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Text S1: Supplementary Methodology 

1. Culture experiments 

Living specimens of juvenile Arctica islandica (bivalvia) were collected from the Süderfart site in 

the Kieler Bucht to the north-east of Kiel, Germany (54°34’11”N, 10°51’59”E; see Schaefer et al., 

1985). All animals were placed in sand-filled containers in a basin with aerated seawater which 
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was refreshed two days a week with water from the Marsdiep tidal inlet directly outside the Royal 

Netherlands Institute for Sea Research (NIOZ, Texel, the Netherlands; 53°00’04”N, 4°47’23”E). 

Specimens used for this study were grown under four different, constant, and monitored 

temperature regimes: 1.1 ± 0.2°C, 3.2 ± 0.3°C, 15 ± 0.4°C and 18 ± 0.3°C and fed ad libidum with 

a suspension of Isochrysis galbana and Dunaliella marina algae. Specimens were left to 

acclimatize to the culturing conditions for four weeks. During the experiments, shell growth, 

temperature, phytoplankton cell counts, chlorophyll concentration, particulate organic carbon 

content and siphon activity were monitored. The experiment lasted for 95 days, after which the 

specimens were euthanized, and soft tissue was removed from the shells. Clean shells were 

rinsed with fresh water, dried at room temperature (~20°C), and stored under cool and dry 

conditions after the growth experiment. Additional details on the growing conditions of the 

specimens and the setup of the experiments can be found in Witbaard et al. (1998). 

 

2. Sampling strategy 

Aragonite from cleaned and dried shells from these lab-grown Arctica islandica specimens was 

sampled using a hand-held Dremel 3000 rotary drill at low speed equipped with a tungsten-

carbide drill bit. Minimal pressure was applied to carefully flake off parts of the shell and prevent 

heating of the samples due to friction, which may alter the ∆47 value of the aragonite (Staudigel 

and Swart, 2016). Care was taken to only sample the part of the shells that grew during the 

experiment. Pre-experimental shell material was easily avoided due to a clear growth line and 

color change that separated natural from lab-grown shell material (see Fig. S1). 

 

3. Clumped isotope analyses 

Aragonite aliquots were reacted with nominally anhydrous (103%) phosphoric acid at 70°C. The 

produced CO2 gas was led through two liquid nitrogen-cooled (−196°C) cryogenic traps and a 
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PoraPak™ Q trap (Merck KGaA, Darmstadt, Germany) kept at −40°C or (after October 2020) 

−50°C through a custom-built external cooling unit (Dennis and Schrag, 2010). The purified CO2 

gas was analyzed in micro-volume mode using the LIDI workflow with 400 s integration time 

against a clean CO2 working gas (δ13C = −2.82‰; δ18O = −4.67‰) and corrected for pressure 

baseline effects (Bernasconi et al., 2013; Meckler et al., 2014; Müller et al., 2017). Clumped 

isotope values were corrected to the Intercarb-Carbon Dioxide Equilibrium Scale (I-CDES) by 

creating an empirical transfer function (ETF) using measurements of ETH standards (ETH-1, -2 

and -3) and their accepted Intercarb values (Bernasconi et al., 2021). We applied the ETF in a 

moving window of 200 analyses before and after the sample, considering standards measured 

within a time window of 2–3 weeks surrounding the sample for its correction. This typically 

resulted in 13 ETH-1, 13 ETH-2 and 70 ETH-3 measurements to constrain the ETF for each 

sample aliquot. Higher amounts of ETH-3 standards were analyzed to better constrain 

uncertainties around the expected ∆47 values of samples (Kocken et al., 2019). Measurements of 

the ETH-3 standard were also included every 3‒5 samples to check for measurement drift at 

shorter timescales than the moving window of the ETF. 

 

4. Data compilation 

All included datasets except for Kluge et al. (2015) reported measured values for the ETH-1, -2 and 

-3 standards, yielding three anchor points for the reference scale calibration. The Kluge et al. (2015) 

data was calibrated to I-CDES using the ETH-3 and Carrara marble standard using the simplified 

linear correction in Appendix A of Bernasconi et al. (2021). To obtain an I-CDES ∆47 value for the 

Carrara marble standard (which is not reported in Bernasconi et al., 2021), we averaged the 19 

replicates of Carrara marble reported in Bernasconi et al. (2018) after correcting their values to the 

I-CDES scale through the ETH standards, resulting in a value of 0.325 ± 0.008‰ (95% confidence 

level). 
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Where possible, we used means and standard deviations of the calcification temperature of the 

samples as reported in the literature. Measurement uncertainty was often reported at the level of 

standard errors on the mean of multiple aliquots of the same sample. The standard deviation of 

∆47 values on individual aliquots was estimated from repeated measurements of reference 

materials not involved in the calibration (e.g. ETH-4 or Carrara marble) or, if these were not 

reported, by back-calculating the standard deviation from the standard error through multiplication 

by the square root of the sample size. In absence of uncertainties on the calcification 

temperature, the standard deviation of the temperatures was assumed to be 1°C for samples in 

the low-temperature domain (<100°C) and 10°C for high-temperature samples (the 850°C heated 

aragonites from Müller et al., 2017). 

The Guo et al. (2009) temperature dependencies were brought into the I-CDES reference frame 

by updating the ∆47-∆63 fractionation factor to 0.268‰ (following Dennis et al., 2011), applying the 

∆47-dependent scaling of the ∆47-∆63 fractionation factor of 35 ppm/‰ (cited in Guo et al., 2009 and 

implemented in Jautzy et al., 2020) and calibrating to the I-CDES scale using a linear calibration 

through the ∆47 values of ETH-1 and ETH-3. For this calibration, the “new” I-CDES values for ETH-

1 and ETH-3 were retrieved from Bernasconi et al. (2021) and the “old” CDES25 (CDES with 

reference to a reaction temperature of 25°C) values were obtained by solving the polynomial 

functions for the formation temperatures of the ETH standards (assumed to be 20°C for ETH-3 and 

600°C for ETH-1, following Meckler et al., 2014). 

 

5. Statistical evaluation 

Differences between temperatures and between specimens within the same temperature treatment 

were tested using a one-way ANOVA and post-hoc Tukey multiple pairwise comparisons (see S5). 

Uncertainties on ∆47 values and calcification temperatures on the aliquot level are propagated 

through all statistical procedures, and uncertainty-weighted means and 95% confidence levels of 

samples are used for plotting throughout the manuscript (see section 6 below). The difference in 
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reproducibility between aliquots measured on our MAT253 (σ of reproducibility of IAEA-C2 of 

0.046‰) and our MAT253 plus (σ of reproducibility of IAEA-C2 of 0.026‰) was considered in our 

error propagation by initially grouping aliquots by instrument and summarizing statistics (means 

and σ). The weighted mean and uncertainty of all aliquots from the same specimen or treatment 

group, but measured on different instruments, was then calculated by combining the statistics of 

groups of aliquots from the two machines and weighting the contribution of the two instrument 

groups by the factor 𝑁𝑁
𝜎𝜎2

, in which N is the number of aliquots in the instrument group and σ is the 

standard deviation representing the reproducibility within the group. For the value of σ, either the 

external standard deviation based on IAEA-C2 measurements on that instrument was used or the 

standard deviation between the ∆47 values of the aliquots within the group, whichever yielded the 

largest (and therefore most conservative) estimate of the uncertainty. This approach was based on 

work by Tatebe (2005) and Kirchner (2006) and the calculations are worked out in detail below 

(derivation) and S5 (R script). To incorporate uncertainty on both ∆47 values and calcification 

temperatures at the aliquot level into our regressions, we apply a York regression (York, 1966) that 

takes into account errors on the independent variable as implemented in the “bfsl” R package by 

Patrick Sturm (Sturm, 2018). This linear York regression is repeated for the full dataset and for the 

dataset excluding high temperature (>30°C) datapoints to test the effect of these measurements 

on the regression. Throughout these statistical evaluations, it is assumed that uncertainties on ∆47 

values and calcification temperatures are normally distributed. 

 

6. Calculating weighted means and standard deviations 

Suppose we have a dataset of measurements that measure the same quantity with different 

uncertainty. This difference in uncertainty can be taken into account when determining the mean 

and standard deviation of the dataset. In this document we derive equations for the weighted 

mean and standard deviation for a dataset of raw measurements, and for a dataset consisting 

pre-binned data in two or more bins. 
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6.1 Dataset of individual measurements 

Suppose we have a dataset consisting of several raw measurements, all with their own 

uncertainty. The mean and standard deviation of the dataset can be calculated by weighting the 

measurements, and the optimal choice of weights is based on the inverse of the measurement 

variance (Kirchner, 2006). 

To put this in mathematical terms: we have a dataset of 𝑛𝑛 measurements 𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛  each with 

known variance 𝜎𝜎12, … ,𝜎𝜎𝑛𝑛2 (note that we express the variance as the square of the standard 

deviation 𝜎𝜎). In order to calculate the weighted mean 𝜇𝜇 and standard deviation 𝜎𝜎, we define 

weights 𝑤𝑤𝑖𝑖 =  1 𝜎𝜎𝑖𝑖2 =  𝜎𝜎𝑖𝑖−2⁄  for 𝑖𝑖 = 1, … ,𝑛𝑛. Following equations (1) and (2) of Kirchner, (2006), we 

find: 

𝜇𝜇 =  ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

  

 

(1) 

𝜎𝜎 =  � 𝑛𝑛
𝑛𝑛−1

∙ ∑ 𝑤𝑤𝑖𝑖 ∙ ( 𝑥𝑥𝑖𝑖−𝜇𝜇 )2𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

   

 

(2) 

Note that in case of equal weights for all measurements (i.e.  𝑤𝑤𝑖𝑖 = 1 for 𝑖𝑖 = 1, … ,𝑛𝑛), Equations (1) 

and (2) coincide with the well-known formulas for unweighted mean and standard deviation: 

𝜇𝜇 =  ∑ 1 ∙𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 1𝑛𝑛
𝑖𝑖=1

= ∑ 𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1
𝑛𝑛

    

 

𝜎𝜎 =  � 𝑛𝑛
𝑛𝑛−1

∙ ∑ 1∙( 𝑥𝑥𝑖𝑖−𝜇𝜇 )2𝑛𝑛
𝑖𝑖=1

∑ 1𝑛𝑛
𝑖𝑖=1

=  � 𝑛𝑛
𝑛𝑛−1

∙ ∑ ( 𝑥𝑥𝑖𝑖−𝜇𝜇 )2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
=  �∑ ( 𝑥𝑥𝑖𝑖−𝜇𝜇 )2𝑛𝑛

𝑖𝑖=1
𝑛𝑛−1
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6.2 Binned datasets 

Consider now the situation where the raw measurements have been binned in two or more bins. 

We know the mean, standard deviation, and bin size of the bins. From this information, we can 

estimate the weighted mean and standard deviation of the combination of bins. In this case, we 

weight the measurements using the inverse of the bin variance.   

6.3 Dataset of two bins 

First suppose we have two bins. Let’s put this in mathematical terms again. We have two bins: 

𝐵𝐵1with mean 𝜇𝜇1, standard deviation 𝜎𝜎1, and size 𝑛𝑛1, and 𝐵𝐵2 with mean 𝜇𝜇2, standard deviation 𝜎𝜎2, 

and size 𝑛𝑛2. Bin 𝐵𝐵1 consists of (unknown) measurements 𝑦𝑦1 , … ,𝑦𝑦𝑛𝑛1, and 𝐵𝐵2 consists of (unknown) 

measurements 𝑧𝑧1 , … , 𝑧𝑧𝑛𝑛2. The combination of the bins has size 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 and consists of 

(unknown) measurements  𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛  = 𝑦𝑦1 , … , 𝑦𝑦𝑛𝑛1, 𝑧𝑧1 , … , 𝑧𝑧𝑛𝑛2. We want to estimate the weighted 

mean and standard deviation using weights 𝑤𝑤1 =  1 𝜎𝜎12⁄  for the measurements of 𝐵𝐵1, and 𝑤𝑤2 =

 1 𝜎𝜎22⁄  for the measurements of 𝐵𝐵2. The derivations in this section were inspired by the analysis of 

Tatebe (2005).   

For the weighted mean, we apply Equation (1) to find: 

𝜇𝜇  =  ∑ 𝑤𝑤𝑖𝑖∙𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

  Apply Equation (1) 
 

 =
∑ 𝑤𝑤1∙𝑦𝑦𝑖𝑖+ 𝑛𝑛1
𝑖𝑖=1 ∑ 𝑤𝑤2∙𝑧𝑧𝑖𝑖 

𝑛𝑛2
𝑖𝑖=1

∑ 𝑤𝑤1 + 𝑛𝑛1
𝑖𝑖=1 ∑ 𝑤𝑤2 𝑛𝑛2

𝑖𝑖=1
  Split sums into the two bins 

 

 

=
𝑤𝑤1∙∑ 𝑦𝑦𝑖𝑖+ 𝑛𝑛1

𝑖𝑖=1 𝑤𝑤2∙∑ 𝑧𝑧𝑖𝑖 
𝑛𝑛2
𝑖𝑖=1

𝑛𝑛1 ∙ 𝑤𝑤1+𝑛𝑛2 ∙ 𝑤𝑤2
  

 

The weights in the sums are constants, so the 

sums can be simplified 

 

 = 𝑤𝑤1∙ 𝑛𝑛1 ∙ 𝜇𝜇1+ 𝑤𝑤2∙ 𝑛𝑛2 ∙ 𝜇𝜇2
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

  For 𝐵𝐵1 we have ∑ 𝑦𝑦𝑖𝑖 =  𝑛𝑛1 ∙ 𝜇𝜇1,𝑛𝑛1
𝑖𝑖=1  

(3) 
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and a similar relation holds for 𝐵𝐵2. 

Note that in case of equal weighting (i.e., 𝑤𝑤1 =  𝑤𝑤2 = 1), Equation (3) comes down to a weighted 

mean that only takes the difference in bin size into account. 

The derivation for the weighted standard deviation is more elaborate. First, we apply Equation (2). 

Using the same line of reasoning as for the mean, we find: 

𝜎𝜎  =  � 𝑛𝑛
𝑛𝑛−1

∙ ∑ 𝑤𝑤𝑖𝑖 ∙ ( 𝑥𝑥𝑖𝑖−𝜇𝜇 )2𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

    
 

 =  � 𝑛𝑛
𝑛𝑛−1

∙
∑ 𝑤𝑤1∙( 𝑦𝑦𝑖𝑖−𝜇𝜇 )2+ 𝑛𝑛1
𝑖𝑖=1 ∑ 𝑤𝑤2∙( 𝑧𝑧𝑖𝑖−𝜇𝜇 )2 𝑛𝑛2

𝑖𝑖=1
∑ 𝑤𝑤1 + 𝑛𝑛1
𝑖𝑖=1 ∑ 𝑤𝑤2 𝑛𝑛2

𝑖𝑖=1
  

 

 = � 𝑛𝑛
𝑛𝑛−1

∙
𝑤𝑤1∙∑ ( 𝑦𝑦𝑖𝑖−𝜇𝜇 )2+ 𝑛𝑛1

𝑖𝑖=1 𝑤𝑤2∙∑ ( 𝑧𝑧𝑖𝑖−𝜇𝜇 )2 𝑛𝑛2
𝑖𝑖=1

𝑛𝑛1 ∙ 𝑤𝑤1+𝑛𝑛2 ∙ 𝑤𝑤2
  (4) 

We can rewrite the terms ∑ ( 𝑦𝑦𝑖𝑖 − 𝜇𝜇 )2 𝑛𝑛1
𝑖𝑖=1  and ∑ ( 𝑧𝑧𝑖𝑖 − 𝜇𝜇 )2 𝑛𝑛2

𝑖𝑖=1 to eliminate the unknown 

measurements 𝑦𝑦𝑖𝑖 and 𝑧𝑧𝑖𝑖 from the equation. We consider the first term and note that the same line 

of reasoning holds for the second term.  The keys to rewriting the terms are first adding 

(𝜇𝜇1 − 𝜇𝜇1 ) = 0 to the sum, and then writing out the product of sums in separate sums: 

∑ ( 𝑦𝑦𝑖𝑖 − 𝜇𝜇 )2 𝑛𝑛1
𝑖𝑖=1   =  ∑ �(𝑦𝑦𝑖𝑖 −  𝜇𝜇1) +  (𝜇𝜇1 − 𝜇𝜇 )�2 𝑛𝑛1

𝑖𝑖=1    

 =  ∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇1)2 + 2 (𝑦𝑦𝑖𝑖 − 𝜇𝜇1) ∙ (𝜇𝜇1 − 𝜇𝜇 ) +  (𝜇𝜇1 − 𝜇𝜇 )2 𝑛𝑛1
𝑖𝑖=1      

 =  ∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇1)2𝑛𝑛1
𝑖𝑖=1  +∑ 2 (𝑦𝑦𝑖𝑖 − 𝜇𝜇1) ∙ (𝜇𝜇1 − 𝜇𝜇 )𝑛𝑛1

𝑖𝑖=1  +∑ (𝜇𝜇1 − 𝜇𝜇 )2 𝑛𝑛1
𝑖𝑖=1     (5) 

We rewrite each of the three sums in Equation (5) separately. For the first sum, we use the 

formula of the (unweighted) standard deviation applied to bin 𝐵𝐵1: 
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∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇1)2𝑛𝑛1
𝑖𝑖=1    =  (𝑛𝑛1 − 1)  ∙  𝜎𝜎12  (6) 

For the second sum, we note that (𝜇𝜇1 − 𝜇𝜇) is a constant, so we can take it out of the summation: 

∑ 2 (𝑦𝑦𝑖𝑖 − 𝜇𝜇1) ∙ (𝜇𝜇1 − 𝜇𝜇 )𝑛𝑛1
𝑖𝑖=1   =  2 ∙ (𝜇𝜇1 − 𝜇𝜇) ∙ ∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇1)𝑛𝑛1

𝑖𝑖=1    

 =  2 ∙ (𝜇𝜇1 − 𝜇𝜇) ∙ �∑ 𝑦𝑦𝑖𝑖
𝑛𝑛1
𝑖𝑖=1 − ∑ 𝜇𝜇1

𝑛𝑛1
𝑖𝑖=1  �   

 =  2 ∙ (𝜇𝜇1 − 𝜇𝜇) ∙ � 𝑛𝑛1 ∙ 𝜇𝜇1   − ∑ 𝜇𝜇1
𝑛𝑛1
𝑖𝑖=1  �   

 =  2 ∙ (𝜇𝜇1 − 𝜇𝜇) ∙ ( 𝑛𝑛1 ∙ 𝜇𝜇1   −  𝑛𝑛1 ∙ 𝜇𝜇1 )   

 =  0  (7) 

For the third sum, we again use that (𝜇𝜇1 − 𝜇𝜇) is a constant: 

∑ (𝜇𝜇1 − 𝜇𝜇)2 𝑛𝑛1
𝑖𝑖=1   =  𝑛𝑛1 ∙ (𝜇𝜇1 − 𝜇𝜇)2  (8) 

Plugging Equations (6), (7) and (8) in Equation (5), we find: 

∑ ( 𝑦𝑦𝑖𝑖 − 𝜇𝜇 )2 𝑛𝑛1
𝑖𝑖=1   =  ∑ (𝑦𝑦𝑖𝑖 − 𝜇𝜇1)2𝑛𝑛1

𝑖𝑖=1  + ∑ 2 (𝑦𝑦𝑖𝑖 − 𝜇𝜇1) ∙ (𝜇𝜇1 − 𝜇𝜇)𝑛𝑛1
𝑖𝑖=1  + ∑ (𝜇𝜇1 − 𝜇𝜇)2 𝑛𝑛1

𝑖𝑖=1      

 =  (𝑛𝑛1 − 1)  ∙  𝜎𝜎12  +  𝑛𝑛1 ∙ (𝜇𝜇1 − 𝜇𝜇 )2  (9) 

The same derivation yields: 

∑ ( 𝑧𝑧𝑖𝑖 − 𝜇𝜇 )2 𝑛𝑛2
𝑖𝑖=1   =  (𝑛𝑛2 − 1)  ∙  𝜎𝜎22  +  𝑛𝑛2 ∙ (𝜇𝜇2 − 𝜇𝜇 )2    (10) 

Plugging Equations (9) and (10) in Equation (4), the formula for the weighted standard deviation 

becomes: 

𝜎𝜎  = � 𝑛𝑛
𝑛𝑛−1

∙ 𝑤𝑤1∙ (𝑛𝑛1−1) ∙ 𝜎𝜎1
2 + 𝑤𝑤1∙ 𝑛𝑛1 ∙(𝜇𝜇1−𝜇𝜇 )2 +  𝑤𝑤2∙ (𝑛𝑛2−1) ∙ 𝜎𝜎2

2+  𝑤𝑤2∙ 𝑛𝑛2 ∙(𝜇𝜇2−𝜇𝜇 )2

𝑛𝑛1 ∙ 𝑤𝑤1+𝑛𝑛2 ∙ 𝑤𝑤2
     (11) 

This equation consists of all known values, making use of Equation (3) for the mean 𝜇𝜇. Note that 

in case of equal weighting (i.e., 𝑤𝑤1 =  𝑤𝑤2 = 1), Equation (11) comes down to an unweighted 
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standard deviation of all measurements in the two bins in relation to the mean of Equation (3). 

Equation (11) can also be written in terms of only the characteristics of the two bins, by plugging 

Equation (3) in Equation (11) and rewriting the outcome. Consider the term (𝜇𝜇1 − 𝜇𝜇 )2. We can 

write: 

(𝜇𝜇1 − 𝜇𝜇 )2   = �𝜇𝜇1 −
𝑤𝑤1∙ 𝑛𝑛1 ∙ 𝜇𝜇1+ 𝑤𝑤2∙ 𝑛𝑛2 ∙ 𝜇𝜇2

𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2
 �
2
     

 = �𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2 
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

∙ 𝜇𝜇1 −
𝑛𝑛1 ∙𝑤𝑤1

𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2
∙ 𝜇𝜇1 −

𝑛𝑛2 ∙𝑤𝑤2
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

∙ 𝜇𝜇2�
2
  

 = � 𝑛𝑛2 ∙𝑤𝑤2 
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

∙ 𝜇𝜇1 −
𝑛𝑛2 ∙𝑤𝑤2

𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2
∙ 𝜇𝜇2�

2
   

 = � 𝑛𝑛2 ∙𝑤𝑤2 
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

∙  (𝜇𝜇1 − 𝜇𝜇2)�
2

   

 =  𝑛𝑛2
2 ∙ 𝑤𝑤2

2

(𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)2
(𝜇𝜇1 − 𝜇𝜇2)2   

In the same way we can rewrite:  

(𝜇𝜇1 − 𝜇𝜇 )2   =  𝑛𝑛1
2 ∙ 𝑤𝑤1

2

(𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)2
(𝜇𝜇2 − 𝜇𝜇1)2   

Now, we can use the fact that (𝜇𝜇2 − 𝜇𝜇1)2 =  (𝜇𝜇1 − 𝜇𝜇2)2 to simplify part of Equation (11): 

𝑤𝑤1 ∙ 𝑛𝑛1 ∙ (𝜇𝜇1 − 𝜇𝜇 )2  +  𝑤𝑤2 ∙  𝑛𝑛2 ∙ (𝜇𝜇2 − 𝜇𝜇 )2   

=  𝑤𝑤1 ∙ 𝑛𝑛1 ∙
𝑛𝑛2
2 ∙ 𝑤𝑤2

2

(𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)2
(𝜇𝜇1 − 𝜇𝜇2)2 +  𝑤𝑤2 ∙  𝑛𝑛2 ∙

𝑛𝑛1
2 ∙ 𝑤𝑤1

2

(𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)2
(𝜇𝜇2 − 𝜇𝜇1)2  

 

=  𝑤𝑤1 ∙ 𝑛𝑛1 ∙ 𝑛𝑛2
2 ∙ 𝑤𝑤2

2 + 𝑤𝑤2 ∙ 𝑛𝑛2 ∙ 𝑛𝑛1
2 ∙ 𝑤𝑤1

2

(𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)2
(𝜇𝜇1 − 𝜇𝜇2)2   

 

=  𝑤𝑤1 ∙ 𝑛𝑛1 ∙ 𝑤𝑤2 ∙ 𝑛𝑛2 ∙ (𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)
(𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2)2

(𝜇𝜇1 − 𝜇𝜇2)2   
 

=  𝑤𝑤1 ∙ 𝑛𝑛1 ∙ 𝑤𝑤2 ∙ 𝑛𝑛2 
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

(𝜇𝜇1 − 𝜇𝜇2)2  (12) 

Plugging Equation (12) into Equation (11), we find: 
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𝜎𝜎  = � 𝑛𝑛
𝑛𝑛−1

∙ 𝑤𝑤1∙ (𝑛𝑛1−1) ∙ 𝜎𝜎1
2 + 𝑤𝑤1∙ 𝑛𝑛1 ∙(𝜇𝜇1−𝜇𝜇 )2 +  𝑤𝑤2∙ (𝑛𝑛2−1) ∙ 𝜎𝜎2

2+  𝑤𝑤2∙ 𝑛𝑛2 ∙(𝜇𝜇2−𝜇𝜇 )2

𝑛𝑛1 ∙ 𝑤𝑤1+𝑛𝑛2 ∙ 𝑤𝑤2
       

 = �  𝑛𝑛1+ 𝑛𝑛2
(𝑛𝑛1+ 𝑛𝑛2−1) ∙(𝑛𝑛1 ∙ 𝑤𝑤1+𝑛𝑛2 ∙ 𝑤𝑤2)

∙ �𝑤𝑤1 ∙ (𝑛𝑛1 − 1) ∙ 𝜎𝜎12 + 𝑤𝑤2 ∙ (𝑛𝑛2 − 1) ∙ 𝜎𝜎22 + 𝑤𝑤1 ∙ 𝑛𝑛1 ∙ 𝑤𝑤2 ∙ 𝑛𝑛2 
𝑛𝑛1 ∙𝑤𝑤1+𝑛𝑛2 ∙𝑤𝑤2

(𝜇𝜇1 − 𝜇𝜇2)2�  (13) 

Equation (3) and (13) give the weighted mean and standard deviation in terms of the 

characteristics of the two bins. Filling in the weights  𝑤𝑤𝑖𝑖 =  𝜎𝜎𝑖𝑖−2, we arrive at 

𝜇𝜇  = 𝜎𝜎1
−2∙ 𝑛𝑛1 ∙ 𝜇𝜇1+ 𝜎𝜎2

−2∙ 𝑛𝑛2 ∙ 𝜇𝜇2
𝜎𝜎1
−2 ∙ 𝑛𝑛1 + 𝜎𝜎1

−2 ∙ 𝑛𝑛2
  (14) 

𝜎𝜎 = �  𝑛𝑛1+ 𝑛𝑛2
(𝑛𝑛1+ 𝑛𝑛2−1) ∙ �𝑛𝑛1 ∙ 𝜎𝜎1

−2 + 𝑛𝑛2 ∙  𝜎𝜎2
−2�

∙ �𝜎𝜎1−2 ∙ (𝑛𝑛1 − 1) ∙ 𝜎𝜎12 + 𝜎𝜎2−2 ∙ (𝑛𝑛2 − 1) ∙ 𝜎𝜎22 + 𝜎𝜎1
−2 ∙ 𝑛𝑛1 ∙ 𝜎𝜎2

−2 ∙ 𝑛𝑛2 
𝑛𝑛1 ∙ 𝜎𝜎1

−2 + 𝑛𝑛2 ∙  𝜎𝜎2
−2 (𝜇𝜇1 − 𝜇𝜇2)2�  

 
= �  𝑛𝑛1+ 𝑛𝑛2

(𝑛𝑛1+ 𝑛𝑛2−1) ∙ �𝑛𝑛1 ∙ 𝜎𝜎1
−2 + 𝑛𝑛2 ∙  𝜎𝜎2

−2�
∙ �𝑛𝑛1 + 𝑛𝑛2 − 2 + 𝜎𝜎1

−2 ∙ 𝑛𝑛1 ∙ 𝜎𝜎2
−2 ∙ 𝑛𝑛2 

𝑛𝑛1 ∙ 𝜎𝜎1
−2 + 𝑛𝑛2 ∙  𝜎𝜎2

−2 (𝜇𝜇1 − 𝜇𝜇2)2�  (15) 

6.4 Dataset of more than two bins 

Equation (3) gives the formula for a weighted mean of two bins. It can straightforwardly be 

generalized to hold for any number of bins 𝐵𝐵𝑗𝑗with means 𝜇𝜇𝑗𝑗, standard deviations 𝜎𝜎𝑗𝑗, sizes 𝑛𝑛𝑗𝑗, and 

weights 𝑤𝑤𝑗𝑗 =  1 𝜎𝜎𝑗𝑗2⁄ : 

𝜇𝜇  =
∑𝑤𝑤𝑗𝑗 ∙ 𝑛𝑛𝑗𝑗 ∙ 𝜇𝜇𝑗𝑗
∑𝑤𝑤𝑗𝑗 ∙  𝑛𝑛𝑗𝑗 

 =
∑𝜎𝜎𝑗𝑗

−2 ∙ 𝑛𝑛𝑗𝑗 ∙ 𝜇𝜇𝑗𝑗
∑𝜎𝜎𝑗𝑗

−2 ∙  𝑛𝑛𝑗𝑗 
     (16) 

In the same way, Equation (11) can be generalized to hold for any number of bins 𝐵𝐵𝑗𝑗, using 

Equation (16) for the mean 𝜇𝜇: 

𝜎𝜎  = � ∑𝑛𝑛𝑗𝑗
�∑𝑛𝑛𝑗𝑗�−1

∙
∑  𝑤𝑤𝑗𝑗  ∙ �𝑛𝑛𝑗𝑗−1� ∙ 𝜎𝜎𝑗𝑗

2 + 𝑤𝑤𝑗𝑗∙ 𝑛𝑛𝑗𝑗 ∙�𝜇𝜇𝑗𝑗−𝜇𝜇 �
2

  

∑𝑤𝑤𝑗𝑗 ∙  𝑛𝑛𝑗𝑗
      

 = � ∑𝑛𝑛𝑗𝑗
�∑𝑛𝑛𝑗𝑗�−1

∙
∑  𝜎𝜎𝑗𝑗

−2 ∙ �𝑛𝑛𝑗𝑗−1� ∙ 𝜎𝜎𝑗𝑗
2 + 𝜎𝜎𝑗𝑗

−2∙ 𝑛𝑛𝑗𝑗 ∙�𝜇𝜇𝑗𝑗−𝜇𝜇 �
2

  

∑𝜎𝜎𝑗𝑗
−2 ∙  𝑛𝑛𝑗𝑗
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 = � ∑𝑛𝑛𝑗𝑗
�∑𝑛𝑛𝑗𝑗�−1

∙
∑  �𝑛𝑛𝑗𝑗−1� + 𝜎𝜎𝑗𝑗

−2∙ 𝑛𝑛𝑗𝑗 ∙�𝜇𝜇𝑗𝑗−𝜇𝜇 �
2

  

∑𝜎𝜎𝑗𝑗
−2 ∙  𝑛𝑛𝑗𝑗

  (17) 

Note that Equations (13) and (15) for the standard deviation cannot readily be generalized to hold 

for any number of bins. In case of more than two bins, the weighted mean is first calculated using 

Equation (16), and then the standard deviation can be calculated using this mean and Equation 

(17). 
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Figure S1. Showing a shell of cultured Arctica islandica with a clearly visible growth mark 
highlighting transplantation into the culturing conditions. 
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Figure S2. Residuals of aragonite Δ47-temperature relationships. Showing the difference 
in clumped isotope value (ΔΔ47) between aragonite Δ47 data and the two Δ47-temperature 
regressions through the aragonite data compilation (see Fig. 2): A) Residuals relative to the 
York regression through the full dataset. B) Residuals relative to the York regression through 
only the low-temperature data (<30°C). Results are colored based on the study from which 
they originated and symbols code for the type of aragonite that was measured (see legend in 
A, following Fig. 2). Vertical and horizontal bars on symbols indicate uncertainty on Δ47 and 
formation temperature at the 95% confidence level. Note that some vertical error bars are 
cropped by the restricted extent of the vertical axis. The solid black line shows the unified 
clumped isotope calibration by Anderson et al. (2021) while the dashed black line represents 
the temperature relationship by Meinicke et al. (2020; 2021; only plotted for temperatures 
below 100°C). Grey solid and dashed lines represent, respectively, the theoretical calcite (“cc”) 
and aragonite (“ar”) temperature dependencies from Guo et al. (2009; projected on the I-CDES 
scale, see section 2.5 in the main text). 
 
 



 
 

15 
 

 

Figure S3. Zoomed out version of Figure 3 in the main text showing residuals of all A. islandica 
aliquots used in this study relative to the four previous clumped isotope temperature 
calibrations. 
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Overview of datasets included in aragonite compilation 
Sample 
type 

Temperature range ± 1σ  Number of ∆47 
aliquots 

Reference 

Precipitated 
aragonite 80 ± 2°C – 91 ± 0.5°C 11 Kluge et al., 2015 

Heated 
aragonite 850 ±10°C 35 Müller et al., 2017 

Cave 
deposit 47 ± 1°C 16 Breitenbach et al., 

2018 
Travertine 22.7 ± 1°C – 79.2 ± 1°C 78 Kele et al., 2015 

Foraminifera 9.7 ± 1°C – 18.5 ± 1°C 63 Piasecki et al., 2019 

Mollusk 6 ± 0.5°C 12 Bernasconi et al., 
2018 

Mollusk 22 ± 1°C – 28 ± 1°C 165 Caldarescu et al., 
2021 

Mollusk 1.1 ± 0.2°C – 18 ± 0.3°C 278 This study 
TOTAL  8  

Table S1. Overview of aragonite data from previous studies sued for the compilation in this 
study.   
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