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Key Points

• We tested the predictability of fire occurrence for the 2019-20 Australian
wildfires.

• Logistic regression models captured the wildfire dynamics with a high
accuracy.

• Evaporative stress index and water use efficiency were the most significant
predictors.

Abstract

In 2019–20 Australia was devastated by the worst wildfires observed in decades.
NASA’s ECOsystem Space-borne Thermal Radiometer Experiment on Space
Station (ECOSTRESS) mission, launched in 2018, captured many dynamics
of the fires at high resolution, including ecosystem stress prior to the fires. We
aimed to determine the predictive capacity of ECOSTRESS observations for fire
occurrence and intensity in Southeast Australia. We found that ECOSTRESS
data (evaporative stress index and water use efficiency) were highly predictive
of fire dynamics (25-65% occurrence prediction accuracy for ESI; and, 40-95%
occurrence prediction for WUE > 1 gCkg-1H2O alone, depending on their lev-
els) with the ESI coefficient averaging approximately three times stronger than
general topographic variables or meteorological variables. Our results, based on
a logistic regression model, had an overall predictive accuracy of 83%, suggest-
ing high potential of using ECOSTRESS data to project and examine fires in
Australia and other similar regions of the world.

Plain Language Summary

Wildfires have been on the increase all over the world in recent times. In partic-
ular, Australia’s catastrophic wildfire event that occurred in 2019-2020 was one
of the worst seen in this modern era. NASA’s ECOSTRESS, launched in 2018,
captures the variations in temperature of plants. It addresses how water avail-
ability affects the vegetation, drought estimation, and agricultural vulnerability.
Using this high resolution ECOSTRESS data, we have found that the drought
condition of south-eastern Australia is one of the main reasons behind the wild-
fire spreading during the 2019-20 season. This suggests that the ECOSTRESS
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data could potentially be used to examine and predict fire occurrence across
different regions of the world.
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1. Introduction

Wildfires have been increasing in severity and intensity worldwide (Doerr et al.,
2016). This has led to aggravating social, ecological and economic consequences
in many communities (Alexander et al., 2020). Among the common sources of
wildfires is human activity and natural causes such as lightning strikes (Lewis et
al., 2015). Recent studies show that climate change is also making our environ-
ment increasingly vulnerable to devastating wildfires (Lim et al., 2019; Halofsky
et al., 2020). These studies have indicated that climate change-induced envi-
ronmental changes such as an increase in temperature, land cover change and
precipitation variability are highly likely to alter the frequency and intensity of
wildfires. Furthermore, an increase in the amount of greenhouse gases and other
aerosols from wildfire emissions and changes in the surface reflectance produced
by fires contribute to ongoing climate change which is expected to increase sub-
stantially in the future (Brown et al., 2018). This makes the development of
reliable susceptibility models of wildfire danger necessary for assurance of public
safety, natural resource management, and planning of risk management. The
models could help identify areas with higher fire risk, that even with limited
resources, authorities could choose to focus on monitoring specific areas (Whit-
burn et al., 2016).

Variables to be considered in the prediction of wildfires vary by region because of
different influencing factors. These variables can be categorized into topography,
vegetation, climate, and human activities (Ganteaume et al., 2013; Nami et al.,
2018; Parisien et al., 2012). Topographic effects on wildfire (e.g., slope, aspect,
and elevation) are primarily indirect (Jaafari et al., 2017, Parisien et al., 2012) by
influencing the type of vegetation, local climate, and human accessibility (Jaafari
et al., 2017; Nami et al., 2018). Climate variables (rainfall and temperature)
exert direct and indirect influences on wildfire events (Jaafari et al., 2017; Nami
et al., 2018; Parisien et al., 2012). Vegetation (land cover), on the other hand,
affects wildfire and fire spread through fuel characteristics such as vegetation
type, water availability and evapotranspiration, affecting the moisture in the
plants and fuel load (Nami et al., 2018). As suggested by Lim et al., (2019), the
inclusion of climate change is critical in wildfire prediction variables.

The robustness and sensitivity of models rely heavily on available data. His-
torically, wildfires have been collected mainly by post-fire field surveys, which
are time-consuming and often lack ignition points (Lim et al., 2019). How-
ever, with the introduction of remote sensing methods and satellite monitoring
systems, spatially comprehensive datasets are available on demand. This has
helped researchers in quantifying climate, topographical and human factors to-
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wards the contribution of wildfires around the world. Fire data products, such
as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are cur-
rently freely available online, enabling access to timely information worldwide
(Wulder et al., 2012).

In June 2018, NASA launched ECOSTRESS primarily to address how water
availability affects key climate biomes around the world, drought estimation,
and agricultural vulnerability (Fisher et al 2020). The instrument measures
thermal infrared radiance at 5 spectral bands in the 8-12.5 �m range, with
approximately 70 by 70 meters spatial resolution on the ground. Data from
ECOSTRESS show how ecosystems change with climate and create a crucial
link between the water cycle and plant health, both natural and human inflicted.
The products derived from ECOSTRESS data utilized in this study include four
core products: L4_ESI_PT-JPL; L4_WUE; L2_LSTE, and L3_ET_PT-JPL.
ESI is evaporative stress index, WUE is water use efficiency, LST is land surface
temperature, and ET is evapotranspiration. L3 products are derived from L2
data, and L4 products are derived from L3 data.

In the bid to predict wildfire events, fire weather indices (FWI) were amongst
the first probability mapping trials developed by scientists. It was commonly
used to define an area’s seasonal and long-time forest fire hazard. FWI are pro-
duced from environmental factors such as weather data (dry bulb temperature,
humidity and wind speed, etc.) to calculate fire danger rating and fuel mois-
ture content (McArthur 1966; Fosberg 1978; Srock et al., 2018). This led to
the development of spatial prediction of wildfire susceptibility using Geographic
Information Systems (GIS) and Remote Sensing (RS), implemented in differ-
ent approaches, such as fuzzy logic and the analytical network process (ANP)
(Tonini et al., 2020). However, the use of conventional parametric statistical
modeling techniques, such as fuzzy logic, by the weighting of inputs may be
problematic because of subjective ranking (Satir et al., 2016).

An alternative approach is to learn the complex nonlinear relationships associ-
ated with fire directly from observational and numerical modeling of data. This
can be done using machine learning (ML) algorithms (Bui et al., 2018). ML algo-
rithms use statistics to find patterns in massive amounts of data. Recently, ML
algorithms such as Neural Network, Support Vector Machine, Random Forest
(RF) and Logistic Regression (LR) classifiers have achieved reasonably reliable
results in various natural hazard susceptibility mapping studies (Satir et al.,
2016).

This study aimed to: (1) establish a geospatial database, including MODIS
MCD64A1 fire product, digital elevation model (DEM), slope, aspect,
ECOSTRESS data (i.e., evapotranspiration (ET), evaporative stress index
(ESI), land surface temperature (LST), water use efficiency (WUE)), NDVI gen-
erated from Sentinel-2 data, and rainfall data; (2) quantify wildfire probability
using geographically weighted regression (GWR), logistic regression (LR), and
random forest (RF) algorithms; (3) determine the importance of explanatory
variables; (4) assess model performance; and, (5) assess vulnerability of major
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cities.

2. Study Area

Our study focuses on the south-eastern region of Australia (Figure 1a). The cli-
mate over the region is temperate with December and January being the hottest
months (Geoscience Australia, 2020). In recent years the south-eastern part has
been experiencing lots of sporadic wildfires. However, the 2019-2020 bushfire
season was unprecedented in intensity and devastation, hence it is widely known
as ‘Black Summer’. Throughout the summer, multiple fires scorched large
tracts of land in Victoria and New South Wales of Australia, resulting in 34
fatalities and huge losses of land and wildlife (Bushfires in Victoria - Research
Guides, 2020). Fires were ignited in September 2019 and were contained by
early March 2020. The state of New South Wales had the highest number of
homes lost (2,439) followed by Victoria (396). The Black Summer was the worst
bushfire season on the state of Victoria’s record. New South Wales also experi-
enced the longest continuous burning in the history of Australia’s bushfire. It
consumed more than 4 million hectares.

The most predominant land cover type in Southeast Australia is hummock grass-
lands (23%) and eucalypt woodlands (Geoscience Australia, 2020). In general,
Australia is known to be the lowest elevation continent in the world, with an
elevation averaging 330 meters. The highest points on the other continents are
all more than twice the height of Australia’s highest peak, Mount Kosciuszko,
which is 2,228 meters above sea level.

3. Datasets and Modeling

3.1 Data Acquisition & Processing

Fire occurrences between the period of September 2019 and March 2020 were col-
lected from the MODIS MCD64A1 product as a polygon shapefile and mapped.
Rainfall data were obtained in the form of a CSV file for all seven months from
the Bureau of Meteorology, Australia and all CSV files were then combined into
a single file using a python script. A point feature class was created and con-
verted into a raster using the Inverse Distance Weighting (IDW) interpolation
tool. The National 9 second (~250 m) DEM of Australia was downloaded from
Geoscience Australia and their derivatives (slope and aspect) were created by
running the Slope and Aspect tools in ArcGIS Pro 2.5 respectively. Sentinel-2
L2A (16 bit) data was downloaded from the Sentinel Hub EO browser at a
resolution of 10 m and NDVI was mapped using band 4 and 8. All variable
raster images were clipped to extract the study area. ECOSTRESS data prod-
ucts, including evapotranspiration (ET), evaporative stress index (ESI), Land
Surface Temperature (LST), and Water Use Efficiency (WUE), acquired from
NASA LPDAAC AppEARS, were used to model wildfire dynamics. A mosaic
dataset in a raster format was created for each variable over the seven-month
period (September 2019 - March 2020).

3.2 Building a Dataset
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Our approach was designed to set up a three-week time lag for data collection
prior to a wildfire event in the 4th week and predict wildfire probability in the
following week (5th week). We computed mean values of the select data in three
weeks to minimize or eliminate gaps. The Australian bushfire started to spread
in the first week of September 2019 and faded early April 2020. The fires ceased
at the end of October 2019 in south eastern Australia and reignited in late
November 2019. To understand the impact of change in climate condition of
the country after the first fire and to effectively assess the fire influencing factor,
we built models for the first week of September (the week wildfire started), last
week of November, and the first week of December (the weeks when the second
fire started). In addition, we also built a general model for the entire wildfire
period. The datasets were built accordingly for each model.

3.3 Modeling Fire Dynamics Using Machine Learning Approach

Machine Learning is based on algorithms capable of learning from and making
predictions on data, through the modeling of the hidden relationships between a
set of input and output variables, representing the predisposing factors (explana-
tory variables) and the occurrences of the phenomenon (dependent variable)
(Tonini et al., 2020). Here, the main approach to modeling fire dynamics was
Logistic Regression (LR). Additionally, we evaluated Random Forests Classi-
fier (RF) and Geographically Weighted Regression (GWR) algorithms to create
models that fit relationships between wildfire events and the explanatory vari-
ables. Refer to supplementary information for more details about the RF and
GWR methods and results. The fit relationships from these models were then
used in the susceptibility mapping and assessment of variable influence.

Logistic Regression is a machine learning method that defines a set of inde-
pendent input variables to estimate the occurrence probability value of predic-
tor variables that are dependent upon the independent variable. (Hosmer and
Lemeshow, 2000). The input dataset provided to the logistic regression func-
tion acts as explanatory variables to predict the probability of wildfire locations
within the study area. The equation used is:

P= 1/1+exp (-b0+ b1V1+b2v2+…..bnVn)

where P is probability value, b is the coefficient of each explanatory variable,
and V is explanatory variable.

3.4 Performance Assessment Procedure

Overall accuracy, sensitivity and specificity are calculated by creating a confu-
sion matrix to assess the performance of the model results. A confusion matrix is
a performance measurement for machine learning classification problems where
output can be two or more classes. It is a table with four different combina-
tions of predicted and actual values: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN). True Positive is defined as it is
vulnerable to fire, True Negative as it is not vulnerable to fire, False Positive
as vulnerable to fire but it is not vulnerable to fire, and False Negative as not

5



vulnerable to fire but it is vulnerable to fire. Accuracy is calculated using the
formula:

(TP + TN)/ Total * 100

Further, predictive performance is determined by calculating the sensitivity,
specificity, positive predictive ability, and negative predictive ability of the
model.

4. Results

The main results of this study are presented as: (1) susceptibility mapping,
which includes probability of fire occurrences values produced by logistic regres-
sion; (2) identifying the cause of the fire spread by understanding the importance
of explanatory variables; (3) assessing the model performance to evaluate stabil-
ity and consistency; and, (4) assessing the cities that might be at risk of wildfire
spread.
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4.1 Susceptibility Mapping

Figure 1a-c. Wildfire Susceptibility mapping for southeastern Australia: a)
Ground fire points 2019-2020 from MODIS; b) Wildfire probability maps based
on logistic regression from a suite of explanatory variables; c) Zoom-in example
at 70 m x 70 m resolution. The maps have a probability scale of 0-1. Areas at
probability value 0 are not vulnerable to fire whereas areas at probability value
1 are most vulnerable.

Figure 1a shows the ground fire points of Australian bushfire 2019-2020 ex-
tracted from MODIS. For susceptibility mapping, the probability for each pixel
to burn within 3 weeks under the consideration of a set of explanatory variables
was given as an output from three models (RF and GWR susceptibility maps are
presented in Supplementary information, Figure S1 and S2). These values were
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used to map the wildfire susceptibility in the fire season. Susceptibility maps
of 70 m resolution for all three models were produced. The logistic regression
susceptibility map is shown below in Figure 1b. We find that the probability
of wildfire occurrence is towards the coastal area as experienced in the 2020
wildfire event, showing the more susceptible areas. Figure 1c shows the zoomed
in map of the Alpine national park region where the fire was very high during
the season.

4.2 Importance of Explanatory Variables

The importance of explanatory variables was ranked using correlation coeffi-
cients produced from the models. General models with data from the period of
September to March 2020 were created along with monthly models (September,
November and December) for deeper understanding. The logistic regression
models show evaporative stress index, NDVI, rainfall and water use efficiency
as the top-ranking variables in the models.

Table 1. Correlation coefficients, standard deviation and probability values of
the explanatory variables from the logistic regression model (General, Septem-
ber, November and December); * represents statistically significant.

It is informative to note that the ECOSTRESS data, particularly evaporative
stress index (ESI) and water use efficiency (WUE), are found to be top-ranking,
having more weight than the rest of the variables (Table 1). In the general lo-
gistic regression model, the ESI coefficient averages approximately three times
more than the rest of the variables. This makes it evident that south-eastern
Australia was likely in drought condition during the wildfire season, i.e., vege-
tation is stressed due to lack of water which is indicated by the ESI variable.
Water use efficiency (the ratio of carbon uptake to water use) with an average
of 1.88 g C kg-1 H2O over the study area during fire season was significantly
correlated to wildfire with a correlation coefficient of 0.66. The low value of
evapotranspiration caused WUE to increase during this period.

8



9



Figure 2a-c. The influence of main predictor variables for fire occurrence: a)
evaporative stress index; b) water use efficiency; and, c) NDVI.

NDVI is a measure of greenness, which, in the model, acts as a ‘switch’ that
indicates if the region is vegetated or not. Even though NDVI has been identified
as one of the top four variables, we do not consider it as an insightful predictor—
rather we consider it a conditional dictator (i.e., one cannot have fire if there
is no vegetation). From NDVI, 77% of fires occurred in highly vegetated areas
(NDVI > 0.5). 95% of the vegetation burned during wildfire has water use
efficiency values greater than 2 g C kg-1 H2O (Figure 2).

It is also noted that rainfall might not have played a major role in the fire
occurrence. Although precipitation was a dominant factor in all three models,
it was not statistically significant. For November and December, despite high
rainfall in a given region, the predicted wildfire probability was also high. As for
the month of September, regions that had high rainfall did not have wildfires.
But since it was the starting week of the wildfire, rainfall would not have played
any role in the wildfire spread. So, rainfall deficiency might not be the sole
cause of the wildfire spread.

4.3 Performance Assessment

In the wildfire susceptibility modeling accuracy assessment, pixels were classi-
fied as fire and non-fire using a threshold probability value of 0.5 (any pixel with
a value above 0.5 is considered a fire pixel and vice versa). In order to evaluate
the performance of logistic regression models, the accuracy assessment was per-
formed by creating a confusion matrix. The effectiveness of the LR model was
specified by evaluating the sensitivity and specificity of the model.

To assess the performance of the models, true positive, true negative, false posi-
tive and false negative metrics are used to compute the confusion matrix, which
is subsequently used to determine the other evaluation metrics, i.e., sensitivity,
specificity, accuracy, positive predictive ability, and negative predictive ability.
The overall general model obtained an accuracy of 83%, sensitivity was 81%,
specificity was 84%, positive predictive ability was 83%, and negative predictive
ability was 83%. The monthly models – September, November, and December
–produced an accuracy of 83%, 85%, and 88% respectively.

The performance results demonstrate the effectiveness of the LR models. Even
though two of the time-specific models generate a slightly higher accuracy, the
general model can be used effectively to predict wildfire probability for any other
areas elsewhere if time is not an issue or important factor. Since the general
model uses far more data over the entire wildfire period, it can be expected to
be more consistent, robust, or reliable.

4.4 Assessing the Susceptibility of Cities

The south-eastern cities that fall on wildfire-affected areas were also mapped
based on the spread of fire pixels. A 5 km buffer for each city was created
and the mean predicted fire probability value of each pixel covering the buffer
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was derived. Figure 3 shows the cities susceptible to wildfire. The Gipps land
region (Alpine and East Gippsland) in Victoria State, mid north coast and Coffs
Harbor regions (Blue mountains, Oberon and Lithgow) in New South Wales are
predicted as highly susceptible areas followed by greater Sydney and Melbourne
areas. This information can be used to help policy makers, fire managers, forest
rangers, and city planners to assess, manage, prepare, and mitigate wildfires in
connection to fire susceptibility of nearby cities.

Figure 3. Map showing the ranking of wildfire susceptibility in different dis-
tricts of the study area. Maroon represents regions more vulnerable to wildfire
while yellow represents regions less vulnerable to wildfire.

5. Discussion

In this study, fire points were used as a dependent variable whereas various
biophysical factors like slope, elevation, aspect, rainfall, NDVI, ECOSTRESS
data including evapotranspiration, evaporative stress index, water use efficiency
and land surface temperature (Fisher et al., 2020) were selected to determine
the wildfire dynamics over southeastern Australia from September 2019 - March
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2020 (Ganteaume et al., 2013; Nami et al., 2018; Parisien et al., 2012). NASA’s
ECOSTRESS was used to primarily address how water availability affects the
key climate biomes around the world; this research quantifies the impact that
drought has on wildfire.

Climate change is a major factor in the increase of wildfire events (Lim et al.
2019). There are few studies which show that the change in temperature and
land cover are likely to be the cause of wildfire spread (Lim et al., 2019; Halofsky
et al., 2020). However, our data showed that the land surface temperature of
south-eastern Australia during the wildfire season did not have much increase
compared to the pre-fire season. It is also shown by our results that the land
surface temperature was not statistically significant. Additionally, from our
results, the evaporative stress index, which is a drought indicator, is seen as the
most contributing factor, followed by water use efficiency, NDVI, and rainfall.

We employed three different methods to predict wildfire occurrences: logistic
regression, geographically weighted regression and random forest models. 70 m
resolution wildfire susceptibility maps are generated using all three models and
they are found to be useful in visualizing the intensity of fire during the wildfire
season. With a high resolution, it helps the firefighters, other authorities or
even the general public to locate the affected areas more accurately.

The model evaluation process revealed that the Random Forest model had an ac-
curacy of 91%, Geographically Weighted Regression model accuracy 85% while
Logistic Regression models had 83% accuracy. However, we adhered to the lo-
gistic regression model in this paper. Although we find that the performance
of the three models implemented in this research is operational, the Logistic
regression model is considered the most effective as it shows consistent results
across all months. The Random forest model involves a lot of over-fitting (Liaw
and Wiener, 2002) and the results are relatively inconsistent. Though the Geo-
graphically weighted regression model has shown a good performance and higher
accuracy, it is questionable for predicting fire at a global level or examining the
strength of predictor variables because GWR generates a local regression model
at each point (pixel) based on locally associated similar or more homogeneous
pixels around each pixel, their R2 values are generally higher than one regres-
sion model for the entire image (Fotheringham et al., 2002; Oliveira et al., 2012).
Since they all are local models, their predictions are generally more accurate at
each point leading to higher overall accuracy. Unlike logistic regression mod-
els, it does not represent the relation between the dependent and explanatory
variables globally.

We also developed monthly models to understand how change in climate condi-
tions affect wildfire spread. It is found that, for the month of December, the
evaporative stress index coefficient is nearly three times more than the Septem-
ber month. That shows plants had become even more stressed during the second
fire (month of November and December). This makes ECOSTRESS data a valu-
able factor in the analysis of wildfire prediction now and in the future.
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6. Conclusion

Our research developed an effective model to predict wildfires in other time peri-
ods or other similar areas in the world. We conclude that the logistic regression
model using ECOSTRESS data can be employed effectively to predict wildfire
probability for the 2019-2020 Australian fires. This can be achieved without
prior knowledge of geospatial processing and machine learning algorithms. The
analytical procedures, data, regression models, and susceptibility mapping ap-
proach for cities can help policy makers, fire managers, and city planners to
assess, manage, prepare, and mitigate wildfires in the future.
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