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Abstract16

Hydrologic variability poses an important source of financial risk for hydropower-reliant17

electric utilities, particularly in snow-dominated regions. Drought-related reductions in18

hydropower production can lead to decreased electricity sales or increased procurement19

costs to meet firm contractual obligations. This research contributes a methodology for20

characterizing the tradeoffs between cash flows and debt burden for alternative finan-21

cial risk management portfolios, and applies it to a hydropower producer in the Sierra22

Nevada mountains (San Francisco Public Utilities Commission). A newly designed fi-23

nancial contract, based on a snow water equivalent depth (SWE) index, provides pay-24

outs to hydropower producers in dry years in return for the producers making payments25

in wet years. This contract, called a capped contract for differences (CFD), is found to26

significantly reduce cash flow volatility and is considered within a broader risk manage-27

ment portfolio that also includes reserve funds and debt issuance. Our results show that28

solutions relying primarily on a reserve fund can manage risk at low cost, but may re-29

quire a utility to take on significant debt during severe droughts. More risk-averse util-30

ities with less access to debt should combine a reserve fund with the proposed CFD in-31

strument in order to better manage the financial losses associated with extreme droughts.32

Our results show that the optimal risk management strategies and resulting outcomes33

are strongly influenced by the utility’s fixed cost burden and by CFD pricing, while in-34

terest rates are found to be less important. These results are broadly transferable to hy-35

dropower systems in snow-dominated regions facing significant revenue volatility.36

1 Keywords37

Hydropower, snow, drought, financial risk, decision support, uncertainty38

2 Introduction39

Hydrologic variability can significantly impact the financial stability of hydropower-40

producing electric utilities. During dry periods, independent hydropower producers sell-41

ing into the wholesale market can suffer reduced revenues, while retail load-serving en-42

tities with firm obligations can see increased costs as they are forced to replace hydropower43

with more expensive thermal generation. This type of financial variability presents prob-44

lems for many types of activity. Most firms take financial risk management actions to45

reduce volatility, which can be explained by their concerns over a number of factors: re-46
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duction of credit risk and cost of capital, reduction of the impact and likelihood of se-47

rious financial distress, and self-interest of risk-averse management (Bank & Wiesner,48

2010; G. W. Brown & Toft, 2002; Froot, Scharfstein, & Stein, 1993). These issues may49

be even more pressing for public and regulated utilities, which are relatively constrained50

with respect to pricing and management options available during times of stress such as51

drought. Because their revenues are roughly proportional to electricity sales, while their52

costs (debt service, operations and maintenance, etc.) are largely fixed, hydropower-reliant53

power utilities are especially vulnerable to financial distress during drought. Credit rat-54

ings agencies such as Moody’s Investors Service have cited drought conditions as a sig-55

nificant risk factor for power utilities with significant hydropower generating assets (Moody’s56

Investors Service, 2019), and warn that such utilities should “ensure that power supply57

and financial margins can withstand low water periods; plan for replacement power and58

[financial] liquidity” (Moody’s Investors Service, 2011).59

In general, management of hydrologic financial risks can take the form of physi-60

cal actions such as supply capacity expansion, water use reduction/recycling, or tempo-61

rary water purchases, as well as financial actions such as self-insurance through a reserve62

fund, debt issuance, or financial hedging (Larson, Freedman, Passinsky, Grubb, & Adri-63

aens, 2012). When evaluating the effectiveness of any given tool for reducing financial64

risk, it is important to consider its place within a larger risk management strategy. Like65

most businesses, a power utility will maintain a reserve fund in order to self-insure against66

some level of unexpected losses. The utility can deposit into this fund when revenues ex-67

ceed costs (most likely in wet years for hydropower-reliant utilities), and withdraw from68

the fund when revenues are insufficient to cover expenditures (most likely in dry years).69

Additionally, they have the ability to issue debt (i.e., borrow money) to take up the slack70

when the reserve fund balance is insufficient to meet a cash flow deficit. Debt can take71

a variety of forms, but one common form is the issuance of debt in the commercial pa-72

per markets. Commercial paper is a type of short-term debt instrument, typically ma-73

turing in less than a year, which allows corporations to borrow money in order to cover74

short-term financial obligations such as accounts payable and payroll. A utility may use75

a Letter of Credit agreement, which allows it to issue commercial paper that is backed76

by a bank. This can assuage the credit concerns of lenders and lower the effective inter-77

est rate, even after paying a fee to the bank.78
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In addition to self-insurance and debt issuance, a utility can hedge in order to shift79

financial risk to another party more willing to hold that risk. Environmental index con-80

tracts, also known as weather derivatives, use environmental metrics (e.g., cumulative81

precipitation or temperature) to define contracts that provide payouts based on a pre-82

defined index measured at a specific time and place. For example, natural gas suppli-83

ers commonly purchase “temperature derivatives,” which define payouts based on sea-84

sonal temperature indexes called heating and cooling degree days (Ellithorpe & Putnam,85

2000; Jewson, Brix, & Ziehmann, 2005). In the event of an unusually warm winter (as86

measured by deviations from a heating degree day index benchmark), when demand for87

heating is below expectations and natural gas sales tend to lag, the contract would pro-88

vide a payout that would reduce the impact of low revenues. Index contracts based on89

both precipitation and temperature have been studied extensively for hedging crop yield90

risk (Cyr & Kusy, 2007; Vedenov & Barnett, 2004; Woodward & Garćıa, 2008), and have91

also been applied in practice (Alderman & Haque, 2007; United States Department of92

Agriculture Risk Management Agency, 2017). Index contracts based on water level have93

been proposed for protection against shipping disruptions in the Great Lakes (Meyer,94

Characklis, Brown, & Moody, 2016), and metrics based on cumulative streamflow (C. Brown95

& Carriquiry, 2007; Zeff & Characklis, 2013) and the Palmer Hydrologic Drought Index96

(Baum, Characklis, & Serre, 2018) have been proposed for hedging hydrologic risk ex-97

perienced by urban water utilities.98

Hydrologic financial risk is present at all life stages of a hydropower plant, from99

financing to construction to operation (Blomfield & Plummer, 2014), but this work fo-100

cuses on hydrologic financial risks to currently operating hydropower systems. A power101

utility reliant on hydropower faces two major types of financial risks: price risk associ-102

ated with the value of power sold and/or purchased, and quantity risk associated with103

the quantity of power demanded by customers and the quantity of power produced. In104

deregulated electricity markets (e.g., California), the former can be hedged using options,105

forwards or futures contracts on the price of electricity and/or natural gas (Deng & Oren,106

2006). The demand side of quantity risk can often be effectively hedged using temper-107

ature derivatives (Ellithorpe & Putnam, 2000; Jewson et al., 2005). However, the sup-108

ply side of quantity risk, driven by hydrologic variability, can be much more difficult to109

manage. A portion of the supply risk can be hedged with power price derivatives by tak-110

ing advantage of correlations between price and supply (Oum, Oren, & Deng, 2006), but111
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these tend to be be weakly related such that significant risk remains. However, hydro-112

logic index contracts are a promising tool for hedging supply risk. Streamflow and wa-113

ter storage have both been suggested for hedging hydropower producers’ drought risk114

(Denaro, Castelletti, Giuliani, & Characklis, 2018; Foster, Kern, & Characklis, 2015; Meyer,115

Characklis, & Brown, 2017).116

This work proposes an index contract based on snow water equivalent depth (SWE).117

Although the Chicago Mercantile Exchange has developed contracts based on snowfall118

at select locations, used by municipalities and businesses such as snow removal compa-119

nies and ski resorts (Chicago Mercantile Exchange Group, 2014; Nielsen, 2012), the au-120

thors are not aware of any academic literature quantifying the benefits of such an index121

for hydropower or other industries. Roughly one sixth of the global population, produc-122

ing one fourth of the global GDP, is estimated to live in regions where water availabil-123

ity is predominantly influenced by snowmelt (Barnett, Adam, & Lettenmaier, 2005). In124

many regions, such as California’s Sierra Nevada, snowpack functions as a reservoir by125

storing precipitation until the spring and summer melt period, and winter/spring SWE126

measurements are a critical tool for forecasting spring/summer runoff in these regions127

(Anghileri et al., 2016; Denaro, Anghileri, Giuliani, & Castelletti, 2017). A SWE index128

thus has a timing advantage over streamflow-based indices; the SWE index is available129

at the end of the snowfall season (generally taken as April 1 in California), while a streamflow-130

based index would not be calculable until the end of the snowmelt season (frequently last-131

ing until July in California). Earlier availability of cash flows from the contract may al-132

low managers to take further and more informed risk management actions, whether phys-133

ical or financial, over the ensuing months.134

Drought can be defined in a number of ways. “Meteorological drought” refers to135

a deficit of precipitation, while “agricultural drought” and “hydrological drought” re-136

fer to deficits of soil moisture and runoff, respectively. In this work, we will mainly re-137

fer to hydrological drought as it pertains to hydropower. Additionally, a “snow drought”138

refers to a deficit of snow accumulation, caused by low precipitation, high temperature,139

or a combination of the two (Gonzalez et al., 2018; Wehner, Arnold, Knutson, Kunkel,140

& LeGrande, 2017). California experienced an historic drought over the 2012-2016 pe-141

riod, caused by an extreme combination of low precipitation and high temperatures (AghaK-142

ouchak, Cheng, Mazdiyasni, & Farahmand, 2014; Diffenbaugh, Swain, & Touma, 2015).143

Negative impacts on the state’s municipal water supplies, groundwater supplies, agri-144
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culture, forests, recreation, aquatic ecosystems, and water quality have been documented145

(Lund, Medellin-Azuara, Durand, & Stone, 2018). Another important impact is reduced146

hydropower generation. The majority of hydropower production in the state occurs at147

small, high-altitude reservoirs in the Sierra Nevada mountains with little carryover ca-148

pacity, meaning that hydropower production is closely tied to annual snowmelt runoff149

in alpine watersheds. Consequently, the percentage of California’s power mix from hy-150

dropower was only 5.4% in 2015, at the height of the drought, compared to 14.7% in 2017,151

a year with significantly more precipitation (California Energy Commission, 2018). The152

hydropower deficit over the five-year drought, largely replaced by more expensive power153

from natural gas turbines, cost the state an estimated $2.45 billion, as well as a 10% in-154

crease in greenhouse gas emissions (Gleick, 2017).155

The overarching goal of this research is to develop a methodology for discovering156

optimal financial risk management strategies for hydropower producers in snow-dominated157

systems. Each risk management portfolio consists of some combination of a reserve fund,158

an ability to issue short-term debt, and a novel SWE-based index contract called a capped159

contract for differences (CFD). A stochastic financial simulation model is embedded within160

a multi-objective optimization in order to explore the tradeoffs between an expected an-161

nualized cash flow objective and a 95th percentile maximum debt objective. Lastly, we162

contribute a unique sensitivity analysis, in which the multi-objective optimization is re-163

peated for alternative states of the world (SOWs) attained using a global Latin Hyper-164

cube sampling of five financial parameters that depend on the context of the utility: the165

ratio of the utility’s fixed costs to its average hydropower revenues, the market price of166

risk for the CFD, the real discount rate, and the real interest rates governing the reserve167

fund and debt. Optimizing across the alternative SOWs explicitly shows how the set of168

optimal financial risk management strategies, as well as the resulting set of tradeoffs be-169

tween the cash flow and debt objectives, changes as a function of these key contextual170

parameters. The methodology is demonstrated using a case study based on the San Fran-171

cisco Public Utilities Commission’s Power Enterprise, which produces hydropower in Cal-172

ifornia’s central Sierra Nevada. However, these results provide financial risk management173

insights broadly for power producers with significant hydropower resources, particularly174

those in snow dominated systems.175
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3 Methods176

3.1 Study Area177

Hetch Hetchy Power Enterprise is the electricity division of San Francisco Public178

Utilities Commission (SFPUC). SFPUC operates three reservoirs in the headwaters of179

the Tuolumne River in the central Sierra Nevada: Hetch Hetchy Reservoir, Cherry Lake180

and Lake Eleanor. Inflow to these reservoirs, primarily driven by the seasonal dynam-181

ics of snow accumulation and melt, drives hydropower turbines at the Holm, Kirkwood,182

Moccasin, and Moccasin Low-Head Powerhouses. This power is sold at fixed rates via183

firm contracts to customers such as the San Francisco International Airport, municipal184

buildings in San Francisco, and a small number of other retail customer classes. Modesto185

and Turlock Irrigation Districts have the option to buy surplus power at a lower fixed186

rate, as stipulated in the Raker Act that authorized the construction of Hetch Hetchy187

Reservoir. Additionally, SFPUC buys and sells wholesale power on the Western Systems188

Power Pool (San Francisco Public Utilities Commission, 2016).189

3.2 Data Sources190

Monthly observations of snow water equivalent depth (SWE) for Dana Meadows,191

the snow station upstream of the hydropower-producing reservoirs with the longest record192

(64 years), is available from the California Data Exchange Center’s online database (Cal-193

ifornia Data Exchange Center, 2018). The monthly observations for February and April,194

typically performed within one week of the first day of the stated month, will be referred195

to as February 1 and April 1 measurements. Observations from months other than Febru-196

ary and April are also available, but as the records are shorter and less consistent, they197

are not used in this study. Hydropower generation data are provided by SFPUC Power198

Enterprise (San Francisco Public Utilities Commission, 2018). Volumetrically-weighted199

average daily spot peak prices on the Northern California NP-15 electricity hub are avail-200

able from the US Energy Information Administration (United States Energy Informa-201

tion Administration, 2017). Historical retail electricity rates and sales data are taken from202

the 2015-2016 SFPUC financial statement (San Francisco Public Utilities Commission,203

2016).204
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3.3 Modeling Framework205

The multi-level framework used in this research is outlined in Figure 1. The inner-206

most level consists of the financial simulation model, which simulates the financial op-207

erations of the utility over a 20-year period. The inputs to the simulation model are a208

20-year sample of the stochastic drivers, an operating policy, and a state-of-the-world209

(SOW), defined as a combination of five contextual financial parameters (ratio of fixed210

costs to average revenues, pricing parameter for the CFD, real discount rate, and real211

interest rates for the reserve fund and debt). As seen in Figure 2, the financial simula-212

tion model uses these inputs to perform a cascade of financial operations (on an annual213

time step) that updates variables such as the hydropower revenue, capped contract for214

differences (CFD) net payout, reserve fund balance, debt, and final cash flow. These vari-215

ables are described in Sections 3.5, 3.6, and 3.7. The 20-year time horizon is chosen to216

be long enough to capture the internal variability of the reserve fund balance and the217

debt load. These state variables can dynamically rise and fall over a period of multiple218

years based on sequences of high or low snowfall and/or power price, so it is important219

to test each risk management strategy on multi-year sequences rather than single years220

in isolation.221

As seen in Figure 1, this 20-year financial simulation model is embedded within a222

Monte Carlo evaluation level in order to account for the inherent variability of the stochas-223

tic drivers (snow water equivalent depth (SWE), hydropower generation, and wholesale224

power price). An ensemble of 50,000 samples is generated (Section 3.4), and each 20-year225

sample is run through the financial simulation model. The results from the members of226

the ensemble are aggregated to calculate the dual objectives of expected annualized cash227

flow (to be maximized) and 95th percentile maximum debt load (to be minimized), as228

well as a constraint that ensures debt use is sustainable (Section 3.8).229

Each Monte Carlo evaluation is carried out subject to a fixed operating policy, de-230

fined as a slope for the CFD (in $M/inch SWE) and a maximum reserve fund balance.231

In the next level of the workflow in Figure 1, the ensemble objectives and constraint are232

used to optimize the operating policy using the Borg Multi-Objective Evolutionary Al-233

gorithm (MOEA). Because tradeoffs exist between the multiple objectives, the output234

of a multi-objective optimization (MOO) is a set of non-dominated solutions, rather than235

a single optimal solution. During the search, the Borg MOEA uses evolutionary heuris-236
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tic strategies to generate many candidate policies, each of which is evaluated based on237

its multi-objective performance on the Monte Carlo evaluation. This process is elabo-238

rated upon in Section 3.8.239

Lastly, the process is embedded within a sensitivity analysis (Figure 1), in which240

the MOO is repeated for many different states of the world (Section 3.9). Each state of241

the world (SOW) is defined by the values of five contextual financial parameters: the ra-242

tio of fixed costs to average revenues, the pricing parameter for the CFD, the real dis-243

count rate, and the real interest rates for the reserve fund and debt. A typical sensitiv-244

ity analysis in an applied optimization study is situated “downstream” of the optimiza-245

tion, in that it proceeds in the following order: (1) Assume a SOW; (2) Optimize the sys-246

tem as if the assumed SOW is true; (3) Test the sensitivity of solutions by sampling al-247

ternative SOWs and recalculating performance of the solutions within the new SOWs.248

The sensitivity analysis employed in this study, on the other hand, can be thought of as249

“upstream” of the optimization and proceeds in the following order: (1) Sample alter-250

native SOWs; (2) For each, optimize the system under the assumed SOW; (3) Explore251

the differences in the optimal solutions themselves, as well as differences in attainable252

performance, across SOWs. In other words, the downstream sensitivity analysis is con-253

cerned primarily with uncertainty, and answers the questions, “What if we design and254

implement an irreversible plan, and we are wrong about our assumptions? How bad can255

it be?” The upstream sensitivity analysis used in this study, on the other hand, is pri-256

marily interested in contextual differences rather than uncertainty, and answers the ques-257

tions, “How important are contextual factors, with known values at decision-making time,258

in determining which operating policies are best? How do these factors affect a decision-259

maker’s attainable performance and perceived tradeoffs between objectives?”260

3.4 Synthetic Data261

The main stochastic drivers are the snow water equivalent depth (SWE), hydropower262

generation, and the wholesale power price. In order to adequately gauge risk, it is de-263

sirable to have a larger sample of potential outcomes than can be found in the histor-264

ical record. For this reason, the statistical properties of historical time series are used265

to generate a million-year synthetic time series for SWE (Section 3.4.1), hydropower gen-266

eration (Section 3.4.2), and power price (Section 3.4.3). The synthetic SWE and hydropower267

records are generated concurrently to mimic their historical correlations, but power prices268
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are assumed to be independent (see Section 4.4). For the Monte Carlo evaluation (Fig-269

ure 1), a 50,000-member ensemble of 20-year samples is taken from this million-year record.270

3.4.1 Synthetic Snow Water Equivalent271

Both February 1 and April 1 SWE measurements are available for each year 1952-272

2016, except 1963, a total of 64 years. The historical snow water equivalent (SWE) record273

is not found to exhibit any statistically significant trend or autocorrelation at an annual274

time step. Both February 1 and April 1 SWE observations are fit to a gamma distribu-275

tion, passing a Kolmogorov-Smirnov test of goodness of fit. These gamma distributions276

are linked using a Gaussian copula (Frees & Valdez, 1998; Genest & Favre, 2007; Gen-277

est, Favre, Béliveau, & Jacques, 2007; Sklar, 1973; Wang, 1999) in order to generate syn-278

thetic February 1 and April 1 SWE observations that preserve the historical Kendall’s279

rank correlation. As seen in Figure 3 (top left), the synthetic dataset matches the sta-280

tistical properties of the historical data, while providing a broader array of potential out-281

comes for risk assessment. Additional details on methods and parameter estimates can282

be found in Supporting Information Section S1.283

3.4.2 Synthetic Hydropower Generation284

Total generation for the water year (October-September) is aggregated to a monthly285

time step. Due to the dominance of winter precipitation and spring snowmelt in Sierra286

Nevada hydrographs, hydropower production at high alpine reservoirs is highly seasonal,287

peaking in spring and early summer. In order to capture the relationship between snow-288

pack and monthly generation, separate predictors are developed for each month of the289

water year, using the 29 water years available, 1988-2016.290

Hydropower generation for each month is estimated using one of three models: (1)291

constant (independent of SWE), (2) linearly increasing in SWE, and (3) linearly increas-292

ing in SWE up to a threshold, beyond which expected generation is flat. This third piece-293

wise model is necessary in the peak snowmelt period of March through June, and reflects294

the fact that in the wettest years, some water may need to be spilled without generat-295

ing hydropower. Readers interested in additional modeling details and parameter esti-296

mates are referred to Supporting Information S2.297
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After estimating a model for each month, each historical observation from water298

year y and month m is converted to a model residual, rm,y. Residuals for the constant299

and linear models are deseasonalized by calculating monthly z-scores, as r̃m,y = (rm,y−300

µr
m)/σr

m, where µr
m and σr

m are the mean and standard deviation of all residuals from301

month m. For the piecewise models (March-June), observations with SWE above the thresh-302

old are separated from those below the threshold. The deseasonalization is then performed303

separately for each group, in order to account for the fact that residual variability is much304

lower for the wet years above the piecewise threshold (see Figure S2 in Supporting In-305

formation). The time series of deseasonalized residuals is found to exhibit significant monthly306

autocorrelation and is fit to an autoregressive (AR) model with significant lags at one307

month and three months. The residuals from the AR model are not found to exhibit sig-308

nificant autocorrelation and are not found to deviate significantly from a normal distri-309

bution. Additional details and parameter estimates for the AR model can be found in310

Supporting Information Section S2.311

This process is reversed to create a synthetic time series of monthly hydropower312

generation that is consistent with the synthetic SWE record. This involves sampling from313

a normal distribution with the same variance as the residuals from the AR model, in or-314

der to get synthetic residuals. These are run through the autoregressive model, resea-315

sonalized based on month and SWE, and added to the (piecewise) linear predictions based316

on month and SWE. The historical minimum and maximum monthly generation (17.81317

and 256.27 GWh/month, respectively) are used to bound the synthetic observations, un-318

der the assumption that these represent system constraints.319

Figures 3 (bottom left) and 4 (top) suggest that the historical relationships between320

hydropower generation, SWE, and month are well represented in the synthetic data. It321

is also apparent from Figure 3 (bottom left) that the synthetic dataset provides a broader322

array of potential outcomes for risk assessment, including both more and less produc-323

tive years for hydropower than are present in the historical record. Spearman’s rank cor-324

relation coefficient between SWE and annual hydropower generation is 0.894, confirm-325

ing that SWE is a dominant driver of hydropower production. However, hydropower gen-326

eration tends to level off in very wet years, as operational capacity constraints are reached.327

This effect is noticeable in Figure 3 (bottom left) as well as Figure 4 (top), where hy-328

dropower appears to reach capacity in wet years between March and June.329
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3.4.3 Synthetic Wholesale Power Prices330

Daily wholesale power price data for the seven water years 2010-2016 are averaged331

to a monthly time step and inflated to October 2016 dollars using historical inflation rates332

based on the Consumer Price Index (Bureau of Labor Statistics, 2019). Prices are then333

log-transformed and deseasonalized by calculating z-scores within each month of the year,334

as p̃m,y = (pm,y − µp
m)/σp

m, where pm,y is the log power price for month m in year y,335

and µp
m and σp

m are the mean and standard deviation of all log prices for each month336

m. Next, the deseasonalized log prices are fit to a seasonal autoregressive moving aver-337

age (SARMA) model consisting of a single lag of one month for the autoregressive model,338

plus a moving average error model with a single lag of twelve months. The residuals from339

the SARMA model are not found to exhibit significant autocorrelation and are not found340

to deviate significantly from a normal distribution. Additional details and parameter es-341

timates can be found in Supporting Information S3.342

Following model specification, a synthetic record is created by sampling from a nor-343

mal distribution for the residuals, running these residuals through the SARMA model,344

and reseasonalizing based on month. This gives synthetic log-prices, which are exponen-345

tiated to produce monthly average power prices in October 2016 dollars. Figure 4 (bot-346

tom) suggests that the historical relationship between power price and month is well rep-347

resented in the synthetic data. However, one limitation is that the relationship between348

hydrology and power price over the entire electricity market has not been modeled, as349

will be discussed in Section 4.4.350

3.5 Revenue Model351

The revenue model considered in this paper is based on the operations of SFPUC’s352

power enterprise (San Francisco Public Utilities Commission, 2015, 2016). The utility353

sells power to three major classes of customer. First, the utility must satisfy the demand354

from its retail customer base, made up of the San Francisco International Airport, gov-355

ernment buildings in San Francisco, and a limited number of other retail customer classes.356

This power is sold at a fixed rate that is generally higher than the wholesale price of power.357

If hydropower generation is insufficient to meet this demand, the utility must purchase358

power on the wholesale market, at the variable market rate, to make up the difference.359
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In the event that hydropower generation is in excess of retail demand, the Modesto360

and Turlock Irrigation Districts (MTID) are granted the option to purchase a portion361

of this surplus power at fixed rates that are generally lower than wholesale power prices.362

In the event that wholesale prices fall below this fixed rate, we assume that MTID will363

opt to purchase power from the wholesale market rather than the utility. Lastly, any hy-364

dropower generation in excess of retail and MTID demand is sold on the wholesale mar-365

ket at the variable market rate.366

Given synthetic time series of hydropower generation and wholesale power prices,367

this model can be used to simulate the resulting revenues (“Hydropower revenues” in368

Figure 2). For simplicity, in this paper the term “revenue” will be used to refer to the369

net effect of hydropower sales minus wholesale power purchases. All revenues are reported370

in October 2016 dollars. Readers are directed to the Supporting Information Section S4371

for additional details on the revenue model.372

Lastly, power utilities are capital-intensive enterprises that can typically be expected373

to have large costs from debt service, operations and maintenance, capital expenditures,374

and salaries (Moody’s Investors Service, 2011; San Francisco Public Utilities Commis-375

sion, 2016). These costs in general must be met each year, regardless of how much hy-376

dropower is produced, and can be considered constant on the time scale of a typical drought.377

Fixed costs as a fraction of average revenues are estimated from SFPUC’s financial state-378

ments as the average of (operating expenses minus power purchases) divided by (oper-379

ating revenues minus power purchases) over the 2010-2016 period (San Francisco Pub-380

lic Utilities Commission, 2016), yielding 0.914. Fixed costs are thus assumed to be 91.4%381

of the mean revenue, as calculated over the 1,000,000 synthetic years. Net revenues (Fig-382

ure 2), or revenues minus fixed costs, are positive when revenues are sufficient to cover383

fixed costs, and negative otherwise. A sensitivity analysis is also performed (Section 3.9)384

in order to gauge the impact of the fixed cost fraction on the set of optimal operating385

policies and the resulting financial performance of the utility.386

The correlation between annual hydropower revenue and SWE can be seen in Fig-387

ure 3 (right). Spearman’s rank correlation coefficient is found to be 0.859 for the syn-388

thetic dataset. Much like hydropower generation, revenues are roughly linearly related389

to SWE, except for very wet years, in which revenues start to level off due to operational390

capacity constraints on hydropower production. The variance of revenues is seen to in-391
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crease at high SWE values as well, where a larger proportion of power is sold as surplus392

in the wholesale market at variable rates. Also shown in Figure 3 (right) is a pseudo-393

historical dataset generated by running the 29 years of historical hydropower generation394

(same as in bottom left plot) through the revenue model with a randomly-selected 29-395

year long sequence of synthetic power prices. This cannot be used as a direct compar-396

ison to SFPUC’s actual revenues for validation, due to changing customer base, retail397

rates, and power prices over this period. However, it does still highlight the benefit of398

the synthetic hydropower generation dataset, which helps to generate a broader distri-399

bution of potential revenues than the historical hydropower generation dataset allows.400

3.6 Index Contract401

When designing any index contract, the first step is to specify an index that is highly402

correlated with a financial variable of interest (such as revenues) over a designated time403

period. The correlation between snowpack and hydropower revenue suggests that hy-404

drologic financial risk could be hedged using a snowpack-based index contract. Next, the405

functional relationship between the index and contract payouts must be specified. The406

last step is then to price the contract.407

3.6.1 Index Development408

In the Sierra Nevada, the April 1 SWE measurement is often used in management409

decisions as a proxy for annual peak SWE. Consequently, April 1 SWE would be a log-410

ical index around which to base a contract. However, as described in Section 3.4.2, both411

February 1 and April 1 SWE are important for estimating SFPUC annual hydropower412

generation. April 1 SWE is indeed the strongest predictor of generation in the months413

of February through June, but February 1 SWE is a better predictor for November, De-414

cember and January generation. In years when snowfall is concentrated either before or415

after February 1, it is important to account for the effect of this timing on hydropower416

production. For this reason, we use the following weighted average of February 1 and417

April 1 SWE for the contract index:418

Index = 0.3122SF + 0.6878SA (1)419

The weights for this average are taken from the normalized coefficients of a linear regres-420

sion mapping February 1 and April 1 SWE to total power revenues over the water year.421
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When designing any index contract, “basis risk” is a concern. Basis risk represents422

the risk that the contract buyer will not receive a payout when losses occur, or will re-423

ceive a payout when losses do not occur. This risk arises due to the uncertainty in the424

index-revenue relationship, because the correlation between the index and revenue is never425

perfect (Woodward & Garćıa, 2008). The basis risk in this case arises from a combina-426

tion of wholesale power price variability, error from using snow station point measure-427

ments as a proxy for total-watershed SWE, and variability in hydrologic factors such as428

evaporation and melt timing. A number of other potential indices were considered for429

this study, including aggregated measures of total precipitation or streamflow. The weighted430

SWE index is chosen due to its high correlation with hydropower generation and its long431

historical record. Techniques such as interpolation, remote sensing, modeling, and re-432

analysis could be used to develop indices in regions with more sparse ground measure-433

ments (Margulis, Cortés, Girotto, & Durand, 2016; Wrzesien et al., 2017; Zheng, Molotch,434

Oroza, Conklin, & Bales, 2018). However, ground measurements, when they exist, have435

the advantages of being simple, transparent, and immediately available.436

3.6.2 Contract Structure437

After establishing an index, the next step in contract design is to choose the con-438

tract structure. The contract should provide payouts to the utility in years of financial439

distress, which in this case is defined as low revenues arising from drought. A variety of440

contract structures exist, but this work focuses on a “capped contract for differences”,441

which is found to effectively hedge risk in the current context. This contract structure442

and closely related structures are variously referred to as forward contracts, futures con-443

tracts, and swap contracts in the weather derivatives literature (Chicago Mercantile Ex-444

change Group, 2014; Hull, 2009; Jewson et al., 2005), but we will use the contract for445

differences (CFD) terminology for its conceptual clarity.446

Under the proposed CFD, the utility and the contract seller agree to settle the dif-447

ference between the eventual value taken by the SWE index and some predefined ref-448

erence value. As portrayed in Figure 5, the utility would receive positive net payouts when449

the SWE index falls below the reference value, and negative net payouts (i.e., they would450

owe payments) when the index falls above the reference value. Additionally, negative net451

payouts are capped at the 95th percentile of the SWE distribution (48.44 inches). The452

net effect is that the buyer of the contract will receive payouts in dry years, when they453
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expect to have hydropower revenue shortfalls. In return, they make payments to the con-454

tract seller in years of high SWE, when the utility expects to have ample hydropower455

revenues. This allows the utility to sell its upside in order to finance its downside pro-456

tection. The intent of the cap is to limit payments by the utility in exceptionally wet years,457

when the index-revenue relationship tends to break down due to operational limits on458

hydropower production.459

The slope of the CFD, in units of dollars per inch of SWE, can be tailored to fit460

the risk profile of the utility. This slope is often set by regressing the financial metric (e.g.,461

annual net revenues) against the index. However, this may not be the best strategy if462

the regression residuals display non-normality or heteroscedasticity. Other authors have463

used quantile regression, variance or semi-variance minimization, or other methods in464

order to more effectively hedge the impact of extreme events (Conradt, Finger, & Boku-465

sheva, 2015; Manfredo & Richards, 2009; Vedenov & Barnett, 2004). In this study, the466

contract slope is set within a multi-objective optimization, as explained in Section 3.8.467

This allows for the optimal hedging policy to be determined within the broader context468

of an integrated risk management portfolio.469

The proposed contract is assumed to have a six-month duration. The parties en-470

ter into the contract at the beginning of the water year, October 1, before snow typically471

begins to accumulate and when little predictive power regarding the winter snowpack472

exists (Kapnick et al., 2018; Shukla & Lettenmaier, 2011). The net payout is settled af-473

ter observing the February 1 and April 1 SWE. In practice, the purchaser of a CFD might474

be required to pay a discounted premium or margin up front, but we assume for simplic-475

ity that the net payout is settled after the April observation.476

3.6.3 Contract Pricing477

The reference value of the SWE index, which determines the boundary between pos-478

itive and negative net payouts, is determined by a contract pricing process. In finance,479

derivative contracts are typically priced using the Black-Scholes formula or one of its many480

extensions (Black & Scholes, 1973; Hull, 2009). These prices are relatively transparent481

and well-behaved due to no-arbitrage assumptions, as long as both the derivative con-482

tract and the underlying product are traded at sufficiently high volumes. However, pric-483

ing environmental index contracts is more difficult, because the underlying index (e.g.,484
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SWE) is not a tradable commodity. The Chicago Mercantile Exchange does provide exchange-485

traded contracts on temperature and other weather variables, including monthly snow-486

fall at a small number of locations (Chicago Mercantile Exchange Group, 2007, 2014),487

but the majority of weather index contracts are traded over-the-counter in private trans-488

actions, meaning that prices are typically not publicly-available. Additionally, because489

contracts tend to be tailored to specific local circumstances, prices may not be gener-490

alizable. For these reasons, the pricing of weather index contracts is less straightforward491

than derivative contracts indexed on interest rates, stocks, or oil.492

A number of actuarial methods exist for estimating the price of environmental in-493

dex contracts, or equivalently, the reference value for a CFD. The “actuarially-fair” way494

is to set the reference value such that the expected value of the contract is zero (i.e., ex-495

pected value of positive payouts is equal to expected value of negative payouts). How-496

ever, the party selling the contract typically subtracts a “loading” from the contract, so497

that the expected value of the contract is negative for the buyer (e.g., the utility) and498

positive for the contract seller. In other words,499

X(s) = X̃(s)− loading (2)500

where s is the observed value of the SWE index, X̃(s) is the actuarially-fair net payout501

function (“No loading” in Figure 5), and X(s) is the net payout function after account-502

ing for the loading applied by the contract seller (e.g., “Baseline loading” or “High load-503

ing” in Figure 5).504

The loading represents the sum of administrative costs, expected profit, and “risk505

loading.” The risk loading is an additional amount required to take on more risk. Be-506

cause the contract seller may need to make large payouts in the future, they must main-507

tain adequate liquid reserves. Liquid reserves have an opportunity cost, as these reserves508

could earn a higher rate (even while maintaining a similar level of risk) if invested in a509

less liquid fashion. A contract with more variable payouts, such as those resulting from510

low frequency, high magnitude events, will thus have a larger risk loading because the511

seller of the contract will be required to maintain large, infrequently used reserves, and512

will expect to be compensated for the opportunity cost of maintaining such reserves. For513

this reason, actuarial “premium principles” are often used, which price contracts using514

formulas that rely on the expected value of payouts as well as the probability of more515

extreme events (Jewson et al., 2005; Young, 2004).516
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The method used in this study is the Wang Transform (Wang, 2002), which trans-517

forms the probability distribution of payouts into a risk-adjusted distribution in which518

more extreme payouts are weighted more heavily, written:519

F ∗(x) = Φ[Φ−1(F (x)) + λ] (3)520

where F (x) is the original cumulative probability distribution function (cdf) of payouts521

x, F ∗(x) is the risk-adjusted cdf, and λ is the “market price of risk” determining the size522

of the risk premium demanded by contract sellers. For more details on the numerical im-523

plementation of this method, see Supporting Information Section S5.524

Following other work on weather derivative contracts (Baum et al., 2018; Foster525

et al., 2015; Wang, 2002), λ = 0.25 (“Baseline loading” in Figure 5) is used as the base-526

line value for pricing the contract in this study. However, values between 0 (“No load-527

ing”) and 0.5 (“High loading”) are included in the sensitivity analysis, as described in528

Section 3.9. The no-loading scenario has the highest SWE reference value, where the net529

payout function intersects zero. This is the most favorable scenario for the utility, as it530

has the highest chance of positive payouts and the highest expected value. The high load-531

ing scenario has the opposite effect, with a lower SWE reference value and a correspond-532

ingly lower expected value. For example, assuming a contract slope of $1 million per inch533

of SWE, the reference value for the baseline loading scenario is 24.71 inches, approxi-534

mately the 51th percentile. With no loading, the payout structure and reference value535

shift upwards by $1.19 million and 1.19 inches, respectively. With high loading, on the536

other hand, the payout structure and reference value shift downwards by $1.34 million537

and 1.34 inches, respectively.538

A final note on pricing: the ability to forecast winter snowfall in the Central Sierra539

Nevada is relatively poor prior to the beginning of the water year on October 1 (Kap-540

nick et al., 2018; Shukla & Lettenmaier, 2011). For this reason, it is reasonable to as-541

sume that the expected payout for any given contract does not change from year to year542

based on October 1 conditions. However, in the event that forecasting improves in the543

future, one of two actions would need to be taken: either the parties would enter into544

the contract earlier in the year at a date with negligible forecasting skill, or else forecasts545

would be incorporated into a conditional probability distribution for SWE on October546

1, which would be used to adjust the contract premium each year. If contract premiums547

were not adjusted to reflect the forecasts, customers would only enter into contracts in548
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years in which they expected positive net payouts, resulting in an intertemporal adverse549

selection and large financial losses for the contract seller (Carriquiry & Osgood, 2012;550

Nadolnyak & Vedenov, 2013).551

3.7 Reserve Fund and Debt Issuance552

When evaluating the effectiveness of index contracts for hedging financial risk, it553

is important to place them within a larger risk management strategy. Like most busi-554

nesses, power utilities typically maintain a reserve fund in order to self-insure against555

some level of unexpected losses. Additionally, they have the ability to issue short-term556

debt (i.e., borrow money) in the event of short-term cash flow problems.557

Cash available at the end of the water year before any financial operations (“Cash558

before WD” in Figure 2, where WD stands for withdrawal) is equal to net revenue (hy-559

dropower revenue minus fixed costs), plus the net payout of the capped contract for dif-560

ferences (CFD). Reserve fund withdrawals are then used to make up for cash flow deficits561

(i.e., “Cash before WD” < 0) when possible. When cash flow surpluses (i.e., “Cash be-562

fore WD” > 0) exist, the utility makes deposits into the reserve fund. In Figure 2, the563

“Withdrawal (WD)” box can represent either a withdrawal (WD > 0) or a deposit (WD564

< 0). A limit on the reserve fund balance (“Max fund”) is set within the multi-objective565

optimization (Section 3.8), so that positive cash flows can be realized once the reserve566

fund has reached capacity. The reserve fund is assumed to be invested in a safe and liq-567

uid form, such as money markets, and earn a return of IF % per year.568

In years when the reserve fund is insufficient to cover the cash flow deficit (i.e. “Cash569

after WD” < 0), the utility is assumed to issue short-term debt to cover the difference.570

This debt could take a variety of forms, such as a Letter of Credit (LOC) agreement with571

a large bank, which would allow the utility to issue commercial paper that is backed by572

the bank. This would allow them to borrow money at a lower rate than could be achieved573

without the LOC (e.g., by taking out a loan), in exchange for a fee paid to the bank. This574

debt, plus interest of ID after correcting for inflation, is assumed to be paid back the fol-575

lowing year (“Debt due” in Figure 2) and is subtracted from the following year’s rev-576

enues prior to the withdrawal step.577

Thus, the “Final cash flow” at the end of the water year is equal to hydropower578

revenues, minus fixed costs, minus last year’s debt with interest, plus the SWE contract579
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net payout, plus (minus) the reserve fund withdrawal (deposit), and plus new debt. This580

final cash flow will be strictly non-negative, as debt issuance is assumed to take up the581

slack when other risk management tools are insufficient to ensure non-negative cash flow.582

All interest rates are considered net of inflation so that all monetary values are re-583

ported in October 2016 dollars. The annual inflation estimate as of October 2016 is 1.6%584

(Bureau of Labor Statistics, 2019), and the annual return in Vanguard’s Federal Money585

Market Fund between the fourth quarter of 2015 and the third quarter of 2016 is 0.25%586

(The Vanguard Group, 2019), yielding an inflation-adjusted interest rate on reserve funds587

of IF = −1.33% per year. The negative interest rate implies that the money held in588

the reserve fund is not growing fast enough to keep up with inflation, which is common589

after fees in safe and liquid investments such as money markets. The interest rate paid590

on the debt, including the fee on the Letter of Credit, would vary depending on a num-591

ber of factors, such as the utility’s credit rating, the bank’s size, and demand for debt592

in the financial markets. In this work, a rate of 1.4% per year above inflation is assumed,593

and both IF and ID are included in the sensitivity analysis in Section 3.9.594

3.8 Objectives and Optimization595

As seen in Figure 2, there are two degrees of freedom in the financial risk manage-596

ment policy taken by the utility: the SWE contract slope (in $/inch), which affects the597

contract net payout each year) and the reserve fund limit (in $, which affects withdrawals598

from and deposits to the fund). These two parameters are used as decision variables within599

the multi-objective evolutionary optimization. The minimum allowable SWE contract600

slope and reserve fund limit are set to $50,000/inch and $50,000, respectively, so that601

decision variables lower than these values are set to zero within the simulation. The op-602

timization is carried out with respect to two conflicting objectives. The first is the ex-603

pected annualized cash flow, which is to be maximized:604

Jcash = EN

[
1∑Y

y=1 d
y

(
Y∑

y=1

(dyC(n, y)) + dY+1 ((1 + IF )F (n, Y )− (1 + ID)D(n, Y ))

)]
(4)605

where C(n, y) is the final cash flow at the end of year y of simulation n, after account-606

ing for fixed costs, SWE contract net payouts, reserve fund withdrawals and deposits,607

new debt in year y, and debt plus accumulated interest from year y− 1. F (n, Y ) and608

D(n, Y ) are the reserve fund balance and debt, respectively, at the end of the final year609
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of the simulation. The discount factor d is calculated from the real discount rate, δ, as610

d = 1/(1+δ). In Equation 4, the expression inside the outer brackets converts the vari-611

able cash flows over the Y = 20 years into a fixed annuity ($/year) with equivalent present612

value. This is the “simulation objective” in Figure 1. The expectation operator EN (the613

“ensemble aggregator”) takes the mean over the N =50,000 Monte Carlo simulations614

to convert it into an “ensemble objective”.615

The real discount rate in Jcash accounts for the time value of money, and is set us-616

ing the 20-year Treasury rate as of October 3, 2016, of 2.01% per year (United States617

Department of the Treasury, 2019). This is an approximately risk-free investment that618

reflects the opportunity cost of delaying cash flows into the future. Because all mone-619

tary values in this work are reported in October 2016 dollars, the discount rate is con-620

verted to a real rate by dividing out inflation of 1.6%, yielding a real discount rate of 0.40%621

per year for δ.622

The second objective gives the 95th percentile of the maximum debt over 20 years:623

Jdebt = Q95N [maxY [D(n, y)]] (5)624

where the maxY operator takes the maximum value of the debt D(n, y) over the years625

y within a given simulation (the simulation objective), while the Q95 operator takes the626

95th percentile over the Monte Carlo samples n (the ensemble objective). This objec-627

tive is minimized.628

The following constraint is also applied to the simulated debt:629

EN [D(n, Y )−D(n, Y − 1)] < ε (6)630

This constrains debt use to be sustainable, defined as growing (on average) by less than631

some ε. This ensures that the utility cannot borrow more and more every year with no632

hope of paying it back, which would likely land them in a credit crisis in practice.633

A tradeoff is expected between the annualized cash flow objective Jcash and the634

maximum debt objective Jdebt, so that there will not be a single optimal solution, but635

rather a Pareto-optimal set of solutions where improvement in one objective comes at636

the cost of degrading performance in the other conflicting objective. Plotting the Pareto-637

optimal set of policies in the objective space yields the Pareto frontier or optimal trade-638

off that can inform decision makers’ preferences. We solve the two-objective formulation639

presented in Equations 4-6 using a Multi-Objective Evolutionary Algorithm (MOEA).640
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MOEAs are a class of multi-objective optimization algorithms (for a detailed review, see641

Coello Coello, Lamont, and Van Veldhuizen (2007)) that have gained popularity in the642

fields of environmental and water resources systems due to their ability to solve difficult643

problems with properties such as nonlinearity, stochasticity, discreteness, non-convexity,644

high dimensionality, and uncertainty (Maier et al., 2014; Nicklow et al., 2010; Reed, Hadka,645

Herman, Kasprzyk, & Kollat, 2013). MOEAs use a variety of heuristic operators to it-646

eratively improve a population of solutions with respect to multiple objectives. The Borg647

MOEA, the algorithm used in this study, has proven particularly adept across a wide648

range of problem types, and requires minimal problem-specific parameterization due to649

its adaptive operator selection (Hadka & Reed, 2013).650

Each function evaluation (a trial of a new candidate policy) consists of a 50,000-651

member ensemble of 20-year simulations, resulting in a value for each of the two ensem-652

ble objectives, Jcash and Jdebt, as well as a boolean value for the sustainable debt con-653

straint. Each optimization run consists of 10,000 function evaluations. Due to the stochas-654

tic nature of evolutionary algorithms, each optimization is run multiple times; the base-655

line SOW is run with 50 seeds and each of the 150 additional SOWs in the sensitivity656

analysis are run with 10 seeds (the SOWs will be described in the next section). All seeds657

are found to converge quickly and produce very similar results (Figure S4-S6 in Support-658

ing Information), as measured by the hypervolume, generational distance, and epsilon659

indicator metrics, which are commonly used to quantify convergence, diversity, and con-660

sistency in multi-objective optimization (MOO) (Coello Coello et al., 2007; Reed et al.,661

2013). After running the Borg MOEA for multiple seeds for each parameter sample, the662

best reference set is assembled for each parameter sample from among all of the candi-663

date solutions. Each best reference set is then rerun on a second 50,000-member ensem-664

ble of 20-year simulations, and all results are reported for this test ensemble.665

The ε-dominance parameters for Jcash and Jdebt are set to $75,000 and $225,000,666

respectively. The debt sustainability constraint (ε in Equation 6) is set to $50,000. These667

values, as well as the number of samples per function evaluation (50,000), are set in such668

a way that the variability in objective and constraint values across separate 50,000-member669

ensembles are generally smaller than the epsilon parameters. A large number of sam-670

ples is needed per function evaluation, compared to other similar studies (e.g., (Quinn,671

Reed, Giuliani, & Castelletti, 2017)), due to the large internal variability relative to the672

desired error tolerance. This is partially attributable to the fact that the Jdebt objective673
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definition leads to an extreme value distribution. All of the other Borg MOEA param-674

eters are set using their default values as described in prior studies (Hadka & Reed, 2013).675

The uncertain or “noisy” MOO problem formulated here builds off of the recommenda-676

tions of prior work for balancing computational demands and the fidelity of the forward677

Monte Carlo objective evaluations (see discussions in (Kasprzyk, Reed, Characklis, &678

Kirsch, 2012; Quinn et al., 2017; Zatarain Salazar, Reed, Quinn, Giuliani, & Castelletti,679

2017)).680

3.9 Sensitivity Analysis681

The last step of the methodology, as illustrated in Figure 1, is the sensitivity anal-682

ysis. The state of the world (SOW) is defined by the values of five contextual financial683

parameters: the ratio of the utility’s fixed costs to its average hydropower revenues, the684

market price of risk for the CFD, the real discount rate for the annualized revenue ob-685

jective, and the real interest rates for the reserve fund and debt issuance. These are con-686

textual because they will vary both across decision-makers (e.g., the fixed cost ratio will687

vary significantly across different utilities) and across time (e.g., the interest rates will688

fluctuate with prevailing market forces). Note that the contextual parameters defining689

the SOW are distinct from the stochastic ensemble used in the Monte Carlo evaluation690

(SWE, hydropower generation, and power prices), which is assumed to vary with “well-691

characterized uncertainty” that is fixed across SOWs.692

The MOO is first performed for a baseline SOW using parameter values estimated693

for SFPUC circa October 2016, as seen in Table 1. Derivation of estimates for the fixed694

cost fraction (c = 0.914), real discount rate (δ=0.40%), and market price of risk (λ =695

0.25) can be found in Sections 3.5, 3.8, and 3.6.2, respectively. Estimates for the real in-696

terest rates on reserve funds (IF = −1.33%) and debt (ID = 1.4%) are given in Sec-697

tion 3.7. Because the discount rate is derived from the 20-year Treasury rate, which is698

strongly correlated with market-wide interest rates, the interest rates on reserve funds699

and debt are converted to relative rates (markdowns/markups from the discount rate)700

prior to sampling, by subtracting δ = 0.40, and denoted by ∆F = −1.73% and ∆D =701

1.0%.702

The sensitivity analysis makes use of 150 alternative SOWs from across the param-703

eter ranges shown in Table 1. The SOWs are drawn from a global Latin hypercube sam-704
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ple, using the MOEA Framework software package (Hadka, 2015). Each SOW, consist-705

ing of a value for each of the five financial parameters, is used within a separate MOO,706

as seen in Figure 1. This allows us to test how the Pareto set of optimal risk manage-707

ment policies, and the attainable performance and tradeoffs between the cash flow and708

debt objectives, change as a result of the contextual parameters. The MOO for each SOW709

uses the same tuning parameters, seeds, and training/test ensembles of stochastic drivers,710

as described in Section 3.8.711

4 Results and Discussion712

4.1 Performance of Index Contract713

As discussed in Section 3.6.2, the capped contract for differences (CFD) has an im-714

portant degree of freedom: the slope of the contract, in dollars per inch of SWE. This715

is used as a decision variable in the multi-objective optimization, as described in the next716

section. However, it is useful first to consider the effect of this variable on the perfor-717

mance of the CFD in isolation, without a reserve fund or debt issuance. Let unhedged718

net revenue refer to the annual hydropower revenue less fixed costs, and hedged net rev-719

enue refer to unhedged net revenue plus the net payout from the CFD. Figure 6 shows720

expected hedged net revenue against the lower 5th percentile of hedged net revenue, for721

a range of contract slopes from $0 to $1.5 million per inch of SWE. A clear tradeoff is722

evident: as the contract slope increases from zero, the expected hedged net revenues tend723

to decrease (due to the risk loading paid to the contract seller), while the 5th percentile724

of hedged net revenues increase (confirming the risk-reducing value of the hedging con-725

tract). However, the curve is convex, reaching maximum risk protection at $0.988 mil-726

lion/inch. As the slope is increased further, the marginal effect of the contract becomes727

counterproductive, as the large payments due in wet years become a bigger liability than728

revenue shortfalls in dry years.729

To understand how the CFD increases the 5th percentile hedged net revenues (i.e.,730

reduces risk), consider the risk protection-maximizing contract with a slope of $0.988 mil-731

lion/inch. The effect of this contract is visualized in Figure 7, which shows the mean and732

5th-95th percentile band of unhedged and hedged net revenue in different SWE bins. The733

unhedged revenue distribution shows a clear positive relationship with the SWE index,734

as expected from the relationship in Figure (3, right). The CFD rotates the distribution735
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so that cash flows are nearly independent of SWE, although some dependence remains736

due to the upper cap on payments as well as the slight convexity of the SWE-revenue737

relationship. Net revenues in low-SWE years, the primary concern from a financial risk738

perspective, are significantly increased by hedging, while net revenues in high-SWE years739

are significantly decreased. The far right side of Figure 7 shows the mean and 5th-95th740

percentile band of the entire net revenue distribution, without consideration of SWE. The741

unhedged net revenues have a mean of $10.99 million and a lower 5th percentile of $-10.84742

million. The CFD tends to reduce expected hedged net revenue to $9.82 million (i.e., the743

contract costs $1.17 million/year on average, due to the risk loading charged by the con-744

tract seller). The contract also affects upside variability due to the contract payments745

that must be paid by the utility in wet years, reducing the 95th percentile of hedged net746

revenues from $33.78 million to $22.44 million. However, the 5th percentile of hedged747

net revenue is increased by $8.98 million to $-1.86 million, indicating that this CFD can748

significantly reduce the risk of extraordinarily large revenue shortfalls.749

4.2 Results of Multi-Objective Optimization750

If risk minimization were the only decision-making criterion, and if the CFD was751

the only risk management tool available, then Figure 6 would be the end of our anal-752

ysis. The ideal contract slope would be the risk-minimizing slope of $0.988 million/inch.753

However, decision-makers frequently must navigate tradeoffs between competing objec-754

tives, and may utilize a variety of tools to achieve those objectives. In this work, we con-755

sider a decision-maker who constructs a portfolio of financial risk management tools by756

combining a SWE-based contract for differences (CFD) with a reserve fund and short-757

term debt issuance.758

When searching for an optimal risk management strategy, a tradeoff emerges for759

this decision-maker between the expected annualized cash flow, Jcash, and the 95th per-760

centile maximum debt, Jdebt, objectives. This tradeoff is visualized in Figure 8. The ideal761

point is shown as a grey star in the lower right corner, where Jdebt is minimized and Jcash
762

is maximized. It is instructive to consider the different strategies employed by the so-763

lutions across the Pareto set. In the top right-hand corner of Figure 8 (e.g., near the so-764

lution marked A) are solutions that achieve high expected cash flows (i.e., low cost of765

risk management), but that rely heavily on issuing debt in times of financial stress. These766

solutions tend to use a relatively small reserve fund and no CFD. By contrast, the bot-767
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tom left-hand corner of Figure 8 (e.g., near solution C) contains solutions that achieve768

very low levels of debt, but in return tend to see lower expected cash flows. These so-769

lutions tend to utilize a larger reserve fund in addition to a large CFD, and thus are higher770

cost on average, but only rarely have to rely on debt issuance, since they generally have771

sufficient protection from the CFD and reserve fund. Lastly, between these two extremes772

are compromise strategies (e.g., near solution B) that use a smaller CFD in conjunction773

with a reserve fund in order to achieve intermediate objective values. Table 2 shows the774

CFD slope, reserve fund limit, and objectives (Jcash and Jdebt) for solutions A, B, and775

C. Also shown are normalized versions of each objective, Ĵcash and Ĵdebt. Each normal-776

ized objective is divided by the expected net hydropower revenue, E[Revenue] ∗ (1 −777

c), where c is the fixed costs as a fraction of expected revenues, 0.914. Expected revenue778

is $127.80 million/year, so that the expected net revenue in this case is $10.99 million/year.779

The normalized cash flow objective Ĵcash, then, gives the expected post-management cash780

flow as a fraction of the expected pre-management net revenue. This is useful in assess-781

ing the relative cost of risk management. The normalized debt objective Ĵdebt gives the782

debt burden as a multiple of expected pre-management net revenue, which is useful in783

assessing the utility’s ability to pay back the debt. These normalized objectives will al-784

low for a baseline comparison when considering sensitivity to the fixed cost fraction c785

in Section 4.3.786

Although the multi-objective formulation of the search problem focuses on the ex-787

pected annualized cash flow and the 95th percentile of maximum debt (i.e., the “Ensem-788

ble objectives” in Figure 1), it is informative to carefully consider the full distributional789

performances of the high cash flow (A), low debt (C), and compromise (B) solutions.790

Figure 9 shows the distributions of annualized cash flow and maximum debt (i.e., the791

“Simulation objectives” in Figure 1), over the entire ensemble of 20-year simulations, for792

each of the three highlighted strategies. Despite having the lowest expected annualized793

cash flows, solution C also has the lowest chance of very low annualized cash flows (e.g.,794

below $5 million per year over 20 years). It also has a much narrower distribution of debt795

maxima, which confirms that the solutions with large CFDs and reserve funds are the796

most risk averse management strategies. In payment for this reduced volatility, solution797

C has the smallest mean annualized cash flow as well as the smallest chance of signif-798

icant upside (e.g., above $15 million per year). As with the ensemble objectives in Fig-799
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ure 8, B is a compromise solution that is intermediate to solutions A and C in terms of800

the simulation objective distributions.801

The navigation of this tradeoff and selection of a financial risk management pol-802

icy will depend on decision-maker preferences. This process will depend on personal at-803

titudes, such as risk aversion, as well as a variety of institutional factors, such as the util-804

ity’s outstanding debt service and credit rating, its ability to raise its customers’ rates805

in order to increase net revenues, and the willingness of its regulators to approve finan-806

cial contracts like the proposed CFD. These contextual factors affect a decision-maker’s807

navigation of tradeoffs within the Pareto set of a particular SOW. We now turn to the808

sensitivity analysis, in which we explore how a changing SOW can affect the resulting809

Pareto set itself.810

4.3 Sensitivity to Contextual Financial Parameters811

The results presented so far in Sections 4.1 and 4.2 are restricted to the baseline812

SOW, consisting of financial parameters estimated for SFPUC circa October 2016 (Ta-813

ble 1). In order to explore the effects of the SOW parameters on attainable performance814

and the optimality of different risk management policies, the multi-objective optimiza-815

tion (MOO), as introduced in Equations 4-6, is repeated for 150 alternative SOWs. Each816

MOO results in a separate Pareto set, similar the results in Figure 8 for the baseline SOW.817

Figure 10 displays the cloud of Pareto-optimal solutions, across the baseline SOW818

(black) and the 150 alternative SOWs (color). Objective values are normalized by ex-819

pected net hydropower revenues, as described in Section 4.2. Note that results in Fig-820

ure 10 are filtered to show only those with Ĵdebt < 5, since a short-term debt load five821

times larger than expected net revenues would be problematic for many organizations822

from a credit perspective. However, the full unfiltered results can be found in Support-823

ing Information Figure S7. A tradeoff between expected annualized cash flow (Ĵcash) and824

95th percentile maximum debt load (Ĵdebt) exists across the SOWs. However, the at-825

tainable objective values and the severity of the tradeoff varies widely. Solutions in the826

bottom right-hand corner correspond to states of the world in which risk can be man-827

aged effectively at very low cost, while those in the top left-hand corner correspond to828

states of the world in which very large debt loads may be necessary to meet short-term829

cash flow shortfalls, even after undertaking relatively expensive risk management actions.830
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These results suggest that the five contextual financial parameters characterizing831

the SOW can have a dominant impact on the options available to a decision-maker. A832

decision-maker operating within the baseline SOW can choose policies attaining Ĵdebt
833

values between 2.38 and 0.30, with corresponding Ĵcash values between 0.99 and 0.88,834

respectively (Table 2). However, for decision-makers operating in alternative SOWs, the835

tradeoff and attainable performance can look very different. For example, the arcs of so-836

lutions in the upper lefthand quadrant represent states of the world in which all avail-837

able options are both high cost (i.e., low Ĵcash) and high debt; the decision-maker is forced838

to choose from among a set of relatively poor options. It is possible that no options are839

deemed acceptable to this decision-maker; in this case, the decision-maker may have to840

resort to alternative tools not considered in this study, such as raising customer rates841

or building new infrastructure. On the other hand, many SOWs produce Pareto sets that842

lie entirely in the lower righthand corner, close to the “ideal” point represented by the843

grey star. The choice of operating policy for these decision-makers may be trivial; all op-844

tions are very good options and the differences between alternative policies may not be845

decision-relevant. Lastly, there are many SOWs, including the baseline SOW, in which846

the Pareto set varies significantly and meaningfully across policies. In these situations,847

navigation of the tradeoff between Ĵcash and Ĵdebt will depend on decision-maker pref-848

erences, as discussed in Section 4.2.849

In order to determine which SOW parameters are the most the important deter-850

minants of performance, we can plot each objective against each of the parameters defin-851

ing the SOW. Results for the normalized debt objective, Ĵdebt, and the normalized cash852

flow objective, Ĵcash, are shown in Figures 11 and 12, respectively. Again, solutions with853

Ĵdebt < 5 have been filtered out, but the full results can be seen in Supporting Infor-854

mation Figures S8-S9. For the normalized debt objective, the plot of the fixed cost frac-855

tion c (Figure 11, left) shows the clearest sensitivity. For any given c, there are a range856

of solutions, which can be sorted into strategies using a reserve fund in isolation, a small857

number of strategies using a CFD in isolation (which will be discussed below), and those858

using a mixed strategy. The debt objective tends to be higher for strategies using a re-859

serve fund in isolation, relative to mixed strategies, consistent with the tradeoffs seen in860

Figure 10. The debt objective also tends to increase as the cost fraction c is increased,861

since larger fixed costs lead to a higher likelihood of negative cash flows. For any given862
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value of Ĵdebt, a reserve fund-only strategy may be optimal at low c, while the addition863

of a CFD will become optimal at higher c.864

Figure 12 shows the normalized cash flow objective, Ĵcash, against the contextual865

parameters defining the SOW. A strong effect is once again evident for the fixed cost frac-866

tion c. Ĵcash will be equal to one for a strategy in which risk management has zero cost867

on average (i.e., expected annualized cash flows (post-management) are equal to expected868

net revenues (pre-management)). For any given c, the reserve fund-only strategies tend869

to be very low-cost, with Ĵcash close to one, while the mixed strategies have higher ex-870

pected costs. This is consistent with the tradeoff between the cash flow and debt objec-871

tives seen in Figure 10. Additionally, the management cost tends to increase as the fixed872

costs fraction increases: Ĵcash = 60.0% in the most extreme scenarios, indicating that873

risk management consumes 40% of the utility’s expected net hydropower revenues. Fig-874

ure 11-12 also show that when the fixed cost fraction is greater than 0.943 (compare this875

to the baseline estimate of c = 0.914 for SFPUC as of September 2016), no reserve fund-876

only strategies are feasible, and no solutions at all are found for fixed cost fractions greater877

than 0.970. This means that hydropower utilities with very large fixed costs, as a frac-878

tion of net hydropower revenues, may be unable to meet their risk management goals879

using the tools proposed in this study. These constraints are relaxed only slightly if the880

Ĵdebt < 5 filter is removed (see Supporting Information Figures S8-S9). This highlights881

the importance of the fixed cost parameter in determining financial outcomes. A util-882

ity in this situation would likely need to raise its customer’s rates and/or cut costs in883

order to reduce it’s fixed costs fraction to a manageable level.884

There are also a small number of strategies that use only a CFD, without a reserve885

fund. These solutions appear to be lower cost and higher debt in general than the mixed886

strategies. This is a seemingly unintuitive result because the CFDs are typically higher887

cost than a reserve fund, due to the risk loading attached by the contract sellers. The888

sensitivity plots for the market price of risk parameter (λ, Figures 11-12, top right) sug-889

gest the reason for this pattern: the CFD-only strategy is only optimal when λ is close890

to zero, resulting in very inexpensive contracts. The sensitivity plot for λ also suggests891

that for mixed strategies, there is a trend towards higher-debt and higher-cost solutions892

when the market price of risk is high. This is to be expected, as the increased cost of the893

CFD would reduce annualized cash flows and make cash flow shortfalls (and thus debt894

issuance) more common.895
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Lastly, the sensitivity plots for the real discount rate (δ, top center) and the real896

relative interest rates on the reserve fund (∆F , bottom center) and debt (∆D, bottom897

right), do not show any clear trends with respect to the debt objective Jdebt or the cash898

flow objective Jcash. They also do not show any patterns with respect to the optimal899

choice of reserve fund-only, CFD-only, or mixed strategies. This suggests that the Pareto900

sets and attainable performances are minimally sensitive to these rates, compared to other901

contextual parameters in this study.902

4.4 Limitations and Future Directions903

This study is concerned with relatively short-term financial risk on the order of one904

year. The contracts last a single year at a time, and no irreversible decisions such as in-905

frastructure investments are considered. A key advantage of such a strategy over man-906

aging risk with structural solutions (e.g., increasing the size of a reservoir) is its reversibil-907

ity and adaptability. Although the optimization is conditioned on 20-year simulation en-908

sembles, the model can be updated and rerun each year as conditions, forecasts, and stake-909

holder preferences change. Future work will consider this updating strategy explicitly910

by reformulating the model as a closed loop decision problem, in which model state in-911

formation is used to dynamically update the decisions at each time step.912

Nevertheless, a manager developing a longer-term risk management plan might be913

able to improve performance by relaxing some of the stationarity assumptions made here.914

Retail demand is assumed constant over the 20-year simulation, and customer rates, fixed915

costs, interest rates, and discount rates are assumed constant in inflation-adjusted terms.916

A utility performing such an analysis might want to include projected (potentially stochas-917

tic) change in these factors explicitly. Additionally, the synthetic SWE observations, hy-918

dropower generation, and power prices are generated as stationary stochastic processes.919

However, California power markets have already begun to change in the face of increas-920

ing renewable energy penetration (California Independent System Operator, 2018; Zarnikau921

et al., 2016), a process that will be accelerated in coming years as the state moves to-922

wards its ambitious greenhouse gas emission reduction targets (California Energy Com-923

mission, 2018; Rheinheimer, Ligare, & Viers, 2012). Prices could also be affected by any924

significant change in natural gas markets, a major driver of electricity prices in the state925

(California Independent System Operator, 2018; Zarnikau et al., 2016).926
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Climate change could affect SWE and hydropower in California through a num-927

ber of mechanisms (Vicuna & Dracup, 2007). Research on the effect of anthropogenic928

climate forcing on mean precipitation in California is inconsistent, but interannual vari-929

ability may increase significantly, leading to more frequent meteorological droughts as930

well as more frequent extreme precipitation events (Berg & Hall, 2015). Regardless of931

the trend in precipitation, rising temperatures are expected to increase the co-occurence932

of low-precipitation events and high-temperature events, leading to more frequent hy-933

drologic droughts (AghaKouchak et al., 2014; Diffenbaugh et al., 2015; Gonzalez et al.,934

2018; Wehner et al., 2017). In alpine regions, rising temperatures are expected to push935

snow melt earlier in the year and decrease the proportion of precipitation falling as snow936

(Hall, Berg, Sun, Walton, & Schwartz, 2017; Kiparsky, Joyce, Purkey, & Young, 2014;937

McGurk & Hannaford, 2008; Null, Viers, & Mount, 2010; Rheinheimer et al., 2012), and938

there is evidence that to-date warming has already begun to impact snow hydrology (Berg939

& Hall, 2017; Fritze, Stewart, & Pebesma, 2011; Fyfe et al., 2017). We find no signif-940

icant trend in February 1 or April 1 SWE between 1952 and 2016 for this location, likely941

due to its high elevation, but in the future, or at present for other locations, it would be942

necessary to account for trends when modeling risk. With respect to SWE-based index943

contracts such as the proposed CFD, any change in the probability distribution of SWE944

will alter the distribution of payouts and necessitate a revision of contract terms and pric-945

ing. Additionally, the contract buyer will be vulnerable to non-stationarity in the rela-946

tionship between SWE and hydropower generation (e.g., an increase in reservoir spillage947

due to faster melting), which will influence the effectiveness of the SWE index for hedg-948

ing purposes.949

Another potential extension of this work would be to supplement the risk manage-950

ment strategies described herein by hedging price risk in the wholesale power markets951

through derivative contracts on the price of electricity or natural gas (Deng & Oren, 2006).952

Rather than hedging SWE and power prices independently, it may be more effective to953

hedge using a composite index that depends on the product of hydrology and power price954

(Kern, Characklis, & Foster, 2015). In order to model such a hedge, it would be impor-955

tant to accurately capture the complex interplay between hydrology and power prices956

in California. Spring and summer wholesale power prices tend to decrease in wet years957

and increase in dry years, all else equal, due to the shift in the supply curve that occurs958

when reduced hydropower availability causes increased reliance on more expensive sources959
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(Deng & Oren, 2006; Madani, Guégan, & Uvo, 2014; O’Connell, Voisin, Macknick, & Fu,960

2019; Su, Kern, & Characklis, 2017). Therefore, inclusion of pricing information from961

a market-wide power dispatch model might be expected to introduce a non-linearity into962

the index-revenue relationship which would dampen overall financial variability. This is963

an interesting avenue for future research, but beyond the scope of this study.964

5 Conclusions965

Hydrologic variability poses an important source of financial risk for hydropower-966

reliant electric utilities. This research develops a methodology for optimizing multi-pronged967

financial risk management portfolios that combine a reserve fund, short-term debt, and968

a novel snowpack-based index contract, which differs from typical analyses where each969

tool is assessed in isolation. In the case of index contracts this ignores the opportunity970

cost of contract loading; in some situations, the same risk management could be achieved971

at lower cost using a reserve fund, debt issuance, or some combination of the three. It972

is also important to measure financial performance over an extended period (e.g., the973

20-year simulations used in this work), rather than aggregating independent single-year974

samples, due to the dynamic and cumulative nature of reserve funds and debt.975

The results of this study highlight the importance of institutional context. There976

is a fundamental tradeoff between cash flows (Jcash) and debt levels (Jdebt), as the strate-977

gies that are the lowest cost on average will achieve these cost savings by taking on riskier978

positions that sometimes require significant debt issuance. Within any particular state979

of the world (SOW), the navigation of this tradeoff will depend on decision-maker pref-980

erences, which are likely to be affected by institutional factors such as the utility’s out-981

standing debt service and credit rating, and its ability to raise its customers’ rates in or-982

der to increase net revenues. Additionally, the steepness and meaningfulness of the trade-983

off between the two objectives will itself be dictated by the contextual factors defining984

the SOW, such as the ratio of the utility’s fixed costs to its average hydropower revenues,985

and the affordability of index contracts. Interestingly, though, we find that results in this986

study are not particularly sensitive to real interest rates or the decision-maker’s real dis-987

count rate.988

These results also confirm the potential for snow water equivalent depth (SWE)-989

based index contracts, such as the proposed capped contract for differences (CFD), to990
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effectively contribute to hedging the financial risk associated with variability in hydropower991

production. Snowmelt plays an important hydrologic role across much of western North992

and South America, northern Europe, and central and northeastern Asia. The method-993

ology and results presented here should be of interest to other power utilities with sig-994

nificant hydropower resources, especially in regions where runoff is primarily dominated995

by snowmelt. Additionally, SWE-based index contracts may be useful for hedging hy-996

drologic risks in other snowmelt-reliant industries such as municipal water supply and997

irrigated agriculture. The financial simulation, multi-objective optimization, and sen-998

sitivity analysis laid out in this work may also provide a useful framework for the man-999

agement of environmental financial risks in a variety contexts.1000

Acknowledgments1001

Funding for this work was provided by the National Science Foundation (NSF), Inno-1002

vations at the Nexus of Food-Energy-Water Systems, Track 2 (Award 1639268). The au-1003

thors would like to thank Alexis Dufour and Darryl Dunn of the San Francisco Public1004

Utilities Commission (SFPUC) for helpful discussion and data provision. The views ex-1005

pressed in this work represent those of the authors and do not necessarily reflect the views1006

or policies of the NSF or SFPUC. All code and data for this project, including figure gen-1007

eration, are available in a live repository (https://github.com/ahamilton144/hamilton-1008

2020-managing-financial-risk-tradeoffs-for-hydropower) and a permanent archive (http://doi.org/10.5281/zenodo.3627730).1009

References1010

AghaKouchak, A., Cheng, L., Mazdiyasni, O., & Farahmand, A. (2014). Global1011

warming and changes in risk of concurrent climate extremes: Insights from the1012

2014 California drought. Geophysical Research Letters, 41 , 8847–8852. doi:1013

10.1002/2014GL0623081014

Alderman, H., & Haque, T. (2007). Insurance against covariate shocks: The role of1015

index-based insurance in social protection in low-income countries of Africa.1016

doi: 10.1596/978-0-8213-7036-01017

Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen, B., & Lettenmaier,1018

D. P. (2016). Value of long-term streamflow forecasts to reservoir opera-1019

tions for water supply in snow-dominated river catchments. Water Resources1020

Research, 52 , 4209–4225. doi: 10.1002/2015WR0178641021

–33–



manuscript submitted to Water Resources Research

Bank, M., & Wiesner, R. (2010). The Use of Weather Derivatives by Small-and1022

Medium- Sized Enterprises: Reasons and Obstacles. Journal of Small Business1023

and Entrepreneurship, 23 (4), 581–600. doi: 10.1080/08276331.2010.105935031024

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a1025

warming climate on water availability in snow-dominated regions. Nature, 438 ,1026

303–309. doi: 10.1038/nature041411027

Baum, R., Characklis, G. W., & Serre, M. L. (2018). Effects of Geographic Diversifi-1028

cation on Risk Pooling to Mitigate Drought-Related Financial Losses for Water1029

Utilities. Water Resources Research, 54 , 1–19. doi: 10.1002/2017WR0214681030

Berg, N., & Hall, A. (2015). Increased interannual precipitation extremes over Cal-1031

ifornia under climate change. Journal of Climate, 28 (16), 6324–6334. doi: 101032

.1175/JCLI-D-14-00624.11033

Berg, N., & Hall, A. (2017). Anthropogenic warming impacts on California snow-1034

pack during drought. Geophysical Research Letters, 44 , 2511–2518. doi: 101035

.1002/2016GL0721041036

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities.1037

Journal of Political Economy , 81 (3), 637–654. doi: 10.1086/2600621038

Blomfield, A., & Plummer, J. (2014). The allocation and documentation of hydro-1039

logical risk. Hydropower & Dams(5), 94–108. doi: 10.1093/rfs/15.4.12831040

Brown, C., & Carriquiry, M. (2007). Managing hydroclimatological risk to water1041

supply with option contracts and reservoir index insurance. Water Resources1042

Research, 43 , W11423. doi: 10.1029/2007WR0060931043

Brown, G. W., & Toft, K. B. (2002). How Firms Should Hedge. The Review of Fi-1044

nancial Studies, 15 (4), 1283–1324.1045

Bureau of Labor Statistics. (2019). CIP-All Urban Consumers. Retrieved from1046

https://data.bls.gov/cgi-bin/surveymost1047

California Data Exchange Center. (2018). Snow Query: Dana Meadows. Re-1048

trieved from http://cdec.water.ca.gov/cgi-progs/snowQuery?course1049

num=dan&month=%28All%29&start date=&end date=&csv mode=Y&data1050

wish=Raw+Data1051

California Energy Commission. (2018). Total System Electric Generation. Re-1052

trieved from https://www.energy.ca.gov/almanac/electricity data/1053

total system power.html1054

–34–



manuscript submitted to Water Resources Research

California Independent System Operator. (2018). 2017 Annual Report on1055

Market Issues and Performance (Tech. Rep.). California Independent1056

System Operator. Retrieved from http://www.caiso.com/Documents/1057

2017AnnualReportonMarketIssuesandPerformance.pdf1058

Carriquiry, M. A., & Osgood, D. E. (2012). Index Insurance, Probabilistic Cli-1059

mate Forecasts, and Production. Journal of Risk and Insurance, 79 (1), 287–1060

300. doi: 10.1111/j.1539-6975.2011.01422.x1061

Chicago Mercantile Exchange Group. (2007). Weather Futures and Options (Tech.1062

Rep.). Chicago Mercantile Exchange Group. Retrieved from www.cmegroup1063

.com/weather.1064

Chicago Mercantile Exchange Group. (2014). Snowfall Futures and Options (Tech.1065

Rep.). Chicago Mercantile Exchange Group. Retrieved from www.cmegroup1066

.com/snowfall.1067

Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolution-1068

ary Algorithms for Solving Multi-Objective Problems (2nd ed.; D. E. Gold-1069

berg & J. R. Koza, Eds.). Springer Science+Business Media, LLC. doi:1070

10.1046/j.1365-2672.2000.00969.x1071

Conradt, S., Finger, R., & Bokusheva, R. (2015). Tailored to the extremes: Quantile1072

regression for index-based insurance contract design. Agricultural Economics,1073

46 , 537–547. doi: 10.1111/agec.121801074

Cyr, D., & Kusy, M. (2007). Canadian Ice Wine Production: A Case for the Use1075

of Weather Derivatives. Journal of Wine Economics, 2 (2), 145–167. doi: 101076

.1017/s19314361000004071077

Denaro, S., Anghileri, D., Giuliani, M., & Castelletti, A. (2017). Informing the1078

operations of water reservoirs over multiple temporal scales by direct use of1079

hydro-meteorological data. Advances in Water Resources, 103 , 51–63. doi:1080

10.1016/j.advwatres.2017.02.0121081

Denaro, S., Castelletti, A., Giuliani, M., & Characklis, G. W. (2018). Fostering1082

cooperation in power asymmetrical water systems by the use of direct release1083

rules and index-based insurance schemes. Advances in Water Resources, 115 ,1084

301–314. doi: 10.1016/j.advwatres.2017.09.0211085

Deng, S., & Oren, S. (2006). Electricity derivatives and risk management. Energy ,1086

31 (6), 940–953. doi: 10.1016/j.energy.2005.02.0151087

–35–



manuscript submitted to Water Resources Research

Diffenbaugh, N. S., Swain, D. L., & Touma, D. (2015). Anthropogenic warming1088

has increased drought risk in California. Proceedings of the National Academy1089

of Sciences, 112 (13), 3931–3936. doi: 10.1073/pnas.14223851121090

Ellithorpe, D., & Putnam, S. (2000). Weather derivatives and their implications for1091

power markets. Journal of Risk Finance, 1 (2), 19–28. doi: 10.1108/eb0434421092

Foster, B. T., Kern, J. D., & Characklis, G. W. (2015). Mitigating hydrologic fi-1093

nancial risk in hydropower generation using index-based financial instruments.1094

Water Resources and Economics, 10 , 45–67. doi: 10.1016/j.wre.2015.04.0011095

Frees, E. W., & Valdez, E. A. (1998). Understanding relationships using copu-1096

las. North American Actuarial Journal , 2 (1), 1–25. doi: 10.1080/109202771097

.1998.105956671098

Fritze, H., Stewart, I. T., & Pebesma, E. (2011). Shifts in Western North American1099

Snowmelt Runoff Regimes for the Recent Warm Decades. Journal of Hydrome-1100

teorology , 12 (5), 989–1006. doi: 10.1175/2011jhm1360.11101

Froot, K., Scharfstein, D., & Stein, J. (1993). Risk Management: Coordinating1102

Corporate Investment and Financing Policies. The Journal of Finance, 48 (5),1103

1629–1648. doi: 10.1111/j.1540-6261.1993.tb05123.x1104

Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N. C., . . .1105

Jiao, Y. (2017). Large near-term projected snowpack loss over the western1106

United States. Nature Communications, 8 , 1–7. doi: 10.1038/ncomms149961107

Genest, C., & Favre, A.-C. (2007). Everything You Always Wanted to Know about1108

Copula Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering ,1109

12 (4), 347–368. doi: 10.1061/(asce)1084-0699(2007)12:4(347)1110

Genest, C., Favre, A. C., Béliveau, J., & Jacques, C. (2007). Metaelliptical copu-1111

las and their use in frequency analysis of multivariate hydrological data. Water1112

Resources Research, 43 (9), 1–12. doi: 10.1029/2006WR0052751113

Gleick, P. H. (2017). Impacts of California’s Five-Year (2012-2016) Drought on Hy-1114

droelectricity Generation (Tech. Rep.). Pacific Institute.1115

Gonzalez, P., Garfin, G., Breshears, D., Brooks, K., Brown, H., Elias, E., . . . Udall,1116

B. (2018). Southwest. In D. Reidmiller et al. (Eds.), Impacts, risks, and1117

adaptation in the united states: Fourth national climate assessment, volume1118

ii (p. 1101–1184). Washington, DC, USA: U.S. Global Change Research Pro-1119

gram. doi: 10.7930/NCA4.2018.CH251120

–36–



manuscript submitted to Water Resources Research

Hadka, D. (2015). MOEA Framework - A Free and Open Source Java Framework for1121

Multiobjective Optimization. Retrieved from http://moeaframework.org1122

Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolution-1123

ary computing framework. Evolutionary Computation, 21 (2), 231–259. doi: 101124

.1162/EVCO{\ }a{\ }000751125

Hall, A., Berg, N., Sun, F., Walton, D., & Schwartz, M. (2017). Significant and1126

Inevitable End-of-Twenty-First-Century Advances in Surface Runoff Timing in1127

California’s Sierra Nevada. Journal of Hydrometeorology , 18 (12), 3181–3197.1128

doi: 10.1175/jhm-d-16-0257.11129

Hull, J. C. (2009). Options, Futures, and Other Derivatives (8th ed.). Boston, MA:1130

Prentice Hall.1131

Jewson, S., Brix, A., & Ziehmann, C. (2005). Weather derivative valuation: The1132

meteorological, statistical, financial and mathematical foundations. Cambridge,1133

UK: Cambridge University Press. doi: 10.1017/CBO97805114933481134

Kapnick, S. B., Yang, X., Vecchi, G. A., Delworth, T. L., Gudgel, R., Malyshev, S.,1135

. . . Dunne, T. (2018). Potential for western US seasonal snowpack prediction.1136

PNAS , 115 (6), 1180–1185. doi: 10.1073/pnas.17167601151137

Kasprzyk, J. R., Reed, P. M., Characklis, G. W., & Kirsch, B. R. (2012). Many-1138

objective de Novo water supply portfolio planning under deep uncertainty. En-1139

vironmental Modelling and Software, 34 , 87–104. doi: 10.1016/j.envsoft.20111140

.04.0031141

Kern, J. D., Characklis, G. W., & Foster, B. T. (2015). Natural gas price un-1142

certainty and the cost-effectiveness of hedging against low hydropower rev-1143

enues caused by drought. Water Resources Research, 51 , 2412–2427. doi:1144

10.1002/2014WR0165331145

Kiparsky, M., Joyce, B., Purkey, D., & Young, C. (2014). Potential im-1146

pacts of climate warming on water supply reliability in the Tuolumne1147

and Merced River Basins, California. PLoS ONE , 9 (1), e84946. doi:1148

10.1371/journal.pone.00849461149

Larson, W. M., Freedman, P. L., Passinsky, V., Grubb, E., & Adriaens, P. (2012).1150

Mitigating corporate water risk: Financial market tools and supply manage-1151

ment strategies. Water Alternatives, 5 (3), 582–602.1152

Lund, J., Medellin-Azuara, J., Durand, J., & Stone, K. (2018). Lessons from Cal-1153

–37–



manuscript submitted to Water Resources Research

ifornia’s 2012-2016 Drought. Journal of Water Resources Planning and Man-1154

agement , 144 (10), 04018067. doi: 10.1061/(ASCE)WR.1943-5452.00009841155
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6 Tables1290

Table 1. Estimates for contextual financial parameters defining the state of the world (SOW)

in the baseline case, as well as sampling bounds for these parameters in the sensitivity analysis.

Discount rate and interest rates are real (i.e. net of inflation), and interest rates are relative to

the discount rate, as described in Section 3.9

Parameter Symbol Estimate Min Max

Fixed cost fraction (unitless) c 0.914 0.85 1.0

Real discount rate (%/year) δ 0.4 0.0 5.0

Real (relative) interest rate for fund (%/year) ∆F -1.73 -2.0 0.0

Real (relative) interest rate for debt (%/year) ∆D 1.0 0.0 5.0

Market price of risk (unitless) λ 0.25 0.0 0.5

Table 2. CFD slope and reserve fund limit for selected solutions shown in Figure 8, along

with the expected annualized cash flow Jcash, 95th percentile maximum debt Jdebt, and their

normalized values Ĵcash and Ĵdebt.

Solution CFD slope Reserve fund limit Jcash Ĵcash Jdebt Ĵdebt

($M/inch) ($M) ($M/year) (unitless) ($M) (unitless)

High cash flow (A) 0.00 6.45 10.90 0.99 27.35 2.49

Compromise (B) 0.32 16.05 10.37 0.94 11.25 1.02

Low debt (C) 0.96 19.64 9.53 0.87 2.54 0.23
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7 Figures1291

Stochastic
engine

Financial
simulation

model

Ensemble
aggregator

Stochastic
ensemble

Simulation 
objectives/
constraint

Candidate policies

Ensemble
objectives/
constraint

Borg MOEA

SOW
sampler SOWs

SOW

Policy

Stochastic
sample

Sensitivity
Analysis

Multi-Objective
Evolutionary 
Optimization

Monte Carlo 
Evaluation

Simulation

Figure 1. Schematic showing overall workflow for this study. Squares represent processes and

diamonds represent inputs/outputs. Dashed arrows show the feedback loop for the Borg Multi-

Objective Evolutionary Algorithm (MOEA), where the objective and constraint values for prior

candidate policy evaluations are used to generate new candidate policies for evaluation.
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Figure 2. Detailed representation of financial simulation model (as seen in Figure 1) at an

annual time step. Arrows denote information flows for the financial operations each year, and

dashed lines show information feedbacks from the prior year. A withdrawal (WD) can either be a

true withdrawal from (positive values) or a deposit to (negative values) the reserve fund.
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Figure 3. Distribution of historic and synthetic data points for snow water equivalent depth

(SWE) on February 1 vs. April 1 (top left), SWE index vs. annual hydropower generation (bot-

tom left), and SWE index vs. annual hydropower net revenue (right). Each plot shows a sample

of 500 synthetic data points, while the historic datasets contain 64, 29, and 29 observations,

respectively.
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Figure 4. (top) Monthly hydropower generation in historical and synthetic datasets. Results

are split into thirds based on the SWE index: dry, average, and wet. (b) Monthly average whole-

sale power prices in historical and synthetic datasets. Markers show means and error bars show

standard deviations.
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Figure 5. (top) Probability density for SWE index, a weighted average of February 1 and

April 1 observations. (bottom) Net payout of capped contract for differences (CFD). Three mar-

ket prices of risk are shown: no loading (λ = 0), baseline loading (λ = 0.25), and high loading

(λ = 0.5).
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Figure 6. Effect of CFD slope (in $M/inch SWE) on mean and lower 5th percentile of hedged

net hydropower revenues.
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Figure 7. Distribution of net hydropower revenues as a function of SWE index, both before

(“Unhedged”) and after (“Hedged”) adding the net payout from the CFD. Markers show means

and lines show the 5th-95th percentile band. Furthest right bin shows the statistics over all SWE

values. Contract slope set to $1.033 million per inch SWE, based on maximum of curve in Figure

6.
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Figure 8. Approximate Pareto-optimal set of solutions for two-objective optimization. The

grey star signifies the ideal combination of a maximized expected annualized cash flow (Jcash)

and minimized 95th percentile maximum debt (Jdebt). The tradeoff is demonstrated by three

highlighted solutions: a high cash flow strategy (A), a low debt strategy (C), and a compromise

strategy (B).
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Figure 9. Distribution of annualized cash flow (left) and maximum debt (right) over 20 years

for the three strategies highlighted in Figure 8: a high cash flow strategy (A), a low debt strat-

egy (C), and a compromise strategy (B). Dashed lines show the ensemble objectives used in the

optimization: expectation of annualized cash flow (left) and 95th percentile of maximum debt

(right).
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Figure 10. Set of possible tradeoffs between normalized debt objective (Ĵdebt) and normalized

cash flow objective (Ĵcash), after 150 samples of five contextual financial parameters defining

the state of the world (SOW). The optimal management strategy falls into three categories, as

seen in the legend: reserve fund only, CFD only, or both. Results for baseline 2016 parameter

estimates (as seen in Figure 8 are shown in black. The grey star signifies the ideal combination of

a maximized Ĵcash) and minimized Ĵdebt.
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Figure 11. Sensitivity of optimal risk management strategy and normalized debt objective

(Ĵdebt) to contextual parameters defining the state of the world (SOW): cost fraction (c, left),

discount rate relative to inflation (δ, top center), market price of risk (λ, top right), interest

rate markdown on reserve fund relative to discount rate (∆F , bottom center), and interest rate

markup on debt relative to discount rate (∆D, bottom right). Results for baseline 2016 parame-

ter estimates (as seen in Figure 8) are shown in black.
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Figure 12. Sensitivity of optimal risk management strategy and normalized cash flow objec-

tive (Ĵcash) to five contextual financial parameters defining the state of the world (SOW): cost

fraction (c, left), discount rate relative to inflation (δ, top center), market price of risk (λ, top

right), interest rate markdown on reserve fund relative to discount rate (∆F , bottom center), and

interest rate markup on debt relative to discount rate (∆D, bottom right). Results for baseline

2016 parameter estimates (as seen in Figure 8) are shown in black.
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