric wind shear, TCWV, RH, wind gradient, precipitation,860

SHF, and LHF) to identify their relationship with TF frequency, size, and intensity. RF was861

trained on 0.5o gridded composited TF dataset integrated over the entire simulation and862

was validated against an independent subset of the data. RF performed well in predicting863

TF frequency, size, and intensity using the five most important features in each case and864

thus provided valuable information about environmental controls on TF properties over865

the deep tropical oceans with TCWV, precipitation, wind shear, and CAPE proving to be866

the most important environmental properties relevant for cold pool activity over the deep867

tropics. Pearson’s correlation coefficients were calculated at a 95% significance level between868

all environmental features mentioned above, and TF properties for WPAC, EPAC, IO, and869

AO basins were compared with the global and deep tropics. Regional differences in TF870

relationships were analyzed, and physical explanations were provided using the Hovmöller871

diagram (time versus longitude) of the number of TFs overlayed with 860 hPa meridional872

wind anomalies. In addition, the time series of TF frequency was calculated for each basin873

and compared with each other to identify the periodicity of TF frequency during the entire874

simulation. It was observed that WPAC and IO have a strong control through mesoscale875

circulations formed locally in addition to synoptic forcing from boreal summer monsoon876

and BSISO. On the other hand, EPAC and AO TF activity is primarily controlled through877

synoptic forcing from tropical easterly wave structures. These findings match well with878

the previous studies carried out over these basins using a range of observational and model879

frameworks. However, a more robust analysis (e.g., analyzing the relationship of downdraft880

mass flux with the convective environment and the role of microphysics in controlling cold881

pool activity at the surface) is required to understand further the relationship between882

cold pools and their parent environment to improve the representation of convection in883

the models. Overall, this study provided a holistic comparison between observations and884

GSRMs, which are hypothesized to be a bridge between observations and climate models,885

to identify the biases in GSRMs to improve the further representation of convection and886

precipitation in global weather and climate models.887
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Process Scheme

Turbulent mixing in the boundary layer Turbulent Kinetic Energy (TKE; Raschendorfer, 2001)

Cloud microphysics Bulk microphysics scheme predicting cloud water, rainwater, cloud ice, snow, and graupel (Baldauf et al., 2011)

Surface Interactive surface flux and soil model (Schrodin & Heise, 2001)

Radiative Transfer Rapid Radiative Transfer Model (RRTM; Mlawer et al., 1997, 1998)

Diagnostic Fractional Cloud Cover Box Probability Distribution Function

Table 1: Summary of parameterization schemes used in ICON model simulation from DYA-
MOND protocol (Hohenegger et al., 2020)
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Region Minimum Latitude Minimum Longitude Maximum Latitude Maximum Longitude

West Pacific (WPAC) -10.5 142.5 15.5 182.5

East Pacific (EPAC) -10.5 192.5 15.5 252.5

Atlantic (AO) -21.5 319.5 23.5 360.0

Indian (IO) -14.5 52.5 17.5 92.5

Table 2: Minimum and Maximum Latitude (Degree) and Longitude (Degree) for each region
box

Hyperparameter N estimators Min samples split Min samples leaf Max features Max depth Bootstrap

Value 400 2 1 3 80 False

Table 3: Hyperparameter configuration used to train RF algorithm

.

Region Global Tropics Deep Tropics WPAC EPAC AO IO

Number of TF gridpoints 49021 29450 3551 4679 4373 4549

Table 4: Number of TF grid points in each region used to calculate Pearson’s correlation
values.
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Figure 1: ICON-simulated (a) TF frequency, (b) TF size (km2), (c) TF-attributed pre-
cipitation (mm hr-1), (d) TF-attributed TCWV (kg m-2) with WPAC, EPAC, AO, and IO
boxes overlaid.
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Figure 2: ICON-simulated mean (a) Tv anomaly (K), (b) TF wind gradient (s-1), (c)
TF-attributed RH (%), (d) TF-attributed CAPE (J kg-1)
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Figure 3: ICON-simulated mean (a) SHF (Wm-2), (b) LHF (Wm-2), (c) 0-600 hPa vertical
wind shear (ms-1), (d) 0-300 hPa vertical wind shear (ms-1)
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Figure 4: Percentage difference between (a) ASCAT GF (2007-2018) (b) RapidScat GF
(2014-2016) and ICON TF (40-day) relative frequency Variation from Maximum for 01 Aug
- 10 Sep 2016.
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Figure 5: Relative frequency (basin/total) of ICON TFs with RapidScat and ASCAT GFs.
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(c) RapidScat and ICON
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Figure 6: 5th to 99th Percentiles of ICON TF size(a)-(b) and precipitation (c)-(d) with
(a),(c) RapidScat and (b),(d) ASCAT. The increment is 5% from 5th to 95th and 4% from
95th to 99th percentiles.
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Figure 7: Diurnal cycle of ICON TF (solid blue), RapidScat GF (solid red) frequency, and
IMERG precipitation (mm day-1; dotted purple) for (a) WPAC, (b) EPAC, (c) AO, (d) IO,
and (e) global tropical oceanic average.
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Figure 8: ICON-simulated diurnal cycle of (a) TF size (km2), (b) Tv anomaly (K), (c)
Wind gradient (s-1), (d) SHF (Wm-2), (e) LHF (Wm-2), (f) TF precipitation (mm hr-1), (g)
CAPE (J kg-1), (h) Surface - 600 hPa wind shear (ms-1), (i) Surface - 300 hPa wind shear
(ms-1), (j) TCWV (kg m-2), (k) RH (g kg-1)
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Figure 9: Relative feature importance for (a) TF frequency, (b) TF size (km2), (c) TF
intensity (Tv anomaly; K) obtained from RF algorithm.
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Figure 10: True (x-axis) versus predicted (y-axis) values using all the features (a)-(c) and
the 5 most important features (d)-(f) for TF number frequency, size, and intensity. R2

scores and RMSE are shown at the top left corner of each plot.
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Figure 11: Pearson’s correlation matrix for (a) global tropics, (b) deep tropics, (c) WPAC,
(d) EPAC, (e) AO, and (f) IO. White boxes signify no statistically significant correlation.
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Figure 12: Time series of TF frequency and Hovmöller diagram between time and longitude
showing TF number frequency anomaly (green markers) with 860 hPa meridional wind
anomaly and time series of TF frequency for (a) WPAC, (b) EPAC, (c) AO, and (d) IO.
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(a) ICON and IMERG

(b) RapidScat

Figure 13: Illustration depicting differences between RapidScat, ICON, and IMERG cold
pool-convection properties
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