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Abstract 19 

The ROTI index based on the variation of the TEC is used to detect and characterize the 20 
ionospheric irregularities. In the present work, we present a comparative study of five different 21 
methodologies to ROTI calculation in order to evaluate the most suitable for the Brazilian 22 
region. This was performed over three GNSS stations at different latitudes: São Luís (SALU, 23 
2°31′ S, 44°16′ W; dip: -6.60°) that is located near the dip equator;  Cachoeira Paulista (CHPI, 24 
22°40' S, 44°59' W; dip: -35.99°) which set close to the southern crest of the EIA at low 25 
latitude); and Santa Maria (SMAR, 29° 41′ S, 53° 48′ W, dip: -43.51°) a low-to-mid latitude 26 
station close to center of the SAMA region. The period of analysis covered January and 27 
December 2015. Our results show that only one out of the five techniques proposed seems to be 28 
appropriated for ROTI construction in the Brazilian sector. Our results are supported by 29 
comparison of the ROTI with TEC maps obtained over Brazil, ionograms acquired at Fortaleza 30 
(FZA0M), SALU, and CHPI ionosonde stations, and All-Sky imagers collected at the São João 31 
do Cariri, and CHPI. In addition, we were able to observe the typical irregularities of the 32 
Brazilian ionosphere by using the ROTI which we have classified as EPB. 33 

1 Introduction 34 

 The ionospheric are kwon to interfere in the electromagnetic waves in several different ways 35 
(with a clear dependence of the wavelength) when crossed by by radio signals used in 36 
telecommunications, such as those used by the Global Navigation Satellite System (GNSS). Such 37 
effects go from enlarging the time delay caused by increases of the electron density that leads to 38 
increases in positioning errors, up to the loss-of-lock in the GNSS receiver due to the presence of 39 
Equatorial Plasma Bubbles (EPB) close to the dip equator (Farley et al., 1970; Tsunoda, 1981; 40 
Aarons et al., 1996; Pi et al., 1997; Abdu et al., 2009). The ionospheric irregularities have been 41 
widely studied in the Brazilian sector using various techniques such as ionograms from 42 
ionosonde (Abdu et al., 1982, Batista et al., 1990, Abdu et al., 2003; Abdu et al., 2012), Range-43 
Time-Intensity (RTI) maps from VHF radars (Denardini et al., 2006, Abdu et al., 2009), images 44 
from All-Sky Imagers (ASI) observations (Pimenta et al., 2003; Paulino et al., 2011), and Total 45 
Electron Content (TEC) derived from GNSS receivers (Takahashi et al., 2014; Takahashi et al., 46 
2015; Fagundes et al. 2016). 47 

Among these techniques, the TEC derived from the GNSS receivers are the only ones that cover 48 
all regions of Brazil with some interpolation over few blank areas specially over the Amazon 49 
Forest. Thus, it has the potential to facilitate the observations of irregularities, allowing us to 50 
measure size and speed of propagation, among other parameters (Barros et al., 2018).  51 
Complementary (or alternatively) to the studies of the variation of the TEC derived from the 52 
GNSS, we can also study directly the fluctuations in the radio signal that are affected by the 53 
density fluctuation in the ionosphere. One of the current methodologies used to study such 54 
effects of the irregularities on GNSS signals is based on the analysis of the phase fluctuations in 55 
dual-frequency received radio signals. We can determine an index based on the time rate of 56 
different phase changes in dual-frequency signals crossing the same ionospheric volume. It is the 57 
so called the Rate Of TEC (ROT) measurement that is given in TECU/min unit (1 TECU = 1016 58 
electrons/m2) due to relationship between frequency delays caused the ionospheric volume. The 59 
ROT can describe the irregularities in different length scales (Pi et al., 1997) depending on the 60 
frequency. 61 
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The standard deviation of the ROT is used to build another index named Rate Of change of the 62 
TEC Index (ROTI), which is used for the present analysis and from which we can analyze the 63 
ionospheric irregularities more accurately (Oladipo et al., 2013). The main advantage of the 64 
ROTI over the ROT is that we simplify the problem by avoiding calculate the Differential Code 65 
Bias (DCB). Thus, once the DCB, one of the main (if not the main) factors of error, is not 66 
included in calculation, the ROTI becomes a very reliable index for estimate ionospheric 67 
variations. For instance, Pi et al. (1997) studied the geomagnetic storm occurred on 10 January 68 
1997 based on global ROTI maps and showed that it is useful for studing the evolution of 69 
ionospheric irregularities around the globe.  70 

In a more recent work, Liu et al. (2019b) study the plasma irregularities based on ROTI  71 
calculated with  more than one constellation of satellites for the first time. They used data 72 
acquired by receivers in Asia and South America during the geomagnetic storm occurred on 16 73 
March 2015. Their results showed that the multi-GNSS ROTI values are able to represent the 74 
temporal evolution of ionospheric irregularities during a large geomagnetic storm. Although, 75 
they found inconsistency in the magnitudes of multi-GNSS ROTIs among some GNSS receivers. 76 
Cherniak et al. (2015) also used the ROTI maps to study ionospheric irregularities in high 77 
latitudes. They found that the ROTI map represents well the development of TEC irregularities 78 
and characterizes the ionospheric responses to auroral activity in both hemispheres. 79 

Regarding the use of ROTI in the Brazilian sector, Souza and Camargo (2019) detected 80 
ionospheric irregularities over. They used data collected at the Boa Vista (BV, 2° 49' N, 60° 40' 81 
W) station to calculate the TEC. They also showed that the ROTI index is reliable to study the 82 
temporal evolution of ionospheric irregularities over Brazil too. However, the authors took into 83 
account only one station. Thus, it was not possible to observe the propagation direction, 84 
generation, and evolution of the observed irregularities.  85 

Therefore, once the Brazilian sector is located in a region were the magnetic equator has a large 86 
declination (~-20°) that is responsible for the EPB season to be in the South hemisphere summer 87 
and where we have the presence of the South America Magnetic Anomaly (SAMA), we decided 88 
to extend the previous study.  Also, and most importantly, we have compared the five 89 
methodology to calculate the ROTI index, Pi et al. (1997), Liu et al. (2019a), Carrano et al. 90 
(2019), Cherniak et al. (2018) and Liu et al. (2019b) to define which one is the most appropriated 91 
for the Brazilian sector. After testing different techniques based on the previous works to build a 92 
reliable index capable to reproduce the effects caused by irregularities in the GNSS signals, the 93 
index was obtained from data collected by GNSS receivers operating at São Luís (SALU), 94 
Cachoeira Paulista (CHPI), and Santa Maria (SMAR) during the 17, 18, and 20 January 2015 95 
and 25 December 2015. Finally, we compare our results with data acquired by the ionosonde 96 
installed in Fortaleza (FZA0M), SALU, and CHPI stations, as well as with images acquired by 97 
All-Sky imager installed in São João do Cariri and CHPI to validate this index. 98 
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2 Data Set 99 

Data from GNSS, ionosondes, and All-Sky imager were collected and analyzed to obtain the 100 
ionospheric irregularities over the selected Brazilian stations SALU, CHPI and SMAR. In the 101 
following sections, we briefly describe each set of data used in this work. 102 

 2.1 GNSS Data and TEC calculation 103 

The GNSS system allows us to determine the geospatial position with global coverage of 104 
longitude, latitude, and altitude at any point on Earth.  This system is composed of GPS from the 105 
United States of America, the GLONASS of the Russian Federation, the European Union's 106 
Galileo, and Beidou from China, among others. 107 

The data was collected by the receiver provided by the radio signal transmissions from each 108 
satellite in the constellation.  It is guaranteed that at least four satellites are monitored on the 109 
Earth's surface (Monico, 2008). Also, the waves carrying the L1 and L2 bands of frequencies are 110 
transmitted by each satellite. The frequencies are generated simultaneously for users, allowing 111 
part of the effects caused by the ionosphere to be corrected.  112 

The GPS receiver data used were obtained by the Brazilian Network of Continuum Monitoring 113 
of GNSS System (RBMC) network obtained by the Brazilian Institute of Geography and 114 
Statistics (IBGE). In addition, data were also collected from the International GNSS Service 115 
(IGS). In this work, we will use GPS receivers for the stations of SALU, CHPI and SMAR.  116 
As it is well known, the GPS satellites emit radio signals of dual-frequency f1 and f2 that allow 117 
determining the number of electrons along a vertical column with a section of 1 m² that goes 118 
from the satellite to the receiver. Therefore, we calculate the slant TEC (STEC), considering 119 
elevation angle higher than 30º, according to Equation 1 (Mannucci et al.,1999): 120 

 121 𝑆𝑇𝐸𝐶 =  ଵସ଴.ଷ ௙భమ × ௙మమ௙భమ ି ௙మమ  ൣ(Φଵ −  Φଶ) − (𝜆ଵ 𝑁ଵ −  𝜆ଶ𝑁ଶ) + 𝐵௥,௦൧,              (1) 122 

where 𝑓ଵ = 1575.42 MHz, 𝑓ଶ = 1227.60 MHz, Φଵ,ଶ is the phase of wave 1 and 2, 𝜆ଵ,ଶ is the 123 
wavelength of 1 and 2, N is phase ambiguity, and 𝐵௥,௦ is the bias of the receiver and the satellite. 124 
Thus, STEC is converted to vertical TEC (VTEC) by applying a mapping function.  shown in the 125 
Equation 2: 126 
 127 𝑉𝑇𝐸𝐶 = 𝑆𝑇𝐸𝐶 ൤1 −  ൬ோ೐ୡ୭ୱ (ఏ)ோ೐ା ு೔೛೛൰൨ି భమ

,                                   (2) 128 

where 𝑅௘ is the Earth radius 𝐻௜௣௣is the height of the Ionospheric Pierce Point (IPP) (in this work 129 
we consider equal to 350 km), 𝜃 is the angle of elevation in radians. 130 
TEC is given in TEC units, in which 1 TECU equals 1016 electrons/m². 131 
In this paper, we include the TEC to obtain the ROTI in the different methods as described 132 
ahead. More details about the TEC calculation are given by Takahashi et al. (2016). 133 
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2.2 Ionosonde Data 134 

The ionosonde is an ionospheric radar that operates in variable high frequency (HF) used to 135 
investigate the ionosphere regions (Denardini et al., 2016). The data collected are echoes of the 136 
signal reflected by the ionospheric layers of corresponding electron density to the frequency of 137 
the transmitted signal. These echoes are registered in ionograms that are graphics of the 138 
transmitted frequency versus virtual height (h’F), which provide the electron density profile of 139 
the different regions in the ionosphere. We use ionosonde data acquired in SALU, Fortaleza 140 
(3°43' S, 38° 32' W, dip: -14.99º), and CHPI to examine the presence of irregularities observed 141 
previously in ROTI index. These ionosondes belong to the Embrace Digisonde Network and 142 
their characteristics can be found in Denardini et al. (2016). The occurrence of irregularities in 143 
the F region is shown as “Spread-F” in ionosonde data. These irregularities are aligned along the 144 
Earth's magnetic field (Spencer, 1955). Also, the Spread-F is related to the plasma bubbles, 145 
mainly during the summer (Abdu et al., 1983; Lynn et al., 2013).  146 

2.3 All-Sky imager 147 

The ASI is an equipment used for observations of aeroluminescence emissions in the mesosphere 148 
and ionosphere using the Hydroxyl (OH 700-900 nm), and Atomic Oxygen (OI 630 nm). 149 
Aeroluminescence operates with the two optical filters and is related to the emission of photons 150 
by the atoms and excitation of the molecules present in the Earth's atmosphere. The 630 nm 151 
image covers a horizontal extension of 1,600 km (at the zenith angle of 75°) at an altitude of 250 152 
km, permitting the image to cover the latitudinal and longitudinal extension of the plasma 153 
depletions along the magnetic field line (Takahashi et al., 2015). Also, the ASI has a fisheye 154 
lens, with a field of view of approximately 180°, filters, lenses, CCD camera (1024 x 1024 155 
pixels).  156 

For the present study, we used the ASI installed in São João do Cariri (7°23’ S, 36°31’ W, dip: -157 
23.35°) and CHPI. The purpose is to confirm the plasma bubbles occurrences, and therefore, to 158 
validate the ROTI index.  159 

3 Methodology for ROTI Calculation 160 

In this work, we use the Rate of TEC Index (ROTI), an ionospheric index used to calculated 161 
disturbances in the time variability of the ionospheric plasma. Consequently, with this index, it is 162 
possible to observe the irregularities in the plasma ionospheric well-known as plasma bubbles.  163 

The calculation of ROTI is based on the Rate Of TEC (ROT), defined in Equation 3 (Pi et al., 164 
1997): 165 𝑅𝑂𝑇 =  ்ா஼೟మି்ா஼೟భ௧మି ௧భ =  ∆்ா஼∆௧ ,                                              (3) 166 

where t is the time and 𝑇𝐸𝐶௧భ,మis the value corresponding to the TEC at time t1 and t2. Notice that 167 
the ROT is based on the difference of the TEC values in two points. The ROTI was based on the 168 
standard deviation of ROT in 5 min, as in Equation 4 (Pi et al., 1997). 169 

 170 
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𝑅𝑂𝑇𝐼 =  √< 𝑅𝑂𝑇² >  − < 𝑅𝑂𝑇 >ଶ.                                    (4) 171 

Where ⟨𝑅𝑂𝑇⟩ denotes arithmetic averaging ROT during 𝑁 epoch. 172 

Therefore, the ROTI can be calculated in different forms, based on distinct methods for 173 
calculating the TEC. 174 

In this work, we will use as reference the TEC calculation suggested by Seemala and Valladares 175 
(2011), where the absolute TEC is obtained using the satellite biases published by the University 176 
of Bern and the receiver bias is calculated minimizing the TEC variability. The software 177 
developed by this technique can automatically identify TEC depletion by analyzing the TEC 178 
trace for each satellite passage. 179 

4 Analysis of the different techniques to ROTI calculation 180 

We have tested five methodologies to obtain the TEC, which is necessary in the ROTI 181 
construction. Table 1 shows the list of these techniques, which shows the main characteristics of 182 
each method like rate, range values, elevations, and its reference. Notice that the sample rate is 183 
almost the same (5 minutes) in all techniques, except for the one used in Carrano et al. (2019), in 184 
which the author used a calculation that allows having a sample of 1 minute, also. Pi et al. (1997) 185 
and Carrano et al. (2019) was used the TEC data while the works of Liu et al. (2019a), Cherniak 186 
et al. (2018), Liu et al. (2019b) used the Slant TEC (STEC). The main difference between these 187 
techniques is related in the TEC calculation since some methods consider the bias while others 188 
do not consider them. A detailed description of each method is given in the next sections: 189 
Table 1. List of the five techniques used to build the ROTI. 190 
 191 

Method ROT Rate Range 
values 

Elevatio
n Reference 

1 TEC 5min 0-1/0-3 >20º Pi et al. (1997) 
2 STEC 5min 0-3 - Liu et al. (2019a) 
3 TEC 1 or 5min 0-0.4 >30º Carrano et al. (2019) 
4 STEC 5min 0-8 >30º Cherniak et al. (2018) 
5 STEC 5min 0-6 >30º Liu et al. (2019b) 

 Table 1. ROT, sampling rate, scale and elevation for each method used. 192 

4.1 Method 1  193 

The method 1 means that the TEC was calculated for consecutive times. The bias does not need 194 
to be determined since it is canceled, as shown in Equations 5 and 6 (Wanninger, 1993). 195 

 196 𝑅𝑜𝑡(𝑡ଶ) =TEC(𝑡ଶ) − 𝑇𝐸𝐶(𝑡ଵ),                                          (5) 197 

 198 𝑅𝑜𝑡(𝑡ଶ) = 𝑆ூ൫Φଵ(𝑡ଶ) −  Φଶ(𝑡ଶ) −  Φଵ(𝑡ଵ) − Φଶ(𝑡ଵ)൯,                        (6) 199 
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where Δt = t2 – t1 = 1 min, Φ = dual frequency phase, 𝑓ଵ = 1575.42 MHz ,  𝑓ଶ = 1227.60 MHz and 200 

SI  = ଵସ଴.ଷ ௙భమ × ௙మమ௙భమ ି ௙మమ = 9.52 × 10ଵ଺𝑚ିଷ. The ROTI is obtained from the ROT calculation using the 201 

Equations 3 and 4. 202 

4.2 Method 2 203 

The method 2 for ROTI calculation is obtained using Equation 7 and 8, and it is presented in Liu 204 
et al. (2019a). 205 

 206 𝑅𝑂𝑇 =  ௌ்ா஼ೖశభି ௌ்ா஼ೖ
Δ୲ೖ ,                                           (7) 207 

in which the k refers to the epoch. 208 

Finally, the ROTI was calculated according to Equation 8. 209 

 210 

𝑅𝑂𝑇𝐼 =  ටଵே  ∑ (𝑅𝑂𝑇௝ −  𝑅𝑂𝑇௔௩௘௥)²ே௝ୀଵ ,                             (8) 211 

where ROTaver indicates the average of the ROT. 212 

 213 

4.3 Method 3 214 

The method 3 is defined in Carrano et al. (2019), in which a new theory was presented for ROTI 215 
calculation. In this case, the authors considered the direct relationship of the phase structure 216 
function in the ionosphere. 217 

The ROTI is calculated according to Equation 9. 218 𝑅𝑂𝑇𝐼ଶ(𝛿𝑡) =  ർ|்ா஼(௧ା ఋ௧)ି்ா஼(ఋ௧)|²ఋ௧²
඀,                                     (9) 219 

where 𝛿𝑡 is the time variation. The most used sampling rates are 𝛿𝑡 = 1 and 30 s (Jacobsen, 220 
2014). 221 

In this method, Equation 4 is not used to calculate the ROTI. 222 

4.4 - Method 4 223 

Method 4 uses the STEC according to Equation 10 (Cherniak et al., 2018). 224 𝑠𝑇𝐸𝐶 =  ቀ௅భ௙భ −  ௅మ௙మቁ ௙భమ௙మమ௙భమି ௙మమ ௖௄,                                          (10) 225 
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The corresponding values of the frequencies 𝑓ଵ and 𝑓ଶ were presented in method 1, 𝐿ଵ,ଶ are the 226 
phase measurements corresponding to frequency 1 and 2, and the k = 40.3 m³/s². 227 

The ROT is defined in the Equation 11. 228 𝑅𝑂𝑇 =  ௦்ா஼ೖ೔ ି ௦்ா஼ೖషభ೔୲ೖି ୲ೖషభ ,                                          (11) 229 

Thus, the standard deviation of the ROT in a specific time interval represents the ROTI.  230 

4.5 Method 5 231 

The method 5 defined by Liu et al. (2019b) uses the TEC data obtained thorough Equation 12. 232 𝑇𝐸𝐶 =  ଵସ଴.ଷ ቀ ௙భమ௙మమ௙భమି ௙మమቁ [(𝜆ଶ𝐿ଶ − 𝜆ଵ𝐿ଵ) − [(𝜆ଶ𝑁ଶ − 𝜆ଵ𝑁ଵ) + (𝑑ଶ − 𝑑ଵ)],        (12) 233 

where 𝜆ଵ,ଶ are the wavelengths of the frequency 𝑓ଵ,ଶ, 𝐿ଵ,ଶ are the corresponding measurements of 234 
the wave, 𝑁ଵ,ଶ are the phase ambiguities corresponding to the frequencies 𝑓ଵ,ଶ, and 𝑑ଵ,ଶ are the 235 
satellite and receiver bias. 236 

The ROT is calculated according to Equation 13. 237 𝑅𝑂𝑇 = 𝑐 ×  [(ఒమ௅మ(௜)ି ఒభ௅భ(௜))ି(ఒమ௅మ(௜ିଵ)ି ఒభ௅భ(௜ିଵ))] (௧೔ି ௧೔షభ) ,                         (13) 238 

where c is the speed of light in a vacuum, t is the time, and i is the first position. Notice that the 239 
terms (𝜆ଶ𝑁ଶ − 𝜆ଵ𝑁ଵ) and (𝑑ଶ −  𝑑ଵ) are canceled. Therefore, after determining the TEC, it is 240 
possible to calculate the ROTI through the Equation 4. 241 

5 Results and Discussions 242 

In order to analyze the most appropriate method for the ROTI calculation, we use the TEC 243 
obtained by Seemala and Valladares (2011) to calculate a reliable ROTI index obtained from 244 
equation 3 and 4, that was named of method Seemala. The Method Seemala was compared to the 245 
ROTI estimation by using the methods 1 to 5 calculated from the relative TEC described in the 246 
methodology section. The main aim is to obtain the most appropriate method for the ROTI index 247 
calculation in Brazilian sector.  The comparison was obtained by studying the correlation 248 
coefficient and by the linear fit.  249 

Figure 1 shows the ROTI calculation for an equatorial station, São Luís on December 25, 2015. 250 
It was obtained by using the TEC obtained by Seemala and Valladares (2011), where we call 251 
Method Seemala.  252 

Figure 1 shows the daily variation of ROTI, where it is possible to notice considerable ROTI 253 
values between 0-4 UT (UT stands for Universal Time and LT stands for Local Time, 254 
UT=LT+3h) and 22- 24 UT, that is, at night.  For times throughout the day, ROTI remained low, 255 
with values below 1 TECU/min. It can indicate that short time TEC oscillations are observed at 256 
night time only, which may be a strong indication of plasma irregularities. With this chart, we 257 
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to the ones observed in Figure 1. On the other side, the methods 1, 2, and 3 do show TEC 276 
oscillations for the whole day (from 0 to 24 UT), the temporal variation is significantly different 277 
from the method Seemala.  278 

In the Figure 3 we present the ROTI values by using the method Seemala as function of the 279 
different Metlhod calculated by the Relative TEC. The Linear Fit is shown together with the 280 
corresponding correlation coefficient. We may note that values of the correlation coefficient (R) 281 
for linear fits was R = 0.08, 0.08, 0.07, 0.88, 0.84 for methods 1, 2, 3, 4 and 5, respectively. The 282 
methods 1, 2 and 3 shows no correlation to method Seemala, methods 4 shows very strong 283 
correlation and Method 5 have a moderate correlation. A summary with the coefficient 284 
correlation is given in Table 2.  285 

By analyzing the Linear and Angular coefficient we can see method 1, 2 and 3 present a very 286 
small angular coefficient, been an almost flat curve and no linear dependence. On the other side, 287 
Method 4 (Method 5) present almost zero value for linear coefficient and 0.5 (~17.4) for angular 288 
coefficient. 289 
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 294 
Figur

e  Method Correlation 

a 1 0.08 
b 2 0.08 
c 3 0.07 
d 4 0.88 
e 5 0.84 

Table 2. The coefficient correlation for each method used. 295 

With methods 1, 2, 3 it is possible to perceive the need to use the bias, so when compared to the 296 
ROTI calculated with the Seemala program, this discrepancy in the curve is perceived and 297 
consequently does not present a good correlation. On the other hand, methods 4 and 5 do not 298 
require the calculation of the bias, showing a better correlation when compared to Seemala, 299 
however, method 4 still proved to be more efficient, presenting the best results among the 5 300 
methods. Notice that the method in Figure 3d has a best correlation of 0.88. Therefore, to 301 
calculate the ROTI index, the method 4 is the most suitable over low latitudes.   302 

For the case studies presented in this article we uses the method 4. 303 

5.1 Applying the Method 4 304 

Considering method 4 the most appropriated to ROTI calculation, we used 3 stations, SALU, 305 
CHPI, and SMAR for a deeper study of the ionospheric irregularities. In Figure 4 shows the time 306 
variation of ROTI on December 25, for SALU (top panel on the left), CHPI (top panel on the 307 
right) and SMAR (bottom panel). We can see ROTI reaches values up to 5 TECU/min in 308 
nighttime (0-4 UT and 23-24 UT), however it is not observed behavior over CHPI and SMAR 309 
(ROTI < 1 TECU/min).  310 

Pi et al. (1997) considered ROTI values greater than 2 TECU/min could be associated to 311 
ionospheric irregularities. Since our oscillation reaches 5TECU/min at night time at an equatorial 312 
station, but no significant discrepancies was observed on the low latitudes stations, we have used 313 
a multiintrumental analysis in order to identify if it may be considered a plasma bubble event.   314 
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3. Methods 1, 2 and 3 have presented high values of ROTI during the whole day, the TEC 389 
disturbances in daytime need further investigation since it cannot be associated to the 390 
presence of plasma bubble.   391 

4. We have compared the Method 4 ROTI irregularities observed to observations of 392 
Digisondes, All-Sky Images and TEC Map. In all cases analyzed, the presence of plasma 393 
bubble has been observed in different instruments since the ROTI index has reached 394 
values greater than 1 TECU/min.   395 

5. With the case study, done for the 17th, 18th and 20th of January 2015, higher ROTI 396 
values were observed in low latitude station (CHPI), which was caused by the crest of the 397 
EIA. 398 

Finally, we can conclude, that the technique used can be used for any study, being able to match 399 
reliability even when there is no measurement equipment in the studied regions. 400 
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