
manuscript submitted to Water Resources Research

Supporting Information for “Managing financial risk1

tradeoffs for hydropower generation using2

snowpack-based index contracts”3

Andrew L. Hamilton1,2, Gregory W. Characklis1,2, and Patrick M. Reed3
4

1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill,5

Chapel Hill, North Carolina, USA6

2Center on Financial Risk in Environmental Systems, University of North Carolina at Chapel Hill, Chapel7

Hill, North Carolina, USA8

3Department of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA9

Contents of this file10

1. Text S1 to S511

2. Tables S1 to S412

3. Figures S1 to S913

Corresponding author: Andrew L. Hamilton, andrew.hamilton@unc.edu

–1–



manuscript submitted to Water Resources Research

Introduction14

This text provides additional methodological details related to synthetic snow wa-15

ter equivalent depth (SWE) observations (Section S1), synthetic hydropower production16

(Section S2), synthetic wholesale power prices (Section S3), the financial simulation model17

used to translate hydropower generation and power prices into net revenues (Section S4),18

and the method used to price index contracts (Section S5). Tables S1-S4 provide param-19

eter estimates for the models described in Sections S1-S3. Figures S1-S3 provide sup-20

port for Sections S1, S2, and S5 respectively, while Figures S4-S9 provide additional re-21

sults beyond the main text.22

S1: Synthetic snow water equivalent depth (SWE)23

Both February 1 and April 1 snow water equivalent depth (SWE) measurements24

were available for each year 1952-2016, except 1963, a total of 64 years. The historical25

SWE record is not found to exhibit any statistically significant trend in at an annual time26

step (p = 0.45 and 0.59 for February 1 and April 1, respectively), nor does it exhibit27

significant autocorrelation at an annual time step (p > 0.05 on Ljung-Box test for all28

lags up to 15 years for both February 1 and April 1 observations). Let sF and sA be the29

n = 64 years of February 1 and April 1 snow water equivalent depth (SWE) observa-30

tions described by the stationary random variables SF and SA. These two variables are31

inherently correlated through the seasonal snow accumulation process. It is important32

that any synthetic SWE observations capture the dependency structure of the original33

dataset.34

Copulas provide a convenient way to capture this dependency. Let35

H(SF , SA) = C[FF (SF ), FA(SA)] (1)36

where H is the joint cumulative distribution function (cdf) of SF and SA, FF and FA37

are their marginal cdf’s, and C is the copula which dictates the dependency between the38

variables. Sklar showed that any joint distribution can be written in this form (Sklar,39

1973), which allows us to separate the treatment of the marginal distributions from their40

dependency structure.41
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The marginal distributions are found to be well described by gamma distributions,42

with probability density function (pdf)43

f(S) =
Sk−1e−x/θ

θkΓ(k)
(2)44

where Γ() is the gamma function and k and θ are the shape and scale parameters, re-45

spectively. The parameter estimates k̂ and θ̂ are calculated independently for February46

and April using maximum likelihood estimation, and can be found in Table S1. We fail47

to reject the null hypothesis that the historical observations are drawn from the fitted48

gamma distribution using the Kolmogorov-Smirnov test of goodness of fit, for both Febru-49

ary 1 (p = 0.54) and April 1 (p = 0.98) SWE.50

Next, the copula describing the dependency structure between the two variables51

is estimated. Copula estimation consists of two steps: selection of a functional form and52

estimation of the functional parameters. A wide variety of functional forms have been53

studied in the literature (Frees & Valdez, 1998; Genest & Favre, 2007). We choose to use54

the Gaussian copula, part of the larger metaelliptical class of copulas, for a variety of55

reasons. Firstly, it is flexible and easily extensible to more than two variables, unlike other56

classes such as Archimedean copulas. Although the current work only uses two variables57

(SF and SA), we would like our workflow to be easily extensible to larger datasets in the58

future. Secondly, it is simple and allows for efficient generation of synthetic data. Lastly,59

it is shown to effectively capture the empirical dependency between February 1 and April60

1 SWE, as will be shown shortly.61

In Equation 1, H is a cumulative distribution function (cdf), taking on values from62

0 to 1, as are the arguments to the copula (FF (SF ) and FA(SA)). Thus, the copula maps63

(0, 1)2 → (0, 1). Rewriting the copula arguments as UF and UA ∈ (0, 1), we can de-64

fine the Gaussian copula65

C(UF , UA) = Φ2,ρ(Φ
−1
1 (UF ),Φ−1

1 (UA)) (3)66

where Φ−1
1 is the inverse of the standard univariate normal cdf Φ1, and Φ2,ρ is the bi-67

variate joint cdf of standard normal variables with correlation ρ.68

This shows that the copula only depends on the cumulative probabilities U , inde-69

pendently of the marginal distributions F . This allows for efficient sampling through the70

following algorithm (Wang, 1999): (1) Sample values (zF , zA) from the bivariate stan-71

dard normal distribution with correlation ρ. For more than two variables, use the cor-72
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relation matrix Σ. (2) Calculate cumulative probabilities (uF = Φ1(zF ), uA = Φ1(zA)).73

(3) Calculate the SWE values with equivalent cumulative probabilities under the gamma74

marginal distributions, (sF = F−1
F (uF ), sA = F−1

A (uA)). This algorithm can be scaled75

up efficiently to generate many synthetic observations using modern statistical software.76

The correlation is the only parameter that needs to be estimated for a Gaussian77

copula. Following Genest et al., (Genest, Favre, Béliveau, & Jacques, 2007), we estimate78

the correlation using Kendall’s tau, a non-parametric analogue of correlation,79

τ̂FA =
CFA −DFA

CFA +DFA
(4)80

where CFA and DFA are the number of concordant and discordant pairs, respectively,81

in the historical dataset. The pair (i, j) are defined as concordant if (SF,i−SF,j)(SA,i−82

SA,j) > 0, and discordant otherwise. The estimate τ̂ is an asymptotically normal and83

unbiased estimator for the population value τ . Now the correlation estimate ρ̂ can be84

calculated using the relation:85

ρ̂ = sin

(
πτ̂

2

)
(5)86

The appropriateness of the Gaussian copula can be judged using a graphical ap-87

proach proposed by Genest & Favre (Genest & Favre, 2007). The approach is similar88

to the popular QQ-plot. Define the normalized order statistics,89

Wi =
1

n
#{j : SF,j <= SF,i, SA,j <= SA,i} (6)90

In other words, Wi gives the fraction of observations with SWE values that are less than91

or equal to observation i in both February and April. Wi takes values on (0, 1], and de-92

fines the empirical copula. The first step in the graphical approach is to calculate Wdata,93

the n = 64 dimensional vector of normalized order statistics for the historical data. Then94

M = 10, 000 synthetic samples of n years are generated from the fitted copula, and the95

order statistics (Wfitted,1, ...,Wfitted,M ) are calculated. Each W vector is sorted from96

smallest to largest. The mean, 5th percentile, and 95th percentile are calculated for each97

of the n = 64 positions, yielding the vectors Wfitted,mean, Wfitted,p5, and Wfitted,p95.98

Now the QQ-plot can be generated by scattering Wdata against Wfitted,mean. If the ob-99

served data’s dependency structure is well described by the fitted copula, then the plot-100

ted points should fall close to the one-to-one line. Sampling error bounds are estimated101

by Wfitted,p5, and Wfitted,p95. Figure S1 suggests that the fitted copula is a good fit for102

the historical SWE observations.103
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S2: Synthetic hydropower generation104

In order to capture the relationship between snowpack and monthly hydropower105

generation, separate predictors are developed for each month of the water year, using106

the 29 water years available, 1988-2016.107

For the first and last month of the water year (October and September), no sta-108

tistically significant relationship (at a 10% significance level) is found between Febru-109

ary 1 or April 1 SWE and hydropower generation. For these months expected genera-110

tion is constant and the model can be written111

Gconstantm,y = β0,m + rm,y (7)112

where Gconstantm,y is the hydropower generation in month m of water year y, β0,m, is the113

constant expected generation, and rm,y is the residual. The parameter estimate β̂0,m is114

the sample mean.115

The second class of model is a linear relationship between SWE and hydropower116

generation, written117

Glinearm,y = β0,m + β1,mSA/F,y + rm,y (8)118

where SF/A,y is either the February 1 or April 1 SWE value for water year y, and β0,m119

and β1,m are the intercept and slope parameters, respectively, to be estimated via lin-120

ear regression. In cases where both February 1 and April 1 models are statistically sig-121

nificant (at a 10% significance level), the best model is selected by minimizing the Akaike122

information criterion (AIC). We find that February 1 SWE is the best linear predictor123

for November, December, and January, while April 1 SWE is used for February, July,124

and August.125

For the peak snowmelt months of March through June, a clear upper threshold be-126

havior is evident in the scatter plot of SWE vs hydropower generation. This reflects that127

fact that in the wettest years, some water may need to be spilled without generating hy-128

dropower. For this reason, generation is fit to April 1 SWE by minimizing the sum of129

squared residuals for the following piecewise linear model:130

Gpiecewisem,y =


β0,m + β1,mSA,y + rm,y , SA,y < (β2,m − β0,m)/β1,m

β2,m + rm,y , else

(9)131

where β0,m and β1,m are the intercept and slope parameters of the increasing segment132

and β2,m is the expected generation in the constant segment above the SWE threshold.133
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The threshold is calculated based on these parameters as (β2,m−β0,m)/β1,m. Param-134

eter estimates for each monthly model described above can be found in Table S2, and135

models are visualized in Figure S2.136

As described in the main text, the model residuals for the historical observations137

are deseasonalized based on month and SWE. The deseasonalized residuals are then fit138

to an autoregressive (AR) model in order to remove autocorrelation. Because all data139

points have been deseasonalized, the process has zero mean and thus no constant term.140

Only one and three month lags are found to be statistically significant (at the 5% level),141

resulting in the following linear regression:142

r̃t = ϕ1r̃t−1 + ϕ3r̃t−3 + εt (10)143

where r̃t is the deseasonalized residual for month t in the historical record, r̃t−1 and r̃t−3144

are the deseasonalized residuals 1 and 3 months prior to observation t, and ϕ1, and ϕ3145

are the regression parameters. The final model residuals εt are not found to exhibit sig-146

nificant autocorrelation (Ljung-Box test, p > 0.18 for all lags up to 36 months) and are147

not found to differ significantly from normality (Shapiro-Wilk test, p = 0.79). Param-148

eter estimates for the AR model can be found in Table S3.149

S3: Synthetic wholesale power prices150

The seven years of historical power prices are first log-transformed and deseason-151

alized, as described in the main text. Let xt be the deseasonalized log-prices (p̃m,y in the152

main text) for the month t in the time series corresponding to (m, y). Now the desea-153

sonalized log prices can be fit to a seasonal autoregressive moving average (SARMA) model.154

Let SARMA(p, q)(P,Q)12 represent a SARMA model that combines an autoregressive155

model with lags of (1, .., p) months and 12∗(1, .., P ) months, and a moving average er-156

ror model with lags of (1, .., q) and 12∗(1, .., Q) months. Because all data points have157

been deseasonalized, the process has zero mean and thus no constant term. This model158

can be written:159

xt =

p∑
i=1

ϕixt−i +

P∑
j=1

ϕ12jxt−12j +

q∑
k=1

θkεt−k +

Q∑
l=1

θ12lεt−12l + εt (11)160

where ϕL is the autoregressive parameter for lag L, θL is the moving average error pa-161

rameter for lag L, and εt is the prediction error for month t. In order to choose the ap-162

propriate model order, regression parameters are estimated for all combinations of (p, q, P,Q),163

–6–



manuscript submitted to Water Resources Research

where each parameter is either 0 or 1 (a total of 16 models). From among the four mod-164

els with similarly low Bayesian Information Criterion (BIC) values (BIC(1,1,0,1) = 123.35,165

BIC(1,1,1,0) = 123.90, BIC(1,0,0,1) = 125.15, BIC(1,0,1,0) = 125.71), the SARMA(1, 0), (0, 1)12166

model is selected as the model which best matches the monthly patterns of the histor-167

ical data. This model consists of a single lag of one month for the autoregressive model,168

plus a moving average error model with a single lag of twelve months, and can be writ-169

ten:170

xt = ϕ1xt−1 + θ12εt−12 + εt (12)171

Parameter estimates for the SARMA model can be found in Table S4. The resid-172

uals from the SARMA model are not found to exhibit significant autocorrelation (p >173

0.1 on Ljung-Box test for all lags up to 36 months) and are not found to deviate signif-174

icantly from a normal distribution (Shapiro-Wilk test, p = 0.51).175

S4: Revenue model176

Given synthetic hydropower generation Gt and wholesale power prices Pt, the sim-177

ulated revenues Rt can be written:178

Rt = rMDM + rIDI
t + Pt(Gt −DM −DI

t ) (13)179

where rM and rI are the fixed volumetric rates for municipal customers and irrigation180

districts, respectively, and DM and DI
t are the fixed municipal demand and variable ir-181

rigation district demand.182

The municipal rate (rM = $0.1049/kWh) and demand (DM = 998.405 GWh/year)183

and are taken as their 2016 values from public financial statements (San Francisco Pub-184

lic Utilities Commission, 2016). The demand is calculated as the sum of four classes: “Gen-185

eral Fund Rate Subsidized,” “Enterprise Rate,” “Non-city Agencies,” and “Moccasin/City186

of Riverbank,” and the fixed rate is calculated as a sales-weighted average of the four187

class rates. Given that heating and cooling tend to drive variability in electricity demand,188

retail demand is fairly constant throughout the year due to the mild Bay Area climate189

in which temperatures do not deviate widely on a seasonal basis (San Francisco Public190

Utilities Commission, 2015). In light of this, it is assumed for this work that the demand191

is spread evenly across the year.192
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The fixed rate for Modesto and Turlock Irrigation Districts (MTID) is taken as the193

sales-weighted average value of the 2016 rates for the two districts in the financial state-194

ment (San Francisco Public Utilities Commission, 2016). In this work, we assume that195

MTID purchases a fixed fraction of excess hydropower generation above municipal de-196

mand, so that demand is fit to the model:197

DI
t = cmax(Gt −DM , 0)δPt>rI (14)198

where c, the fraction of excess hydropower generation that MTID will purchase, is a pa-199

rameter to be fit using linear regression. δPt>rI is an indicator function ensuring that200

MTID only purchases power from the utility when the fixed rate is lower than the whole-201

sale power rate. Using the historical annual sales volumes from 2010-2016 (San Francisco202

Public Utilities Commission, 2016), we find c = 0.483 (p < 0.01). This means that203

48.3% of the excess power in any given month is sold to MTID. The other 51.7% of ex-204

cess power is sold into the wholesale market.205

S5: Index contract pricing206

In order to find the contract loading and the corresponding reference value for the207

SWE index, which separates positive payouts at low SWE values and negative payouts208

at high SWE values, the capped contract for differences (CFD) structure is decomposed209

into two parts. The CFD can be seen as the sum of a “long put” position and a “short210

capped call” position, as shown in Supporting Information Figure S3. The long put po-211

sition provides linearly increasing payouts when the SWE index falls below a threshold212

called the “strike”, in exchange for an annual premium, while the short call position re-213

quires making payments when the SWE index falls below the strike, in return for receiv-214

ing an annual premium. A cap on call payments is applied at some higher threshold. The215

payouts shown in Figure S3 have been netted of premiums. The strike for both contracts216

is set at the 50th percentile of the SWE distribution (24.53 inches), while the cap is set217

at the 95th percentile (48.44 inches). The swap contract is created by summing these218

two positions.219

In order to price the premiums, the Wang transform, as described in Section 2.6.3220

of the main text, can be performed numerically for any payout cumulative distribution221

function (cdf) F (x). In this case, F (x) is the empirical cdf built from the synthetic con-222

tract payout time series, which is itself a function of the synthetic SWE index time se-223
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ries. For example, for the put contract,224

x = V ∗max(k − s, 0) (15)225

where V is the contract slope in dollars per inch, k is the strike value set as the median226

of the SWE distribution, and s is the SWE value observed. The contract premium is then227

calculated as the expected value of x under the risk-adjusted probability density func-228

tion (pdf) f∗(x). Thus, the expected net payout, x minus the premium, is equal to zero229

under the risk-adjusted pdf. After calculating the premiums for the long put and short230

capped call, the CFD structure is equivalent to the sum of these two positions. The “load-231

ing” in Section 2.6.3 of the main text is equal to the premium for the long put position232

minus the premium for the short capped call position. The reference value of SWE for233

the CFD is the intersection of net payout function with the x-axis.234

Following other work on weather derivative contracts (Baum, Characklis, & Serre,235

2018; Foster, Kern, & Characklis, 2015; Wang, 2002), the market price of risk param-236

eter is set as λ = 0.25 for the baseline value for the put contract in this study. How-237

ever, values between λ = 0 (no loading) and 0.5 (high loading) are included in the sen-238

sitivity analysis, as described in Section 2.9 of the main text, and the effect of this pa-239

rameter on the contract structure can be seen in Figure 5 of the main text. Because the240

short capped call position is used in payment for the long put position, rather than a sep-241

arate hedging contract, it is priced in the actuarially fair manner (i.e., λ = 0). If a risk242

loading were applied to this position, this would imply that the contract seller is will-243

ing to accept a lower (expected value) premium if it comes in variable payments rather244

than fixed payments, which is unlikely in practice.245
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Tables273

Table S1. Parameter estimates for synthetic snow water equivalent (SWE) model. All parame-

ters unitless.

Parameter Date Symbol Estimate

Gamma shape February 1 k̂F 2.9167

April 1 k̂A 5.1693

Gamma scale February 1 θ̂F 6.4355

April 1 θ̂A 5.7539

Copula correlation NA ρ̂FA 0.8017
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Table S2. Parameter estimates for monthly models of synthetic hydropower generation based

on SWE. Units for β̂0,m and β̂2,m are GWh per month, and units for β̂1,m are GWh per month

per inch of SWE.

Month SWE predictor Model β̂0,m β̂1,m β̂2,m

October NA Constant 83.76 NA NA

November Feb. 1 Linear 59.29 0.9182 NA

December Feb. 1 Linear 36.97 3.251 NA

January Feb. 1 Linear 43.05 3.639 NA

February Apr. 1 Linear 14.57 3.942 NA

March Apr. 1 Piecewise 48.67 4.691 230.8

April Apr. 1 Piecewise 91.66 3.774 226.4

May Apr. 1 Piecewise 126.8 3.179 235.9

June Apr. 1 Piecewise 33.29 6.045 232.8

July Apr. 1 Linear 45.54 3.532 NA

August Apr. 1 Linear 89.94 0.8156 NA

September NA Constant 93.68 NA NA

Table S3. Parameter estimates for autoregressive model for synthetic hydropower generation

residuals. All parameters unitless.

Parameter Symbol Estimate

Lag-1 weight ϕ̂1 0.5405

Lag-3 weight ϕ̂3 -0.1203

Table S4. Parameter estimates for seasonal autoregressive moving average (SARMA) model

for deseasonalized log power prices. All parameters unitless.

Parameter Symbol Estimate

Lag-1 autoregression weight ϕ̂1 0.8663

Lag-12 moving average error weight θ̂12 -0.3740
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Figures274

Figure S1. QQ-plot showing fit between normalized order statistics of the observed data and

the fitted Gaussian copula. Shaded region shows the 5th and 95th percentile sampling error for

the Gaussian copula.
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Figure S2. Hydropower generation as a function of snow water equivalent depth (SWE) for

each month in the water year. Fitted models (purple lines) shown against historical data (green

dots). The x-axis “predictor SWE” is February 1 SWE for October through January, and April 1

SWE for February through September.
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Figure S3. (top) Probability density for SWE index, a weighted average of February 1 and

April 1 observations. (bottom) Net payouts for three possible contract structures: a long put

position with a strike at the 50th percentile (24.53 inch), a short call position with a strike at

the 50th percentile and a cap at the 95th percentile (48.44 inch), and a capped contract for

differences (CFD) equal to the sum of the two previous positions.
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Figure S4. (top left) Normalized hypervolume of approximate Pareto sets from Borg MOEA

with 50 random seeds for baseline state of world (SOW). (all others) Normalized hypervolume of

approximate Pareto sets from Borg MOEA with 10 random seeds each for 12 randomly selected

SOWs.
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Figure S5. (top left) Generational distance metric for approximate Pareto sets from Borg

MOEA with 50 random seeds for baseline state of the world (SOW). (all others) Generational

distance metric for approximate Pareto sets from Borg MOEA with 10 random seeds each for 12

randomly selected SOWs.
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Figure S6. (top left) Epsilon indicator metric for approximate Pareto sets from Borg MOEA

with 50 random seeds for baseline state of the world. (all others) Epsilon indicator metric for

approximate Pareto sets from Borg MOEA with 10 random seeds each for 12 randomly selected

SOWs.
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Figure S7. Same as Figure 10 from main text, but showing all unfiltered results.

Figure S8. Same as Figure 11 from main text, but showing all unfiltered results.
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Figure S9. Same as Figure 12 from main text, but showing all unfiltered results.
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