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Abstract  40 

In geophysics, crowdsourcing is an emerging non-traditional environmental monitoring approach 41 

that encourages contributions of data from individual citizens. Because of their reliance on 42 

undertrained citizens and imprecise low-cost sensors, crowdsourced data applications suffer from 43 

different types of noises that can deteriorate the overall monitoring accuracy. In this study, we 44 

propose a machine learning approach for automatic Crowdsourced data Quality Control (CSQC) 45 

by detecting and removing noisy data points in spatially and temporally discrete crowdsourced 46 

observations. We design a set of features from the original and interpolated rainfall data, and 47 

apply them to train and test the CSQC models based on both supervised and non-supervised 48 

machine learning algorithms. Performances of the CSQC models under various scenarios 49 

assuming no further retraining are also tested (hereafter referred to as transferability). The results 50 

based on synthetic but realistic data show that the CSQC model can significantly reduce the 51 

overall rainfall estimation error. Under the stationary assumption, CSQC models based on both 52 

supervised and unsupervised algorithms can have decent performances in noisy data 53 

identification and overall rainfall estimation error reduction; however, if the model is transferred 54 

to other cities with different rainfall structure or noise composition (without retraining), the 55 

supervised Multi-Layer Perceptrons (MLPs) turns out to be the best performing one. 56 

Key points: 57 

 A machine learning-based quality control approach is proposed for crowdsourced rainfall 58 

data with discontinuity in both time and space 59 

 Quality control models are based on both supervised and unsupervised learning algorithms 60 

 Performances of quality control models under various scenarios with and without retraining 61 

are tested 62 

 The supervised multi-layer perceptron turns out to be the best performing algorithm under 63 

almost all scenarios 64 

  65 



1. Introduction 66 

In the recent years, crowdsourcing, an alternative data acquisition approach that involves the 67 

collection of data from individual citizens through the internet, social media, and smartphones, 68 

has been increasingly investigated, especially in the field of geophysics (Ebert et al., 2018; Wu & 69 

Wang, 2019). In comparison to the costly traditional geophysical data collection approach (that 70 

largely relies on expensive professional instruments) adopted by researchers and governments 71 

(de Vos et al., 2019), the crowdsourced approach uses human judgments or low-cost sensors of 72 

common citizens as the data source. It thus offers a way of obtaining massive data cost-73 

effectively. In some developing countries, crowdsourcing can be even a major source of 74 

geophysical data (Pingali, 2017). 75 

 76 

The crowdsourcing approach has been demonstrated to increase the spatial and temporal 77 

representativeness of geophysical observation network, and has been applied in a broad range of 78 

areas, e.g., climate research (Meier et al., 2017), air quality (Schneider et al., 2017), ecology 79 

(Hunt et al., 2017), geography (Fan et al., 2016), and especially, rainfall. In the past two decades, 80 

the number of personal weather stations (PWS) in the US has been growing exponentially from 81 

nearly 2,000 in 2001 to almost 100,000 in 2019 (Chen et al., 2019), significantly outnumbering 82 

the 9,300 professional rain gauges operated or managed by National Oceanic and Atmospheric 83 

Administration (NOAA) (Durre et al., 2013). In recent years, crowdsourcing-based rainfall 84 

monitoring is becoming even more attractive (Haklay, 2013) because of the continuous 85 

developments in information extraction from smartphones (Guo et al., 2019), low-cost sensors 86 

(e.g., surveillance cameras) (Jiang et al., 2019), microwave links (Overeem et al., 2016), and 87 

moving cars (Rabiei et al., 2016). The utilization of crowdsourced precipitation data has 88 

provided an essential supplement to traditional measurements based on ground gauges and radars 89 

(Fencl et al., 2017; Gosset et al., 2016).  90 

 91 

However, there can be significant uncertainties surrounding the quality of crowdsourced data, 92 

and proper quality control is required to filter out crowdsourced observations with overly large 93 

errors (hereafter referred as the noisy data) (Foody et al., 2013; Steger et al., 2017; Walker et al., 94 

2016). Meanwhile, crowdsourced rainfall data are heterogeneous and unstructured in nature, and 95 

therefore require specialized methods to handle the noisy data, improve data quality, and produce 96 



useful information for different applications (Zheng et al., 2018). In rainfall monitoring, 97 

instrumental errors, compromised setup, data processing issues, operation noise from untrained 98 

crowdsourced participants, and sampling error can all lead to noise observations (de Vos et al., 99 

2019; Walker et al., 2016). These can be attributed to anthropogenic factors (e.g., incorrect 100 

location report) and equipment errors (e.g., camera lens failure). For example, in many cases, 101 

twitter data are considered to be lack of credibility as only 1%-2% of the data are geo-labeled 102 

and readily interpretable (Middleton et al., 2013; Palen & Anderson, 2016). Similarly, the data of 103 

PWS are more error-prone than traditional rain gauges as they are usually subject to installation 104 

and maintenance deficits (e.g., devices may clog after windy weather) (Bell et al., 2015).  105 

 106 

In geophysical studies, many approaches have been proposed to improve the accuracy and 107 

quality of the crowdsourced data. Some compare the crowdsourced data with expert judgments 108 

or a gold-standard data set (Kazai et al., 2013; Zheng et al., 2018). But such a method is 109 

considered to be not scalable for two reasons: i) the limited number of experts available when 110 

compared to a large number of crowdsourced participants, and ii) the benchmarking database 111 

might be outdated (Goodchild & Li, 2012). Others identify the noisy data from crowdsourced 112 

observations by a set of preset rules. For example, de Vos et al. (2019) proposed a method to 113 

detect and filter four types of noises  from PWS observations through a set of if-then rules. These 114 

rules are based on a simple validity test and comparison with adjacent observations, and specific 115 

thresholds of these rules are calibrated based on a large set of historical data. The method is easy 116 

to implement but too simple to be applicable for complex crowdsourced cases with multiple 117 

sources (rather than only PWS) of observations and unknown uncertainties. 118 

 119 

Other more advanced studies adopt machine learning (ML) approaches to identify noisy 120 

crowdsourced observations (Aggarwal, 2015; Goldstein & Uchida, 2016). The advantage of the 121 

machine learning approach lies in its ability to reliably approximate the complex, nonlinear 122 

relationship between the quality of a data point and its associated features. It also has the 123 

advantages of flexibility and scalability to adapt to different application scenarios, as well as the 124 

ability to avoid overly subjective judgment on the thresholds of quality control rules 125 

(Allahbakhsh et al., 2013; Alpaydin, 2014; Lease, 2011; Leigh et al., 2019). For instance, Moatar 126 

et al. (1999) applied artificial neural networks (ANNs, a supervised learning model) to quality 127 



control a river water PH estimate model. The ANNs model was used for detecting abnormal 128 

values, discontinuities, and drifts in PH measurement screening. Talagala et al. (2019) introduced 129 

an unsupervised learning approach aimed to detect anomalies (including sudden spikes, isolated 130 

drops, and level shifts) in in-situ water quality (turbidity, conductivity, and river level) 131 

monitoring data. Their study emphasized the advantages of unsupervised learning as it does not 132 

require labeled data for training and can be readily transferable to other similar scenarios without 133 

additional retrain, while such an ability (transferability) is untested. 134 

 135 

The previous studies have developed sound, initial steps for effective quality control of 136 

crowdsourced data. However, they are only applicable to fixed-point sensors with continuous 137 

observation and might not be effective in the quality control of more general crowdsourced 138 

rainfall observations from both mobile and fix-point sensors that collect data at various 139 

frequencies (Yang & Ng, 2017). The design of a quality control algorithm for the general 140 

crowdsourced rainfall data is a non-trivial task. The crowdsourced data could be non-continuous 141 

in both space and time, and it is difficult to extract directly useful information from adjacent or 142 

historical observations as the previous studies do. Moreover, there is a need to systematically 143 

compare the performances of supervised and unsupervised learning techniques in identifying 144 

noisy crowdsourced observations, especially in terms of their applicability to other locations 145 

and/or scenarios without further retraining (i.e., the transferability). In general, among the two 146 

approaches, supervised learning should be performing better with conditions similar to its 147 

training data, but its performance might be compromised when the input dataset is not seen by 148 

the model during the training phase; unsupervised learning usually could have consistent 149 

performances with different sets of input data, but it generally does not perform better than the 150 

supervised learning algorithms when there exist high-quality training labels (Mohammady et al., 151 

2015; Sathya & Abraham, 2013). It is unclear which approach is performing better in terms of 152 

transferability and, therefore, should be selected as the recommended practice. 153 

 154 

In this study, we develop a machine learning-based quality control mechanism to detect noisy 155 

data in general crowdsourced rainfall observations that consist of non-continuous data in both 156 

space and time. A set of supervised and unsupervised algorithms are trained and tested for their 157 

ability to identify the noisy points, as well as their performances with unseen inputs/scenarios 158 



without retraining. The testing is made with synthetic but realistic data assuming climate 159 

conditions from three major U.S. cities with different rainfall patterns. While the machine 160 

learning approach has been applied in identifying noise in environmental observations, according 161 

to our knowledge, what we propose is the first to propose an automatic algorithm to detect noise 162 

in a general type of crowdsourced observations. This study is also the first in testing the 163 

transferability of different supervised and non-supervised learning algorithms for data quality 164 

control. Given the increasing number of adoptions of crowdsourced-based environmental 165 

monitoring, this study provides a timely contribution to this specific area by introducing a robust 166 

and readily transferable algorithm to identify the largely unavoidable noisy points in data from 167 

those crowdsourcing projects. 168 

 169 

2. Methodology 170 

In this study, we propose a machine learning approach for Crowdsourced data Quality Control 171 

(CSQC), i.e., for detecting and removing noisy points in a general rainfall crowdsourced model 172 

that consists of discontinuous data in both space and time. Our procedure can be generalized into 173 

four main steps shown in Figure 1:  174 

    175 

Figure 1. General framework of CSQC procedure for noisy point identification in crowdsourced rainfall 176 
observation. 177 
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We first interpolate the crowdsourced rainfall data into a crowdsourcing rainfall field with 178 

gridded estimation of rainfall intensities. We then generate a set of input features from the 179 

crowdsourcing rainfall field and the original crowdsourced data, based on which the machine 180 

learning CSQC models are trained and tested. The CSQC model produces two labels for the 181 

crowdsourced observations: regular and noisy. As a final step, we filter the noisy observations 182 

and compare the original and quality-controlled observations via various performance metrics.  183 

 184 

2.1. Feature extraction 185 

We assume the crowdsourced rainfall data are coming from both fixed-point sensors and mobile 186 

citizens. To compensate the discontinuous information in crowdsourced data, we first interpolate 187 

(through nearest-neighbor interpolation, Jones et al., 2001) rainfall observations collected within 188 

a short time-duration into a spatial rainfall field (hereafter referred as the crowdsourcing rainfall 189 

field), assuming rainfall intensities during this short period of time would not change much. 190 

Features for the CSQC algorithm are then extracted from both the original and interpolated 191 

crowdsourced data. Two sets of features, i.e., the windows-based and distance-based features, are 192 

generated for each crowdsourced observation. 193 

 194 

With the crowdsourcing rainfall field, we construct a set of statistics from windows with various 195 

sizes centered around the grid cells where crowdsourced observations locate in (i.e., black 196 

squares in Figure 2), hereafter referred as window-based features. The constructed statistics 197 

include window maximum (Imax,W), minimum (Imin,W), range (window maximum minus 198 

minimum, (Iran,W)), average (Imean,W), standard deviation (Istd,W), variance (Ivar,W), absolute 199 

deviation (i.e., the difference between crowdsourced observation and window average, ADW), 200 

and relative deviation (i.e., the ratio of absolute deviation to window average, RDW) of the 201 

crowdsourcing rainfall field. We also include the lag-1 correlations between the estimated 202 

rainfall intensities (within the window) of the current time step and its previous time step as 203 

additional window-based features. A total of five different window lengths are selected ranging 204 

from 3 to 11 grid cells with an interval of 2 grid cells. It should be noted that, the window is 205 

truncated based on the study region boundary if it exceeds the study region (i.e., the 206 

crowdsourced observation locates in the edge of the study region). 207 

 208 



We further generate a set of distance-based features from the original crowdsourced observations. 209 

More specifically, we draw a circle with a specific radius (6 grid cells) around the target 210 

crowdsourced observation (the black circle in Figure 2), and calculate a set a statistics from the 211 

crowdsourced observations locate within the circle. The statistics include circle absolute 212 

deviation (i.e., difference between the target crowdsourced observation and the circle average, 213 

ADC), range (i.e., circle maximum minus minimum, Iran,C), and the absolute value of difference 214 

between range and sample point value(|Isample.C - Iran,C|) which indicates whether the sample point 215 

value is close to the extreme value of the interval. 216 

 217 

 218 

Figure 2. A graphical schematic of window-based and distance-based features extraction, a set of squares 219 
with a same center denotes the window-based features selection, the circle represents the distance-based 220 
features selection. 221 

 222 



2.2. Noisy data identification based on machine learning models 223 

In this study, we develop and test two supervised (kNN: k-Nearest Neighbors; MLPs: Multi-layer 224 

Perception) and two unsupervised (iForest: Isolation Forest; K-means clustering) machine 225 

learning algorithms regarding their ability in identifying noisy data from a general type of 226 

crowdsourced observations. Inputs to the ML models are the features extracted in section 2.1, 227 

and the target is the binary label of the crowdsourced observation: noisy and regular. The 228 

supervised learning algorithm assumes a set of pre-labeled crowdsourced data, based on which a 229 

classification rule is trained. The unsupervised learning algorithm assumed no such pre-labeled 230 

dataset and learns the division of noisy and regular observations from only a dataset of input 231 

features.  232 

 233 

k-Nearest Neighbor algorithm (kNN) is an instance-based model that classifies a target instance 234 

based on its k nearest pre-labeled instances in the high dimensional space defined by input 235 

features (Zhang et al., 2017). kNN is an easy to implement albeit highly efficient supervised 236 

learning algorithm that has been widely applied in a wide range of studies (Bhatia, 2010; 237 

Peterson, 2009; Saini et al., 2013) It is also a flexible model that makes no assumption about the 238 

form of input-output relationships or distributions. Multi-layer perceptrons (MLPs) is a type of 239 

artificial neural network (ANN) widely applied in many fields too (Altunkaynak & Strom, 2009; 240 

Ding et al., 2013; Sahoo et al., 2017). MLPs consists of stacked layers (one input layer, one or 241 

more hidden layers, and one output layer) of interconnected nodes. The nodes (i.e., Neurons) are 242 

basic components of MLPs that treat outputs from previous layer’s neurons through an activation 243 

function. The flexibility in the choice of network architecture (i.e., number of layers and number 244 

of neurons in each layer) and activation function gives MLPs a learning ability to approximate 245 

complex nonlinear relationships in high precision.  246 

 247 

Isolation Forest (iForest) is a tree-based unsupervised learning algorithm (Liu et al., 2008). It is 248 

developed based on the idea that outliers should be scarce and abnormal, and thus, when 249 

compared to non-outliers, they are easier to be isolated through a set of random partitioning trees. 250 

iForest is an algorithm specially designed for detecting outlier/noise, and it also holds the 251 

advantage of easy implementation and high computational efficiency. K-Means is an 252 

unsupervised clustering algorithm, where each cluster is defined based on the cluster center 253 



located in the input space. Given a training sample and a pre-specified number of clusters, K-254 

Means automatically finds the cluster centers through an iterative approach, and then assigns 255 

instances to their closest clusters. K-Means is well-suited for large sample clustering and has 256 

widely used in different fields (Kanungo et al., 2002) including noise detection (Lima et al., 257 

2010). 258 

 259 

To train the supervised learning and unsupervised learning models, a random training-testing 260 

splitting is used with 70% of the collected data for training and 30% for testing. The training is 261 

performed with a five-fold cross-validation to avoid overfitting. Before training, we implement a 262 

min-max scaling to normalize input features into consistent ranges. Given the large number of 263 

features extracted in section 2.1, we adopt a feature selection process to identify a parsimonious 264 

model that is relatively resistant to over-fitting. In the process, the features with the highest 265 

importance measured by the Extra Tree algorithm (Geurts et al., 2006) are selected. The number 266 

of most important features is identified through a trial and error method as the one with the 267 

highest binary classification accuracy. Based on preliminary analysis, 5 features are selected for 268 

the unsupervised learning algorithms (Table S2 in the SI) and all features extracted in section 2.1 269 

are selected for the two supervised learning algorithms.  270 

 271 

Each of the supervised and unsupervised learning algorithms is associated with several hyper-272 

parameters that need to be specified. A list of the hyper-parameters for each algorithm and their 273 

specific meanings are shown in Table S1 in the SI. In this study, we use an exhaustive cross-274 

validated grid-search to identify the optimal combination of hyper-parameter values over pre-275 

specified ranges. The accuracy score evaluated with the validation set is selected as the 276 

performance measure of the grid-search algorithm (see Table S1 in SI for the optimal hyper-277 

parameter values selected in this study). Further structure details and relevant settings (including 278 

activation function, optimization method, etc.) of MLPs can be referred to section I of the SI. 279 

The supervised and unsupervised algorithms and the grid-search hyper-parameter optimization 280 

method are implemented with the ‘scikit-learn’ package (Pedregosa et al., 2011) in Python.  281 

 282 



2.3. Case studies 283 

2.3.1 Study area and data 284 

In this study, three cities with significantly different climatic conditions are included: San Diego, 285 

Chicago, and Miami. San Diego has a Mediterranean climate with annual average rainfall 286 

ranging 230-330 mm; Chicago shows a typical hot-summer humid continental climate with most 287 

of its rainfall brought by severe and short thunderstorms, and its average annual rainfall reaches 288 

965 mm; finally, Miami has a tropical monsoon climate, and most of its 1,572 mm annual 289 

rainfall comes during June - October. The radar data collected from the Next Generation 290 

Weather Radar (NEXRAD) system (NOAA, 2013; available at https://www.ncdc.noaa.gov/data-291 

access/radar-data/nexrad) are used as the ‘ground-truth’ rainfall data in the three cities. The radar 292 

data has a 500 m  500 m  5 mins resolution and covers a 40 × 20 km2 space. Data from San 293 

Diego is used to train the CSQC model with supervised and unsupervised algorithms. Further, to 294 

verify the robustness of the CSQC procedure, the trained model is directly applied and tested 295 

with rainfall data from Chicago and Miami. Table 1 shows detailed statistics of the selected 296 

storm events from the three cities. 297 

 298 

Table 1. Summary statistics of rainfall events, the statistics are calculated from observed radar data from 299 
the Next Generation Weather Radar (NEXRAD) system. 300 

 Date of event 
Timing of 

corresponding event 
Average rainfall 

intensity (mm/hr) 

Standard deviation of 
rainfall intensity 

(mm/hr) 
San Diego 2014/12/12 23:00-24:00 UTC 4.23 7.68 

2015/05/08 21:30-22:30 UTC 3.12 5.91 
2015/09/15 21:35-22:35 UTC 1.23 2.37 
2015/10/05 21:00-22:00 UTC 4.96 11.89 
2015/11/04 05:05-06:05 UTC 1.46 4.69 

City of the 
Chicago 

2013/04/18 06:30-07:30 UTC 26.36 34.02 
2013/05/20 05:00-06:30 UTC 8.74 13.10 
2013/05/29 03:50-05:00 UTC 4.17 28.71 

City of the 
Miami 

2013/04/30 21:10-22:20 UTC 12.38 36.23 
2013/05/01 21:30-22:50 UTC 7.42 31.82 
2013/05/20 10:00-23:50 UTC 16.88 35.92 

 301 

2.3.2 Synthetical data generation 302 

We test the CSQC model developed in sections 2.1 and 2.2 through a set of synthetic but realistic 303 

scenarios. In those scenarios, a set of ‘ground-truth’ rainfall fields are assumed as the radar 304 

rainfall data collected in section 2.3.1. Given that, we assume the crowdsourced observations are 305 



taken by the participants at random locations and time points. The synthetic crowdsourced data 306 

are generated by adding an observation error to the ‘ground-truth’ rainfall intensity at locations 307 

and time where crowdsourced observations are taking place, following Yang & Ng (2017): 308 

𝐸 ~ 𝑁 ሺ𝛽௘ ∙ 𝐼𝑡𝑟𝑢𝑒, ሺ𝛼௘ ∙ 𝐼𝑡𝑟𝑢𝑒ሻ2ሻ (1) 309 

where E denotes the observation error, N () a normal distribution, 𝛼௘ the coefficient of variation, 310 

and 𝛽௘ the coefficient of bias. We further assume that crowdsourced observations are provided 311 

by two types of participants, i.e., regular participants and low-performing participants. For 312 

observations from regular participants, we adopt a suggestion from Mazzoleni et al. (2017) and 313 

set 𝛼௘ as a random variable following uniform distribution ranging from 0.1 to 0.2, and 𝛽௘ a 314 

uniformly distributed random variable ranging from -0.15 to 0.15. 𝛼௘ and 𝛽௘ values for 315 

observations from low-performing participants are having larger values, and we test ten 316 

scenarios of their values as shown in Table 1.  317 

 318 

Distributions of real-world observation errors are more complex and might be skewed (Dennis et 319 

al., 2006). To test the impact of a skewed observation error distribution on the performances of 320 

CSQC algorithms, we generate a separate set of synthetic crowdsourced observations with a 321 

random error following the Wald distribution. Wald distribution is a special case of inverse 322 

Gaussian distribution with its shape flexibly controlled by two parameters: the mean 𝜇 and the 323 

scale 𝜆. An illustration for the probability density functions of Wald distribution under different 324 

𝜇 and 𝜆 values are shown in Figure S8 in SI. In this study, we fix the ratio of 𝜇 and 𝜆 to be 2 to 325 

make the Wald distribution positively skewed. To make a fair comparison between the Normal 326 

distribution and Wald distribution scenarios, we manipulate the value of 𝜇 and 𝜆 to generate a set 327 

of Wald distributions with their means and standard deviations equal to the values shown in 328 

Table 1.  329 

 330 

We then manually label the generated crowdsourced observations into ‘regular observation’ and 331 

‘noisy observation’ for the supervised learning algorithms. An observation is labeled noisy using 332 

two criteria: a relative error criterion and an absolute error criterion. The former follows Bauer et 333 

al. (2002), which identifies an observation as noisy only if its value is smaller than 50% or larger 334 

than 150% of the ‘ground truth’; the latter requires the noisy observation to have an error at least 335 

larger than 0.1 (mm/hr). The rule to identify noisy observation can be formulated as: 336 



|𝐼௢௕௦ െ 𝐼௧௥௨௘| ൐  0.5 ൈ 𝐼௧௥௨௘  &  |𝐼௢௕௦ െ 𝐼௧௥௨௘| ൐  0.1 ሺmm/hrሻ  (2) 337 

where 𝐼௢௕௦ is the observed rainfall intensity, and 𝐼௧௥௨௘ the ‘ground truth’ intensity. If a 338 

crowdsourced observation follows the rule specified in equation (5), it will be labeled as noisy; 339 

otherwise it will be labeled as regular. 340 

 341 

2.3.3. Scenario design 342 

 343 
Table 2. Noise related and Crowdsourced density scenarios setting  344 
Noise Level scenarios 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

𝛽௢ 
[-0.35, 
0.45] 

[-0.35, 
0.55] 

[-0.35, 
0.65] 

[-0.35, 
0.75] 

[-0.35, 
0.85] 

[-0.35, 
0.95] 

[-0.35, 
1.05] 

[-0.35, 
1.15] 

[-0.35, 
1.25] 

[-0.35, 
1.35] 

𝛼௢ 
[0.7, 
1.3] 

[0.8, 
1.4] 

[0.9, 
1.5] 

[1.0, 
1.6] 

[1.1, 
1.7] 

[1.2, 
1.8] 

[1.3, 
1.9] 

[1.4, 
2.0] 

[1.5, 
2.1] 

[1.6, 
2.2] 

Noise 
amount 

35% 

CS 
density 
(km2*hr

) 

0.75 

           
Noise Amount scenarios 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
𝛽௢ [-0.35, 0.95] 
𝛼௢ [1.2, 1.8] 

Noise 
amount 

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

CS 
density 
(km2*hr

) 

0.75 

           
CS Density scenarios 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 
𝛽௢ [-0.35, 0.95]  
𝛼௢ [1.2, 1.8] 

Noise 
amount 

35% 

CS 
density 
(km2*hr

) 

0.375 0.750 1.125 1.500 1.875 2.250 2.625 3 3.375 3.750 

 345 

For each set of ‘ground truth’ rainfall data, we generate a series of scenarios which are described 346 

by three variables: noise level, noise amount, and crowdsourcing density. The noise level focuses 347 

on the magnitude of noise defined by the 𝛼௘ and 𝛽௘ values (equation 1) of low-performing 348 



participants. The noise amount equals to the portion of low-performing participants in the whole 349 

crowdsourcing dataset, and the crowdsourcing density is the total number of crowdsourced 350 

observations per time step in the study area. The three factors could potentially alter the 351 

distribution of crowdsourced observation errors and therefore have an impact on the 352 

performances of different CSQC algorithms. Among all the scenarios, we set a benchmark 353 

scenario with 𝛼௘ ∈ [1.2, 1.8], 𝛽௘ ∈ [-0.35, 0.95], noise amount equal to 35%, and crowdsourcing 354 

density equal to 0.75/(km2*hr). In addition, we generate a series of noise level scenarios, noise 355 

amount scenarios, and crowdsourcing density scenarios by varying one parameter of the 356 

benchmark scenario at a time (Table 2).  357 

 358 
2.4. Sensitivity analysis and model transfer 359 

In this study, we test different CSQC algorithms under two different settings: i) a sensitivity 360 

analysis that retrains the CSQC algorithms under different scenarios, and ii) a model 361 

transferability test that directly apply a trained CSQC model to different scenarios without re-362 

train. Under the sensitivity analysis setting, the four CSQC algorithms in section 2.2 are trained 363 

and tested for each of the crowdsourcing scenarios in Table 1 by assuming the ‘ground truth’ 364 

rainfall field from San Diego. Under the model transfer setting, the CSQC algorithms are first 365 

trained with the benchmark scenario in San Diego and subsequently tested without re-train under 366 

all crowdsourcing scenarios in Table 2 in San Diego, as well as in Chicago and Miami where 367 

climate conditions are significantly different from San Diego.  368 

 369 

Results from the sensitivity analysis could be helpful for understanding the impact of Noise 370 

Level, Noise Amount, and CS Density on performances of different CSQC algorithms, and 371 

results from the model transferability test provide information for the generalization properties of 372 

the CSQC models. Combing the two information, practical guidance for the choice of CSQC 373 

algorithm with high performance and flexibility could be generated for practitioners. 374 

 375 

2.5. Comparison statistics 376 

Two types of statistics are used in this study: statistics for noise identification and for rainfall 377 

field estimation. Identification of noisy crowdsourced observation is a typical binary 378 

classification or clustering task, and we use four statistics to quantify the binary classification 379 



performances of different CSQC algorithms, namely the classification accuracy, negative 380 

predictive value (NPV), positive predictive value (PPV), and area under the receiver operating 381 

characteristic curve (AUC).  382 

 383 

Accuracy measurement explains the overall effectiveness of a classifier in making correct 384 

predictions, and is calculated as: 385 

Ac𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  ்௉ା்ே

்௉ାி௉ାிேା்ே
 (3) 386 

where FP denotes the number of false positive instances; FN the number of false negative 387 

instances; TP the number of true positive instances; and TN the number of true negative 388 

instances. Here a positive instance represents a noisy label for the crowdsourced observation, and 389 

negative instance the regular label. 390 

 391 

Negative Predictive Value (NPV) and Positive Predictive Value (PPV) (Ranawana & Palade 392 

2006) provide more detailed information about the performance of a model in predicting positive 393 

and negative instances: 394 

𝑁𝑃𝑉 ൌ  ்ே

ிேା்ே
 (4) 395 

𝑃𝑃𝑉 ൌ  ்௉

்௉ାி௉
 (5) 396 

 397 

Area Under Curve (AUC) is a robust classification performance metric (Fawcett, 2006) that 398 

measures the area under the ROC (Receiver Operating Characteristic) curve, which plots the 399 

True Positive Rate (TPR) against False Positive Rate (FPR) under various discrimination 400 

threshold settings.  401 

𝑇𝑃𝑅 ൌ  ்௉

்௉ାிே
  (6) 402 

𝐹𝑃𝑅 ൌ  ி௉

ி௉ା்ே
 (7) 403 

With an range from 0 to 1, an AUC value equals to 0.5 represents a classifier equivalent to 404 

random guess, and an AUC value equals to 1 represents a perfect classifier. 405 

 406 

One of the purposes of this study is to examine the effectiveness of the trained machine learning 407 

model on improving crowdsourced data’s ability in representing the ‘ground-truth’ rainfall field. 408 

Therefore, we use two rainfall field related statistics to measure the performances of different 409 



CSQC algorithms: i) root mean square error of rainfall field estimated from crowdsourced 410 

observations (RMSE), and ii) relative error in the areal average rainfall estimated from 411 

crowdsourced observations (REAA).  412 

 413 

RMSE represents the ability of the estimated rainfall field to capture the storm’s rainfall 414 

variability on a small spatiotemporal scale and is defined as: 415 

𝑅𝑀𝑆𝐸 ൌ  ට
ଵ

ீ೉ீೊீ೅ೃ
∑ ∑ ∑ ሺ𝐼ெሺ𝑥, 𝑦, 𝑡ሻ െ 𝐼 ሺ𝑥, 𝑦, 𝑡ሻሻଶீ೅ೃ

௧ୀଵ
ீೊ
௬ୀଵ

ீ೉
௫ୀଵ  (8) 416 

where 𝐼ெሺ𝑥, 𝑦, 𝑡ሻ is the rainfall intensity at the spatial location (x, y) at time t estimated from 417 

crowdsourced observations, and 𝐼 ሺ𝑥, 𝑦, 𝑡ሻ is the associated ground true rainfall intensity. GX, GY, 418 

and GTR are the total number of grid cells in the X, Y, and time dimensions, respectively.  419 

 420 

REAA is a metric for depicting the relative bias in rainfall field estimation: 421 

𝑅𝐸𝐴𝐴 ൌ  
ฬ భ
ಸ೉ಸೊಸ೅ೃ

∑ ∑ ∑ ூಾሺ௫,௬,௧ሻಸ೅ೃ
೟సభ

ಸೊ
೤సభ

ಸ೉
ೣసభ  ି భ

೉ ೊ ೅ೃ
∑ ∑ ∑ ூಸሺ௫,௬,௧ሻ

ಸ೅ೃ
೟సభ

ಸೊ
೤సభ

ಸ೉
ೣసభ ฬ

భ
೉ ೊ ಿ

∑ ∑ ∑ ூಸሺ௫,௬,௧ሻಿ
೙సభ

ೊ
೤సభ

೉
ೣసభ

 (9) 422 

 423 

In order to quantify the relative improvement in crowdsourced data quality after quality control 424 

(i.e., noise filtering), we introduce the reduction ratio of REAA and RMSE (i.e., ∆𝑅𝐸𝐴𝐴 and 425 

∆𝑅𝑀𝑆𝐸) which are defined as: 426 

∆𝑅𝐸𝐴𝐴 ൌ
ோா஺஺೙ିோா஺஺೑

ோா஺஺೙
  (10) 427 

∆𝑅𝑀𝑆𝐸 ൌ
ோெௌா೙ିோெௌா೑

ோெௌா೙
  (11) 428 

where 𝑅𝐸𝐴𝐴௡ denotes the REAA value of crowdsourced rainfall field before noise filtering, and 429 

𝑅𝐸𝐴𝐴௙ is the REAA value of crowdsourced rainfall field after noise filtering. The subscripts for 430 

RMSE share the same definitions as to REAA. 431 

 432 

3. Results and Discussion  433 

3.1. Error statistics and model performance  434 

We first present CSQC model performances and the spatial distributions of different rainfall 435 

fields under the benchmark scenario in San Diego. Figure 3(a) shows the ‘ground truth’ rainfall 436 

field at one representative time-step over a 40 × 20 km2 space at a 500 m × 500 m resolution. A 437 
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The higher values of NPV over PPV in Table 2 suggest the difficulty to effectively identify less 479 

frequent noisy observations in this imbalanced classification task. In general, the two supervised 480 

learning algorithms have relatively large PPV values, but the unsupervised K-Means algorithm is 481 

the one with the highest PPV value (0.761). The unsupervised iForest algorithm has the lowest 482 

PPV value (0.530). MLPs also has the highest AUC value of 0.93, followed by kNN (0.733), 483 

iForest (0.546), and K-means (0.534). The rankings of different QCSC algorithms for ∆𝑅𝑀𝑆𝐸 484 

and ∆𝑅𝐸𝐴𝐴 are consistent with that of the AUC value. MLPs has the best performance on 485 

rainfall field error reduction with ∆𝑅𝑀𝑆𝐸 and ∆𝑅𝐸𝐴𝐴 values of 38.10% and 57.68%, 486 

respectively. The results indicate that supervised learning algorithms have better performances 487 

than unsupervised learning algorithms under the benchmark scenario in San Diego. 488 

 489 

Table 3. Quality control results produced from supervised and unsupervised algorithms 490 
 Accuracy PPV NPV AUC ∆𝑅𝑀𝑆𝐸 ∆𝑅𝐸𝐴𝐴 

kNN 0.868 0.650 0.897 0.773 32.08 % 53.90 % 

MLPs 0.903 0.729 0.933 0.930 38.10 % 57.68 % 

       

iForest 0.832 0.530 0.844 0.546 32.44 % 35.70 % 

K-means 0.839 0.761 0.840 0.534 32.00 % 34.55 % 

 491 

The relatively good accuracy and AUC performances of supervised learning algorithms could be 492 

explained by different learning mechanisms between supervised and unsupervised learning 493 

algorithms. Compared to unsupervised learning algorithms, supervised learning algorithms 494 

inherit extra information from the labels of the training target. While unsupervised learning 495 

algorithms are designed to identify the internal patterns in the input features, such internal 496 

pattern may or may not coincide with the pattern that is represented by the training labels. 497 

Actually, when assigned with the same non-linear task, it is typical that supervised learning 498 

algorithms are outperforming the unsupervised learning algorithms, especially when a set of 499 

high-quality labels is available (Mohammady et al., 2015; Sathya & Abraham, 2013).  500 

 501 

3.2. Sensitivity analysis 502 

It should be noted that, results in section 3.1 show performances of different CSQC algorithms at 503 

only the benchmark scenario. As shown in Figure S2 in the SI, the differences in error statistics 504 



between the crowdsourcing rainfall fields with and without noise are significantly affected by the 505 

assumptions of crowdsourcing noise characteristics, and thus the performances and rankings of 506 

different CSQC algorithms vary under different crowdsourcing scenarios (Table 1).  507 

 508 

 509 

Figure 5. RMSE and REAA reduction ratio and AUC value driven by the four algorithms with noise 510 
coefficients follow the normal distribution trained under each scenario in the San Diego, subplots in first 511 
row (a-c) presents the ∆𝑅𝑀𝑆𝐸 curve under Noise Level, Noise Amount, and Crowdsourcing Density 512 
scenarios, second row (d-f) is ∆𝑅𝐸𝐴𝐴 curve under three types scenarios, last row (g-i) is AUC value 513 
under three types scenarios. 514 

We thus show the impacts of noise level [Figure 5(a-c)], noise amount [Figure 5(d-f)], and 515 

crowdsourcing density [Figure 5(g-i)] on the performances (as measured by ∆𝑅𝑀𝑆𝐸, ∆𝑅𝐸𝐴𝐴, 516 

and AUC) of the CSQC model driven by the four machine learning algorithms (MLPs, kNN, 517 

iForest, and K-Means). For each scenario shown in Figure 5, the CSQC models are retrained 518 

with synthetic data from that scenario. The result shows a positive impact of noise level on 519 

∆𝑅𝑀𝑆𝐸 for all four machine learning algorithms [Figure 5(a)]. The noise amount and 520 

crowdsourcing density also show positive impacts on the ∆𝑅𝑀𝑆𝐸 for all the four machine 521 



learning algorithms [Figure 5(b-c)], except for the K-means algorithm which shows no clear 522 

trend of ∆𝑅𝑀𝑆𝐸 with the increase of crowdsourcing density [Figure 5(c)]. Overall, MLPs 523 

performs at least as good as any other algorithm in terms of ∆𝑅𝑀𝑆𝐸 under all investigated 524 

scenarios.  525 

 526 

We identify no clear trend in ∆𝑅𝐸𝐴𝐴 of the four algorithms with the increase of noise level, 527 

noise amount, and crowdsourcing density [Figure 5(d-f)], except for kNN and MLPs whose 528 

∆𝑅𝐸𝐴𝐴 increase with the increase of noise amount [Figure 5(e)]. When measured with ∆𝑅𝐸𝐴𝐴, 529 

the two supervised learning algorithms (kNN and MLPs) clearly outperform the two 530 

unsupervised learning algorithms (iForest and K-means) we have investigated. The advantages 531 

of kNN and MLPs over iForest and K-means are more obvious when the noise amount is large 532 

[e.g., noise amount >30% (A4), Figure 5(e)]. Such result suggests a potential that supervised 533 

algorithms might be more robust than the unsupervised algorithms when encountered more 534 

anomaly observations. 535 

 536 

We also identify no clear trend in AUC values of the four algorithms in Figures 5(g-i). It is 537 

shown that supervised learning algorithms obtained higher AUC values than unsupervised 538 

learning algorithms under most scenarios, although the AUC value of MLPs has a degree of 539 

fluctuation. In general, with crowdsourcing noise following the normal distribution, if the 540 

algorithms are retrained under each scenario, the CSQC model driven by supervised learning 541 

algorithms achieve better performances than unsupervised learning algorithms for both rainfall 542 

field estimation and crowdsourcing noise identification. This is also consistent with model 543 

performance under the benchmark scenario in section 3.1. 544 

 545 

The trends observed in Figure 5 could be partially explained by results in Figure 6, which shows 546 

the RMSE and REAA values of rainfall fields interpolated with noisy crowdsourced data before 547 

and after quality control by the MLPs algorithm.  548 

 549 
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For example, with noise coefficients following the normal distribution, the absolute values of 556 

RMSE and REAA before quality control illustrated in Figure 6(a-b) show positive trends with the 557 

increase of noise level. However, while the RMSE and REAA values of the quality controlled 558 

crowdsourcing rainfall field fluctuates with the increase of noise level, no clear trend is identified 559 

[Figure 6(a-b)]. Similar trends are also true for the impact of noise amount [Figure 6(c-d)]. Such 560 

result suggests a relatively stable capability of the MLPs algorithm in identifying noisy 561 

observations in the crowdsourcing rainfall data regardless of the statistical characteristics or the 562 

composition of noises. Similar conclusion is also true for the supervised learning kNN algorithm 563 

(Figure S5 in the SI), but not for the two unsupervised learning algorithms. Generally, the 564 

crowdsourcing rainfall field quality controlled by iForest and K-Means shows a slight increase of 565 

RMSE and REAA values with noise level, but with a less steep trend than the original 566 

crowdsourcing rainfall field without quality control (Figure S6-S7 in the SI).  567 

 568 

Because of the randomness in generating crowdsourcing observations, the RMSE and REAA 569 

values before quality control under different crowdsourcing densities [Figure 6(e-f)] show 570 

significant fluctuations. In contrast, the RMSE and REAA values of quality controlled 571 

crowdsourcing rainfall field first decrease with the increase of crowdsourcing density, and then 572 

reach relatively stable levels after scenario D3 [Figure 6(e-f)]. Such trends are also identified by 573 

using other machine learning algorithms shown in Figure S5-S7 in the SI, which suggests the 574 

possible contribution of increased number of training data in improving machine learning 575 

algorithm performances (Jordan & Mitchell, 2015).  576 

In addition to the analysis of single factor (e.g., noise level or noise amount) impacts on the 577 

performances of the CSQC model, Figure 7 presents the interactive impacts of noise level and 578 

noise amount on the reduction ratios (REAA and RMSE) for the CSQC model driven by MLPs. 579 

Similar to the findings in Figure 5, the reduction ratios of REAA and RMSE increase with the 580 

noise level. Reduction ratios of REAA and RMSE also show positive correlations with noise 581 

amount, though with fluctuations caused by the random crowdsourced observation generation 582 

process. The reduction ratios could be as high as 67.05% and 44.30% for REAA and RMSE, 583 

respectively, and are achieved at relatively high levels of noise level and noise amount. We 584 

identify no clear higher-order interaction between the noise amount and noise level on the CSQC 585 

reduction ratios, i.e., the slope identified for noise level and noise amount in Figure 7 does not 586 
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3.3. Model performances under the Wald error distribution  598 

 599 

 600 

Figure 8. RMSE and REAA reduction ratio and AUC values driven by the four algorithms with noise 601 
coefficients follow the Wald distribution retrained under each scenario in the San Diego, subplots in first 602 
row (a-c) presents the ∆𝑅𝑀𝑆𝐸 curve under Noise Level, Noise Amount, and Crowdsourcing Density 603 
scenarios, second row (d-f) is ∆𝑅𝐸𝐴𝐴 curve under three types scenarios, last row (g-i) is AUC value 604 
under three types scenarios. 605 

The performances of the CSQC model might also be affected by the shape of noise distribution 606 

in the crowdsourced data. For example, even with the same mean and standard deviation, a 607 

positively skewed distribution such as the Wald distribution results in higher frequencies of 608 

small noises and lower frequencies of large noises than the normal distribution (see Figure S8 in 609 

the SI), and the magnitudes of large noises are also much larger under the Wald distribution. 610 

While we do not identify a clear difference between the RMSE and REAA of the noisy 611 

crowdsourcing rainfall fields under the assumption of Normal and Wald distributions (Figure S4 612 

in the SI), the distinct error structures in the two types of noise distribution might still lead to 613 

different CSQC model performances.  614 



 615 

Figure 8 illustrates the RMSE and REAA reduction ratios and AUC values for the CSQC model, 616 

assuming Wald distributed noises. ∆𝑅𝑀𝑆𝐸 under Wald distributed noise shows a positive 617 

correlation with noise level [Figure 8(a)]. The ∆𝑅𝑀𝑆𝐸 values of CSQC models follow similar 618 

trends shown in Figure 5(a-c). Overall, compared with the case of Normal noise distribution, the 619 

differences among the investigated machine learning algorithms are less significant under the 620 

Wald noise distribution. MLPs continues to be the best performing algorithm when measured by 621 

∆𝑅𝑀𝑆𝐸. 622 

 623 

Unlike Figure 5(d-e), ∆𝑅𝐸𝐴𝐴 values of all the investigated machine learning algorithms under 624 

Wald noise distribution show a significant increase with noise amount and noise level [Figure 625 

8(d-e)]. As per the comparison of the four machine learning algorithms, similar to Figure 5(d-f), 626 

supervised learning algorithms achieve better performances than unsupervised learning 627 

algorithms under most scenarios. However, in contrast to our analysis assuming Normal noise 628 

distribution, the differences between supervised and unsupervised learning algorithms under 629 

Wald noise distribution are less clear. For example, the two supervised learning algorithms in 630 

Figure 5(f) (with Normal noise distribution) are consistently outperforming unsupervised 631 

learning algorithms under all investigated crowdsourcing density levels, while in Figure 8(f) 632 

(with Wald noise distribution) the superiority of supervised learning algorithms over 633 

unsupervised learning algorithms is less clear. The unsupervised iForest algorithm even has 634 

higher ∆𝑅𝐸𝐴𝐴 values than the supervised MLPs under scenarios D10 [Figure 8(f)]. 635 

 636 

The unsupervised learning algorithms have relatively low AUC values ranging from 0.5 to 0.6 637 

[Figure 8(g-i)]. In comparison, the supervised learning algorithms have consistently higher AUC 638 

values [Figure 8(g-i)], with MLPs as the best performing algorithm under almost all investigated 639 

scenarios. Similar to Figure 5(g-i), the AUC values of CSQC models under Wald noise 640 

distribution show no clear trend with the increase of noise amount, noise level, and 641 

crowdsourcing density [Figure 8(g-i)], except for kNN whose AUC value increases with the 642 

noise level and noise amount as shown in Figure 8(g) and 8(h). On average, the AUC values of 643 

machine learning algorithms under Normal noise distribution are slightly higher than those under 644 

Wald noise distribution. 645 



646 

647 

648 
649 
650 
651 

 

Figure 9. 
values are
(a-b), Noi
coefficien

RMSE and R
e calculated b
ise Amount (c
nts follow the 

REAA values
ased on the te
c-d), and Crow
Wald distribu

 before and a
esting perform
wdsourcing D
ution. 

after quality co
mances of the
Density (e-f) s

ontrol by the 
e MLPs algori
scenarios in S

MLPs-based 
ithm trained u
San Diego, wh

CSQC mode
under Noise L
here the noise

 

el, 
Level 
e 



Figure 9 presents the RMSE and REAA values before and after CSQC model quality control 652 

under noise level [Figure 9(a-b)], noise amount [Figure 9(c-d)], and crowdsourcing density 653 

[Figure 9(e-f)] scenario, with the noise coefficients following Wald distribution. The result 654 

suggests that, similar to the result of crowdsourcing rainfall data with Normally distributed noise 655 

in Figure 5, the RMSE and REAA values of crowdsourcing rainfall field without quality control 656 

increase with the noise level and noise amount, and the changes with quality controlled rainfall 657 

field are relatively stable [Figure 9(a-d)]. The RMSE and REAA values of crowdsourcing rainfall 658 

field without quality control slightly decrease with the crowdsourcing density, but that of quality 659 

controlled rainfall field are relatively stable [Figure 9(e-f)]. Similar results are also true for the 660 

kNN, iForest, and K-means algorithms (Figures S9-S11 in the SI). 661 

 662 

In general, we identify some differences in the CSQC model performances with Normally 663 

distributed noise and Wald distributed noise. For example, CSQC model performances with 664 

normal noise distribution are more sensitive to changes in noise amount than with Wald noise 665 

distribution;  the CSQC model achieves a better performance (measured by ∆𝑅𝑀𝑆𝐸, ∆𝑅𝐸𝐴𝐴 and 666 

AUC) when the noise coefficients follow a Normal distribution; and the difference among the 667 

four algorithms are more obvious under the Normal noise distribution. However, the results of 668 

the comparison between the four algorithms are overall consistent. Under both the Normal and 669 

Wald noise distribution assumptions, supervised learning algorithms (especially the MLPs) are 670 

performing better than the unsupervised learning algorithms in both identifying noisy 671 

crowdsourced observations and improving the accuracy of quality-controlled crowdsourcing 672 

rainfall field.  673 

 674 

3.4. Model transferability  675 

In this section, we directly apply the CSQC model trained with the benchmark scenario in San 676 

Diego to various scenarios in the three cities without any retraining. The transferability of the 677 

CSQC model is then measured by the ∆𝑅𝑀𝑆𝐸, ∆𝑅𝐸𝐴𝐴, and AUC values presented in Figures 678 

10-12. Normal noise distribution is assumed for all the analysis in this section. The higher the 679 

values of these metrics (∆𝑅𝑀𝑆𝐸, ∆𝑅𝐸𝐴𝐴, and AUC), the better the CSQC model in transferring 680 

to other application conditions without further retraining. 681 
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advantage of the supervised learning algorithms over unsupervised learning algorithms are less 715 

significant, and the two unsupervised learning algorithms (iForest and K-Means) even 716 

outperform the supervised learning algorithms as shown in Figure 11(c). Similar rankings of the 717 

four investigated machine learning algorithms are also identified when the CSQC model is 718 

transferred to the city of Miami (Figure 12). 719 

 720 

The correlations between the performance measures (i.e., ∆𝑅𝑀𝑆𝐸, ∆𝑅𝐸𝐴𝐴, and AUC values) 721 

and the noise level, noise amount, and crowdsourcing density, shown in Figures 11-12, 722 

respectively, are generally consistent with that identified in Figure 5, i.e., positive correlations 723 

for ∆𝑅𝑀𝑆𝐸 and ∆𝑅𝐸𝐴𝐴,  and no clear trend for AUC. However, compared to the sensitivity 724 

analysis results with retraining (Figure 5), the CSQC model shows a lower level of fluctuations 725 

under different noise scenarios when it is transferred to Chicago or Miami (Figures 11-12). For 726 

example, the ∆𝑅𝑀𝑆𝐸 and ∆𝑅𝐸𝐴𝐴 values in Figure 5(c) and Figure 5(f) are not as stable as that 727 

in Figure 11(c) and Figure 11(f). Such an elevated level of fluctuation for the retrained CSQC 728 

model in Figure 5 is expected. The retraining of a machine learning model typically introduces 729 

additional randomness, which increases the fluctuations in the model performances in Figure 5. 730 

 731 

Figure 13 displays a summary of the performances of all the four investigated algorithms with 732 

and without retraining. Each boxplot in Figure 13 shows the distribution of a performance 733 

measure under all the 30 scenarios defined in Table 2. The results suggest that, as expected, the 734 

classification accuracies of the two supervised learning algorithms (kNN and MLPs) deteriorate 735 

when they are not retrained with new test scenario data (T1, T2, and T3 in Figure 13), especially 736 

when they are directly applied to a region with the climate significantly different from where 737 

they are trained (T2 and T3 in Figure 13). However, we do not identify a clear difference in the 738 

performances of the retrained and transferred supervised learning algorithms in reducing 739 

crowdsourcing rainfall estimation errors (∆𝑅𝑀𝑆𝐸 and ∆𝑅𝐸𝐴𝐴). Such a difference between the 740 

trends of reduction ratios and the AUC values could be possible as the spatial interpolation 741 

process for estimating ∆𝑅𝑀𝑆𝐸 and ∆𝑅𝐸𝐴𝐴 might smooth out small variations in the filtered 742 

crowdsourced observations.  743 
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interpolated crowdsourcing rainfall field, two supervised learning (MLPs and kNN) and two 782 

unsupervised learning (K-means and iForest) algorithms are used to identify noisy observations 783 

in the CSQC model. A series of synthetic but realistic scenarios in three cities with different 784 

climates are designed to investigate the impacts of the magnitude of noise (noise level), the 785 

relative portion of noisy observation (noise amount), and crowdsourcing participation density 786 

(crowdsourcing density) on the CSQC model performances. The CSQC model performances are 787 

tested and evaluated in terms of their ability to reduce rainfall field estimation errors (∆𝑅𝑀𝑆𝐸 788 

and ∆𝑅𝐸𝐴𝐴) and to identify noisy crowdsourced observations (AUC). Moreover, to test the 789 

transferability of the CSQC model, the trained CSQC model in a benchmark scenario in San 790 

Diego is directly tested under different scenarios in San Diego, Chicago, and Miami without 791 

further retraining. 792 

 793 

The four machine learning algorithms (i.e., kNN, MLPs, iForest, and K-means) investigated in 794 

this study all show a relatively good performance in reducing the rainfall field estimation errors 795 

(i.e., ∆𝑅𝑀𝑆𝐸 and ∆𝑅𝐸𝐴𝐴) and identifying noisy crowdsourced observations (i.e., AUC). In 796 

general, the two supervised learning algorithms (kNN and MLPs) outperform the two 797 

unsupervised learning algorithms (iForest and K-means), and MLPs is the best. The results are 798 

consistent across all the testing cases with and without CSQC model retraining, even when the 799 

CSQC model trained in one city (San Diego) is directly applied to another city with significantly 800 

different rainfall conditions (Chicago or Miami). The results are robust with the various 801 

assumptions of noise distribution (i.e., Normal distribution or Wald distribution). More 802 

specifically, supervised learning algorithms excel in identifying both noisy and regular 803 

observations from a set of crowdsourced data (i.e., PPV and NPV). In contrast, unsupervised 804 

learning algorithms can only effectively identify regular observations (i.e., NPV). We find that 805 

the noise level positively affects the CSQC model performance measures (∆𝑅𝑀𝑆𝐸, ∆𝑅𝐸𝐴𝐴, and 806 

AUC), which is understandable as more distinct noisy observations are easier to identify. The 807 

transferability test reveals that, even though the CSQC model performance slightly deteriorates 808 

when it is directly applied to a new set of data without retraining, it continues to provide a 809 

substantial contribution in rainfall field estimation error reduction and noisy crowdsourced 810 

observation identification (Figures 11-13).  811 

 812 



Handling concerns over crowdsourced data quality will continue to be a major challenge in the 813 

near future (Zheng et al., 2018). While existing quality control methods for crowdsourced 814 

observations focus on a special case of fixed-point sensors, our CSQC model is the first to 815 

identify and filter noisy points form general crowdsourced observations, which are discontinuous 816 

in both time and space. In a real-world setting, crowdsourced observations could come from 817 

different sources and regions (e.g., smartphones, CCTV camera, etc.). At this end, the CSQC 818 

model is proved to be an effective and robust tool for automatically controlling the data quality 819 

with a complex set of data. In addition, the CSQC model can also be used to track the 820 

performances of different participants of crowdsourcing projects. Their results could be further 821 

used for participant rating or education programs (e.g., feedback from public participate in 822 

climate sciences (Pidgeon & Fischhoff, 2011)).  823 

 824 

It should be noted that our results are generated with a set of synthetic but realistic rainfall data, 825 

and thus the conclusion of this study requires further validation with a large set of real-world 826 

crowdsourcing observations (which is currently not available according to the authors’ 827 

knowledge). Because the scenarios we have investigated largely cover the range of 828 

crowdsourced observation errors reported in literature (Mazzoleni et al., 2018; de Vos et al., 829 

2018; de Vos et al., 2019), we expect the major conclusions (e.g., the relative performances of 830 

the supervised learning algorithms, and the comparison between CSQC model with and without 831 

retraining) hold when such real-world crowdsourcing observations are tested.  832 

 833 

Moreover, for the sake of simplicity, our comparison of machine learning algorithms is limited to 834 

two supervised learning algorithms (i.e., MLPs and kNN) and two unsupervised learning 835 

algorithms (i.e., iForest and K-means), with both types are evaluated with a set of data different 836 

from the data sets where they are trained (model transferability). However, it is still possible that 837 

some other machine learning algorithms can outperform the four investigated algorithms in 838 

identifying noisy crowdsourcing observations. Nerveless, the conclusions from this study could 839 

provide hints on the choice or design of CSQC machine learning algorithms, i.e., a supervised 840 

learning algorithm would be preferred if a set of labeled crowdsourcing data is available, even if 841 

such data are coming from places with significantly different rainfall patterns from the target 842 

region. 843 
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