References
Balaram, J., Aung, M. & Golombek, M. P. (2021). The Ingenuity Helicopter on the Perseverance Rover. Space Science Reviews ,217 , 56. https://doi.org/10.1007/s11214-021-00815-w.
Bell, J. F. III et al. (2003). Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. Journal of Geophysical Research , 108 (E12), 8063. https://doi.org/10.1029/2003JE002070.
Bell, J. F. III et al.  (2006), In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments, Journal of Geophysical Research111 , E02S03, https://doi.org/10.1029/2005JE002444.
Bell, J. F., III et al. (2017). The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving. Earth and Space Science , 4 , 396–452, https://doi.org/10.1002/2016EA000219.
Bell, J. F., III et al. (2021). The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Science Reviews , 217 , 24. https://doi.org/10.1007/s11214-020-00755-x.
Bell, J. F., III et al. (2022). Geological and Meteorological Imaging Results from the Mars 2020 Perseverance Rover in Jezero Crater. Under review.
Bhartia, R. et al. (2021). Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Science Reviews217 , 58. https://doi.org/10.1007/s11214-021-00812-z.
Buz, J. et al. (2019). Photometric characterization of Lucideon and Avian Technologies color
standards including application for calibration of the Mastcam-Z instrument on the Mars 2020 rover. Optical Engineering ,58 (2), 027108. https://doi.org/10.1117/1.OE.58.2.027108.
Farley, K. A. et al. (2020). Mars 2020 Mission Overview. Space Science Reviews216 , 142. https://doi.org/10.1007/s11214-020-00762-y.
Garczynski, B. et al. (2022). Evidence of alteration on the Jezero crater floor: A Mastcam-Z multispectral analysis. This issue.
Gillespie, A. R. et al. (1986). Color enhancement of highly correlated images. I. Decorrelation and HIS contrast stretches.Remote Sensing of Environment , 20 , 3, 209-235. https://doi.org/10.1016/0034-4257(86)90044-1.
Hayes, A. G. et al.  (2021). Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Science Reviews , 217 , 29. https://doi.org/10.1007/s11214-021-00795-x.
Horgan, B. et al. (2022). Mineralogy, morphology, and geological significance of the Máaz formation on the Jezero crater floor from orbit and rover observations. This issue.
Kinch, K. M., et al. (2006), Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model. Planetary and Space Science , 54 (1), pp 28-44, https://doi.org/10.1016/j.pss.2005.07.008.
Kinch, K. M. et al. (2007). Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets.Journal of Geophysical Research , 112 , E06S03, https://doi.org/10.1029/2006JE002807.
Kinch, K. M. et al.  (2020). Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Science Reviews , 217 , 46. https://doi.org/10.1007/s11214-021-00828-5.
Lemmon, M. T. et al. (2015). Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus , 251 , 96-111. https://doi:10.1016/j.icarus.2014.03.029.
Lemmon, M. T. et al. (2019). Large Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover.Geophysical Research Letters , 46 , 16, 9448-9456. https://doi.org/10.1029/2019GL084407.
Lemmon, M. T. et al. (2022). Dust, sand, and winds within an active Martian storm in Jezero crater. This issue.
Madsen, M. B. et al. (2009). Overview of the magnetic properties experiments on the Mars Exploration Rovers. Journal of Geophysical Research , 114 (E6), E06S90. http://doi.org/10.1029/2008je003098
Maki, J. N. et al.  (2020). The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. Space Science Reviews , 216 , 137. https://doi.org/10.1007/s11214-020-00765-9.
Mandon, L. et al. (2022). Reflectance of Jezero crater floor: 2. Mineralogical interpretation. This issue.
Mangold, N. et al. (2021). Perseverance rover reveals an ancient delta-lake system
and flood deposits at Jezero crater, Mars. Science , 374 , 6568, 711-717. https://doi.org/10.1126/science.abl4051.
Maurice, S. et al.  (2021). The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews , 217 , 47. https://doi.org/10.1007/s11214-021-00807-w.
Newman, C. E et al. (2022). The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances , 8 , 21. https://doi.org/10.1126/sciadv.abn3783.
Núñez, J. I. et al. (2022). Stratigraphy and Mineralogy of the Séítah formation on the floor of Jezero crater, Mars as seen with Mastcam-Z. This issue.
Rice, M. et al. (2022). Spectral variability of rocks and soils on the Jezero crater floor: A summary of multispectral observations from Perseverance’s Mastcam-Z instrument. This issue.
Royer, C. et al. (2022). Reflectance of Jezero crater floor: 1. Data processing and calibration of IRS/SuperCam. This issue.
Vaughan, A. et al. (2022). Regolith of the crater floor units, Jezero crater, Mars: Textures, composition, and implications for provenance. This issue.