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tween CRH and precipitation11

Corresponding author: Michael R. Needham, m.needham@colostate.edu

–1–



manuscript submitted to Geophysical Research Letters

Abstract12

Work in recent decades has demonstrated a robust relationship between tropical13

precipitation and the column relative humidity (CRH). This study identifies a similar14

relationship between CRH and the atmospheric cloud radiative effect (ACRE) calculated15

from satellite observations. Like precipitation, the ACRE begins to increase rapidly when16

the CRH exceeds a critical value near 75%. We show that the tight relationship between17

CRH and ACRE allows the ACRE to be estimated from the CRH calculated from re-18

analysis fields, similar to the way that CRH has been used to estimate precipitation. Our19

method reproduces the annual mean spatial structure of ACRE in the tropics, and skill-20

fully estimates the mean ACRE on monthly and daily timescales in six regions of the21

tropics. We speculate that this link between ACRE and CRH is important to longwave22

cloud feedbacks which have recently been identified as important to many processes.23

Plain Language Summary24

The tropical precipitation rate can be estimated using a quantity called the col-25

umn relative humidity (CRH), which describes how close the atmosphere is to becom-26

ing saturated with water. We show that the CRH can also be used to estimate the lo-27

cal radiative heating of the atmosphere due to clouds. Our simple method can reproduce28

the average cloud radiative heating of the tropical atmosphere, and can be used to es-29

timate the monthly averaged and daily averaged heating in several different tropical re-30

gions. Understanding the relationship between clouds and radiative heating has recently31

been identified as important to processes such as the formation of hurricanes and peri-32

ods of alternating enhanced and suppressed precipitation near southeast Asia.33

1 Introduction34

The effects of clouds on the Earth’s radiation balance can be quantified using the35

cloud radiative effect (CRE), defined as the difference between full-sky and clear-sky ra-36

diative fluxes (Ramanathan, 1987). The CRE manifests at the top of the atmosphere,37

where clouds increase the reflection of solar radiation while they simultaneously enhance38

greenhouse warming; at the surface, where cloud shading prevents solar absorption at39

the ground at the same time as clouds emit infrared radiation downwards; or in the at-40

mosphere itself, where clouds warm or cool locally by absorbing or emitting radiation.41
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A large body of work has investigated the impact of this atmospheric cloud radiative ef-42

fect (ACRE) on the Earth’s global circulation patterns (Slingo & Slingo, 1988; Randall43

et al., 1989; Sherwood et al., 1994; Stevens et al., 2012; Li et al., 2015; Voigt & Albern,44

2019). For example, the ACRE has been found to widen the subsiding branches of the45

Hadley cells and to narrow the ITCZ and its associated precipitation maximum (Harrop46

& Hartmann, 2016; Popp & Silvers, 2017; Albern et al., 2018; Dixit et al., 2018).47

Relevant to this study, the longwave cloud heating has been identified as an im-48

portant feedback mechanism in the context of, for example, the initial development of49

tropical cyclones, the persistence of convective self-aggregation, as well as the Madden–Julian50

oscillation (Bretherton et al., 2005; Arnold & Randall, 2015; Wing et al., 2017; Khairout-51

dinov & Emanuel, 2018; Emanuel, 2019; Ruppert et al., 2020). The longwave ACRE can52

be a strong localized atmospheric heating which induces a thermally direct circulation53

connecting humid and dry regions. This circulation transports moisture against the gra-54

dient into humid regions, allowing for increased precipitation and cloudiness.55

Our goal in this study is to link this longwave cloud feedback to the observed re-56

lationship between tropical precipitation and the column relative humidity (CRH, known57

alternatively as the saturation fraction), defined as the ratio between the water vapor58

path and saturation water vapor path. Observational and modeling studies in recent decades59

have shown a strong link between atmospheric humidity and tropical precipitation (Zeng,60

1999; Raymond, 2000; Bretherton et al., 2004; Raymond & Zeng, 2005; Raymond et al.,61

2009; Rushley et al., 2018; Powell, 2019; Wolding et al., 2020). Bretherton et al. (2004)62

demonstrated that the mean precipitation rate derived from satellite observations was63

a strong function of the CRH. They showed that tropical precipitation could be mod-64

eled as an exponential function of CRH, and this relationship has been used in many ap-65

plications including theoretical studies of the MJO (see Rushley et al. (2018), and ref-66

erences therein).67

In this study we explore the relationship between CRH and ACRE and possible68

connections to the relationship between CRH and precipitation. Section 2 provides a de-69

scription of data. In section 3, the ACRE is shown to be a strong function of the CRH,70

suggesting that the CRH can be used to estimate the ACRE. This possibility is explored71

in section 4, where the estimate is evaluated on annual mean, monthly, and daily time72

scales. We also suggest that the exponential relationship between CRH and tropical pre-73
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cipitation is a necessary consequence of the longwave cloud feedback described in pre-74

vious studies. Conclusions are presented in section 5.75

2 Data and Methods76

Top of atmosphere and surface fluxes of longwave and shortwave radiation come77

from the CERES satellite SYN1deg Ed4a product (Doelling et al. (2013), hereafter CERES).78

CERES data were downloaded on a 1◦×1◦ grid at a daily mean temporal resolution. Ra-79

diative fluxes were used to calculate the CRE as the difference between full-sky and clear-80

sky fluxes. The CRE was evaluated at the top of atmosphere and at the surface, and the81

ACRE was calculated as the difference between the two.82

The TRMM Multisatellite Precipitation Analysis 3B42 product (hereafter TRMM)83

combines passive microwave data from a variety of satellites to provide estimates of pre-84

cipitation rates on a 0.25◦×0.25◦ grid at 3 hour increments (Huffman et al., 2016). The85

TRMM data were averaged to daily means and to a coarser 1◦×1◦ grid to align with the86

CERES data. In section 3 these data are compared to two empirical models of precip-87

itation presented by Rushley et al. (2018). Both models use an exponential curve of the88

form89

P = Pr exp(adCRH) (1)

where CRH is the column relative humidity as a fraction, and Pr and ad are coefficients90

determined from the Special Sensor Microwave Imager (SSM/I) passive microwave im-91

ager onboard Defense Meteorological Satellite Program satellites. Note that SSM/I data92

is one of several inputs to the TRMM dataset. The coefficients for the first fit (Pr =93

4.07×10−5 mm day−1 and ad = 16.12) were determined from SSM/I version 5, which94

was the same data used by Bretherton et al. (2004). The coefficients for the second fit95

(Pr = 6.89×10−5 mm day−1 and ad = 14.72) were determined from the updated ver-96

sion 7 algorithm, which was used by Rushley et al. (2018). These models are henceforth97

referred to as “V5” and “V7”.98

Lastly, ERA5 reanalysis fields (Hersbach et al., 2018, 2020) were downloaded at99

a temporal resolution of 6 hours on the native 0.25◦×0.25◦ grid. Specific humidity and100

temperature were used to calculate the column relative humidity as101
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CRH =

∫ ps

pt
qdp∫ ps

pt
q∗(T )dp

, (2)

where q∗ is the saturation vapor pressure. Like the TRMM data, the ERA5 data were102

averaged to daily means on the coarser 1◦×1◦ CERES grid.103

Each of the three data sources spans the same 19-year period from January 1, 2001104

through December 31, 2019. Analysis was restricted to the tropical belt ranging from105

30◦S to 30◦N. In addition to the tropical belt, the analysis was repeated for six subset106

regions.which represent the Indo-Pacific warm pool, the Pacific ITCZ, the south Pacific107

convergence zone (hereafter SPCZ), the Pacific cold tongue, the Atlantic ITCZ, and the108

Atlantic cold tongue.109

3 Precipitation and ACRE binned by CRH110

3.1 Precipitation111

The top panel of Fig. 1 shows the TRMM precipitation rate binned by the CRH112

for the entire tropical belt ranging from 30◦S to 30◦N. The mean curve was calculated113

by taking the area-weighted average precipitation rate for all grid cells that fell within114

each CRH bin of width 2% from 0% to 100%. The data cover the 19 year period of record,115

and the shading shows the region between the 25th and 75th percentiles. Consistent with116

previous studies, the precipitation rate follows an exponential curve, with a rapid increase117

in precipitation when the CRH exceeds 75% to 80%. The dotted and dashed lines shown118

in the top panel are curves representing the V5 and V7 precipitation rate models pre-119

sented by Rushley et al. (2018). As expected, the mean TRMM precipitation rate in each120

bin more closely follows the V7 model, while the V5 model predicts a precipitation rate121

greater than the 75th percentile when the CRH exceeds 70% to 75%.122

The utility of the exponential precipitation model is illustrated by comparing the123

middle and lower panels of Fig. 1. The tropical belt consists of extremely humid regions124

that receive a large amount of precipitation, such as the Indo-Pacific warm pool and the125

ITCZ. It also contains the cold tongue regions which are dry in a column-integrated sense,126

and receive relatively little precipitation on average. The nonlinear fit appears able to127

recreate the average behavior of precipitation, although as mentioned by Rushley et al.128
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Figure 1. Top: 2001-2019 annual mean TRMM precipitation rate binned by column relative

humidity, as well as curves showing the precipitation rate predicted by the V5 and V7 models

of Rushley et al. (2018). Middle: Annual mean precipitation rate from TRMM. Boxes a, b, c,

d, e, and f show the boundaries of the six sub-regions used throughout this study, and specific

boundaries are given in Tbl. S1. Bottom: Annual mean column relative humidity calculated

from ERA5 reanalysis.
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(2018) the spread in the distribution indicates that factors other than the CRH also im-129

pact tropical precipitation.130

When the binning procedure in the top panel is repeated for six regions of the trop-131

ics, the same exponential dependence of precipitation is observed (see supporting infor-132

mation). This occurs even though the regions are characterized by different underlying133

distributions of CRH. The regional precipitation rates again more closely follow the V7134

model, while the V5 model tends to overestimate the precipitation rate.135

3.2 ACRE136

The relationship between CRH and ACRE is shown in Fig. 2. Figs. 2.a - 2.c show137

the longwave, shortwave, and net ACRE binned by the CRH for the entire tropical belt.138

The solid line shows the mean value for each CRH bin, while the shaded area again shows139

the region bounded by the 25th and 75th percentiles. As with the precipitation rate, each140

of the three curves shows a rapid increase in the magnitude of the ACRE as the CRH141

exceeds 70%-80%.142

The shortwave ACRE is small in most regions, illustrating that solar radiation is143

typically transmitted through the atmosphere or reflected back to space, rather than be-144

ing absorbed by clouds. The shortwave ACRE only becomes non-negligible in the most145

humid regions. This shows that the ACRE is largely determined by the absorption of146

longwave radiation, consistent with previous studies (e.g., Slingo and Slingo (1988); Al-147

lan (2011)). The longwave and shortwave effects are small and of opposite sign in dry148

regions but become large and positive in humid regions. The large ACRE suggests low-149

level convergence into humid regions (Neelin & Held, 1987), consistent with the long-150

wave feedback described in previous studies (e.g. Ruppert et al. (2020)). Moisture con-151

vergence driven by ACRE may help to explain the increase of precipitation in regions152

with a large CRH.153

Figs. 2.d - 2.i show the net ACRE as a function of CRH for each of the six regions.154

Like the wider tropical belt, the net ACRE in each of the regions is determined primar-155

ily by the longwave effect (not shown). These regional curves exhibit the same general156

behavior for each of the six regions, with the exception of the cold tongue regions at low157

CRH. Both of the cold tongue regions (panels h and i) exhibit a minimum in the ACRE158

near 20% representing a strong negative ACRE. This is presumably due to marine stra-159
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Figure 2. (a): Longwave ACRE binned by CRH for the belt ranging from 30◦S to 30◦N. The

shaded area shows the region bounded by the 25th and 75th percentiles for each CRH bin. (b):

Same as (a), but for the shortwave ACRE. (c): Net ACRE, calculated as the sum of longwave

and shortwave effects. (d)-(i): same as (c), but for the six tropical regions defined in the text.
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tus clouds which have a small greenhouse effect, but cool the atmosphere by emitting160

to the surface from their cloud base (Klein & Hartmann, 1993). The similarity of the161

curves in Fig. 2 suggests that CRH may be used to predict the ACRE, similar to the way162

that it is used to predict precipitation. This possibility is explored in the next section.163

4 Estimating ACRE from CRH164

4.1 Annual Mean Spatial Distribution165

The ACRE was estimated form the CRH using Figs. 2.a and 2.b to calculate the166

daily mean longwave and shortwave ACRE at each grid cell as a function of the CRH.167

The longwave and shortwave effects were added together to give the net ACRE, and daily168

means were then averaged together to give the annual mean value at each grid cell.169

Fig. 3.a shows the annual mean ACRE calculated from CERES observations over170

the 19-year record. The spatial structure shows that absorption of longwave radiation171

by deep convective clouds in the Indo-Pacific, SPCZ and ITCZ regions leads to a pos-172

itive ACRE. In the cold-tongue regions, marine stratus clouds lead to a negative ACRE.173

Averaged over the 30◦S to 30◦N belt, the ACRE was 15.193 Wm−2. The shading in Fig.174

3.b shows the annual mean ACRE estimated from CRH over the same 19 year period.175

The estimated ACRE largely reproduces the spatial structure of the ACRE observed from176

CERES. The estimation shows a large positive ACRE in the Indo-Pacific, SPCZ, and177

ITCZ regions, and shows a negative ACRE in the stratus regions. The annual mean ACRE178

estimated from CRH is 15.203 Wm−2, which is an error of only about 0.01 Wm−2 com-179

pared to the ACRE calculated from satellite observations.180

As shown in Fig. 3.c, the small error in the domain averaged ACRE is due to largely181

offsetting positive and negative errors. The lack of shading in about half of the domain182

indicates that the observed and estimated ACRE are within 5 Wm−2 of each other. The183

estimation method appears to have a positive bias in the east Pacific relative to the west184

Pacific. This is partially due to the longwave CRE at the top of the atmosphere (not shown),185

and is consistent with Kubar et al. (2007) who found that the temperature of high trop-186

ical clouds was about 5 K warmer in the east Pacific compared to those in the west Pa-187

cific. In addition, the estimation method gives negative errors over land compared to mostly188

positive errors over oceans. Although these errors are not negligible, this is merely the189

first attempt at estimating the ACRE using the CRH. A method that takes into account,190
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Figure 3. (a): Annual mean ACRE calculated from CERES radiative fluxes. (b): Annual

mean ACRE estimated from ERA5 column relative humidity. (c): Difference between (a) and

(b).

for example, the total condensed liquid or ice water path to help separate low and high191

clouds may more accurately estimate the ACRE and help to remove regional biases. This192

possibility is left for future work.193

4.2 Accuracy of the Estimation on Shorter Timescales194

The estimation largely reproduces the annual mean spatial structure of the ACRE,195

but how well does it perform on shorter time scales? To answer this, Fig. 4 compares196

the observed and estimated monthly mean ACRE anomaly for each of the six regions.197

Anomalies were calculated as the average ACRE over the region minus the mean ACRE198

for that region for each month, effectively removing the seasonal cycle. The agreement199

between the observed and estimated ACRE was evaluated using Pearson’s R2 correla-200

tion, which is shown in the lower left-hand corner of each panel.201
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The Indo-Pacific, SPCZ, and both ITCZ regions each show a high degree of cor-202

relation, with R2 greater than either 0.6 or 0.7. The estimation method is able to ac-203

count for the large peaks in magnitude in the warm pool and pacific ITCZ regions in 2010204

and 2015 to 2016 which are likely associated with the strong El Niño events of those years.205

The correlation is slightly lower for the cold tongue regions, with R2 equal to 0.56 and206

0.515 in the Pacific and Atlantic, respectively. Together, this indicates that more than207

50% of the variance of the ACRE on monthly time scales can be explained by the CRH208

in each of these regions.209

The R2 correlations for the monthly mean time series are recorded in Tbl. S1, along-210

side the R2 correlations for daily mean time series, which were constructed in much the211

same way. Unsurprisingly the agreement is lower in each region on daily time scales com-212

pared to monthly time scales, although the correlation is still greater than 0.6 in the warm213

pool, and greater than 0.4 in all regions except for the Pacific cold tongue. From this,214

it appears that the CRH method is somewhat skillful at estimating the ACRE even on215

time scales shorter than a month.216

4.3 Discussion217

What accounts for this relationship between CRH and the ACRE? Figs. 1 and 2218

show that precipitation and ACRE depend on the CRH in a similar way. Both are small219

in magnitude when the CRH is small, and increase rapidly when the CRH exceeds a crit-220

ical value between 70% to 80%. We speculate that the dependence of precipitation on221

CRH is linked to the ACRE in the form of the longwave cloud feedback discussed in pre-222

vious studies (Bretherton et al., 2005; Arnold & Randall, 2015; Wing et al., 2017; Khairout-223

dinov & Emanuel, 2018; Emanuel, 2019; Ruppert et al., 2020). Briefly, clouds tend to224

form in humid regions, where they cause a local greenhouse effect. The convergence of225

energy promotes deep convection as well as large-scale ascent (Chikira, 2014; Jenney et226

al., 2020). The large-scale ascent moistens a deep layer of the troposphere, and drives227

low-level convergence (Riehl & Malkus, 1958; Neelin & Held, 1987), leading to more cloudi-228

ness and enhanced precipitation, as described by (Bretherton et al., 2004) and others.229
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Figure 4. (a) De-seasonalized time series of monthly mean ACRE anomaly averaged over

the Indo-Pacific warm pool. Black line shows the ACRE anomaly observed from CERES satellite

fluxes, while the red line shows the ACRE anomaly estimated from ERA5. (b)-(f): same as (a),

but averaged over, respectively, the pacific ITCZ, the SPCZ, the Pacific cold tongue, the Atlantic

ITCZ, and the Atlantic cold tongue. Outlines of the six regions are shown as boxes in Fig. 1.
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5 Summary230

We have shown that the atmospheric CRE varies with the CRH in a way that is231

similar to the well-documented relationship between precipitation and CRH. When the232

ACRE from satellite observations is binned by the CRH, the net ACRE increases rapidly233

as the CRH exceeds 70% to 80%. Moreover, this same behavior is seen when the calcu-234

lations are repeated for six regions of the tropics with different underlying atmospheric235

and surface conditions.236

The similarity of the curves showing the ACRE as a function of CRH in these six237

regions suggests that the ACRE can be estimated from the CRH, in the same way that238

CRH has been used to estimate precipitation. Our method was able to reproduce the239

large-scale annual-mean spatial distribution of ACRE in the tropics, including a well de-240

fined ITCZ and Indo-Pacific warm pool. The difference in the observed and estimated241

ACRE averaged over the domain is 0.01 Wm−2, due to positive and negative errors in242

different regions which mostly cancel. Comparisons of the observed and estimated re-243

gional time series of ACRE show a high degree of agreement on monthly time scales, with244

slightly less agreement on daily time scales. The method is also able to reproduce large245

peaks in the magnitude of the ACRE in the ITCZ and warm pool regions associated with246

ENSO variability. Generally the method works better in regions associated with deep247

convective clouds, compared to the cold tongue regions that are characterized by ma-248

rine stratus clouds.249

A possible explanation for the relationship between ACRE and CRH was proposed250

in the form of a moisture feedback driven by ACRE, which has been identified previously251

in a variety of contexts. The feedback suggests that atmospheric heating due to clouds252

leads to moisture convergence that in turn leads to the formation of more clouds as well253

as enhanced precipitation. This feedback will be discussed further in an upcoming pa-254

per.255
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. . . Thépaut, J.-N. (2018). ERA5 hourly data on pressure levels from 1979 to309

present. Retrieved from http://dx.doi.org/10.24381/cds.bd0915c6 doi:310

10.24381/cds.bd0915c6311

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,312
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