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Abstract12

The empirical constitutive modeling framework of Rate- and State-dependent Friction (RSF)13

is commonly used to describe the time-dependent frictional response of fault gouge to perturbations14

from steady sliding. In a previous study (Ferdowsi and Rubin, 2020), we found that a granular-15

physics-based model of a fault shear zone, with time-independent properties at the contact scale,16

reproduces the phenomenology of laboratory rock and gouge friction experiments in velocity-step17

and slide-hold protocols. A few slide-hold-slide simulations further suggested that the granular18

model might outperform current empirical RSF laws in describing laboratory data. Here, we ex-19

plore the behavior of the same model in slide-hold and slide-hold-slide protocols over a wide range20

of sliding velocities, hold durations, and system stiffnesses, and provide additional support for this21

view. We find that, as is the case for laboratory data, the rate of stress decay during slide-hold sim-22

ulations is in general agreement with the “Slip law” version of the RSF equations, using parameter23

values determined independently from velocity step tests. During reslides, the model, similar to lab24

data, produces a nearly constant rate of frictional healing with log hold time, at long hold times,25

with that rate being close to the RSF “state evolution” parameter b, consistent with the “Aging law”26

version of the RSF equations. We also find that, as in laboratory experiments, the granular layer27

undergoes log-time compaction during holds. This is consistent with the traditional understanding28

of the Aging law, even though the associated stress decay is similar to that predicted by the Slip and29

not the Aging law.30

1 Introduction31

The constitutive framework of Rate- and State-dependent Friction is often used for modeling tran-32

sient frictional behavior of rocks and other Earth materials (e.g., sediment, glacial till), and for33

simulating frictional instabilities relevant to earthquakes, landslides and earthflows (J. H. Dieterich,34

1992, 1978, 1979; J. H. Dieterich et al., 1981; Ruina, 1983; J. Dieterich, 1994; Marone, 1998;35

J. H. Dieterich & Kilgore, 1996; Viesca, 2016; Handwerger et al., 2016; McCarthy et al., 2017). A36

complete prescription of RSF requires an equation for the evolution of the “state variable” defining37

the state of the sliding interface. Existing versions of this equation are largely empirical, differ fun-38

damentally in the extent to which slip or elapsed time is responsible for state evolution, and fail to39

satisfactorily match the suite of laboratory experiments they were designed to describe.40

A popular concept has been that in the absence of sliding, state evolution (frictional strength-41

ening, in such cases) is fundamentally a time-dependent process (J. H. Dieterich, 1972). This hy-42

pothesis has received support first from the observed logarithmic-with-time growth of contact area43

between transparent samples of PMMA (Polymethyl methacrylate), due to plastic deformation of44

contacting asperities (J. H. Dieterich & Kilgore, 1994), and more recently from the logarithmic-45

with-time increase in acoustic transmissivity across frictional interfaces in rock (Nagata et al., 2012).46

Log-time frictional strengthening of stationary surfaces has been shown to also result from increased47

chemical bonding (Li et al., 2011). The log-time increase in both contact area and chemical bonding48

have been shown to have a sound theoretical basis (Berthoud et al., 1999; Baumberger & Caroli,49

2006; Liu & Szlufarska, 2012). Such behavior is embodied in the “Aging” (or “Dieterich”) equation50

for state evolution (Ruina, 1983). Despite its theoretical basis, however, the Aging law accurately51

describes almost no rock or gouge friction data other than the observed increase in “static” fric-52

tion with the logarithm of hold time in laboratory slide-hold-slide experiments (as measured by the53

friction peak upon resliding).54

In contrast, a second popular equation for state evolution (the “Slip” or “Ruina” law) has no55

well-established theoretical justification, but does a remarkably good job describing the results of56

laboratory velocity-step experiments, as well as the stress decay during the hold portion of slide-57

hold-slide experiments (Ruina, 1983; Nakatani, 2001; Bhattacharya et al., 2015, 2017). The Aging58

and Slip laws are asymptotically identical for small perturbations from steady-state sliding, but59

diverge as the sliding deviates further from steady state. Notably, unlike the Aging law, the Slip law60

predicts no state evolution in the absence of slip (it can still generate an increase in frictional strength61
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approximately as log “hold” time during slide-hold-slide experiments, due to the small amount of62

slip accompanying the stress decay during holds applied by an elastic testing machine).63

The lack of a physics-based theory for transient friction of rock has motivated exploring the64

physical and chemical origins of rate-state friction in a variety of scientific communities, and has65

also brought significant attention to the contributions of the quantity (contact area) versus the quality66

(shear strength) of contact asperities to the state of a frictional interface (Li et al., 2011; Chen &67

Spiers, 2016; Tian et al., 2017, 2018; Thom et al., 2018). However, future investigations are needed68

to address the implications of asperity-scale (and often single-asperity-scale) observations for the69

transient frictional behavior at macroscopic and multi-asperity scales. In addition, more work is70

necessary to determine if any of the single-asperity-scale observations may reproduce or explain the71

transient frictional behavior of rock and gouge materials in the lab.72

In a previous study, we simulated the transient frictional behavior of a sheared granular gouge73

layer with constant Coulomb friction at grain-grain contacts, using the discrete element method74

(Ferdowsi & Rubin, 2020). We used the granular-physics-based model to study the fault gouge re-75

sponse to velocity-stepping and slide-hold-slide (SHS) numerical simulations, in a system where all76

the relevant time dependence resulted from momentum transfer between the gouge particles, rather77

than time-dependent plasticity or chemical reactions at the contact scale. We note that laboratory78

experiments on even initially bare rock surfaces develop a granular gouge layer through mechanical79

wear, and that laboratory experiments show that the phenomenology of RSF is common to both those80

experiments that start with bare rock and those where gouge is used as the starting material (Marone,81

1998). By not considering time-dependent plasticity or chemical reactions at the contact scale, we82

are throwing out what is traditionally thought to be the source of the rate- and state-dependence83

of friction. Nonetheless, our previous results indicate that the sheared granular model successfully84

reproduces the rock and gouge friction behavior observed in laboratory velocity-step tests. In that85

work we also investigated a very limited number of SHS tests. We found that the stress decay during86

the hold portions of those simulations were consistent with the predictions of the Slip law, which87

itself is largely consistent with the stress decay in laboratory slide-hold experiments. During the88

reslides, on the other hand, the simulations deviated from the Slip law prediction, and it did so in a89

manner that plausibly was more consistent with laboratory experiments. However, a more extensive90

study of SHS behavior in the granular model compared to laboratory rock friction observations was91

deferred to this work.92

Here, we examine the frictional behavior of the granular-physics-based model of fault gouge in93

SHS protocols for a range of sliding velocities and system stiffnesses. These stiffnesses include those94

close the stiffnesses used in published laboratory experiments. A primary objective of this study is to95

further explore the extent to which a sheared granular model of fault gouge with no time-dependent96

plasticity at the grain contacts can explain rock friction data as observed in the lab. We further97

compare the predictions of the model against the Slip- and Aging-law descriptions of state evolution,98

and study the energetics of the granular model in the SHS protocol. We believe the simulation results99

and analyses reported here could also be useful for researchers working in the fields of granular100

physics, constitutive modeling of granular materials and complex fluids. The observations reported101

here are important for accurately modeling frictional instabilities at the interface of Earth materials102

(rocks, sediments, ice-rock, many of which having microstructures that are reminiscent of granular103

materials and similar complex fluids) near the Earth’s surface.104

2 Rate- and State-Dependent Friction background105

The empirical constitutive modeling framework of rate- and state-dependent friction attempts to
describe friction as a function of the sliding rate, V , and the “state variable”, ✓. In its simplest form,
RSF is described by two coupled, first order, ordinary differential equations. The first describes
the relation between friction µ, defined as the ratio of shear stress to normal stress, and the RSF
variables:

µ = µ⇤ + a log
V

V⇤
+ b log

✓

✓⇤
, (1)
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where µ⇤ is the nominal steady-state coefficient of friction at the reference velocity V⇤ and state ✓⇤.106

The coefficients a and b control the magnitude of velocity- and state-dependence of the frictional107

strength, respectively. The second equation describes the evolution of the state variable ✓, the two108

most widely used forms being109

Aging Law:
d✓

dt
= 1� V✓

Dc

(2)

Slip Law:
d✓

dt
= �V✓

Dc

ln
V✓

Dc

(3)

where Dc is a characteristic slip distance (J. H. Dieterich, 1979; Ruina, 1983). Eq. 2 is often referred110

to as the Aging law since state can evolve with time in the absence of slip; Eq. 3 is referred to as the111

Slip law since state evolves only with slip (✓̇ = 0 when V = 0).112

Previous studies have demonstrated that neither the Aging law nor the Slip law adequately de-113

scribes the full range of laboratory velocity-stepping and slide-hold-slide loading protocols (Beeler114

et al., 1994; Kato & Tullis, 2001). Velocity-stepping experiments with a sufficiently stiff system115

show that following a change in velocity, friction approaches its new steady-state value quasi-116

exponentially over a characteristic slip distance that is independent of both the magnitude and the117

sign of the velocity step (Ruina, 1983; Marone, 1998; Blanpied et al., 1998; Bhattacharya et al.,118

2015). This observation holds for both bare rock and gouge samples, and (by design) it is consistent119

with the Slip law prediction for the evolution of state (Ruina, 1983; Nakatani, 2001). However, in120

the Aging law version of state evolution, the slip weakening distance increases as the logarithm of121

the velocity jump for step velocity increases, and for step decreases the frictional strength recovery122

occurs over exceedingly small slip distances as the magnitude of the velocity reduction increases123

(because state is increasing with time rather than slip) . Both of these Aging-law predictions are124

completely inconsistent with laboratory velocity-step data (Nakatani, 2001).125

The Aging law was introduced primarily to account for the observation that in SHS experi-126

ments, beyond a “cut-off time” that is typically of order 1 s, the peak stress upon resliding increases127

approximately as the logarithm of the hold time (J. H. Dieterich, 1979; J. H. Dieterich & Kilgore,128

1994; Ruina, 1983). However, Bhattacharya et al. (2017) reanalyzed the experimental SHS data129

of Beeler et al. (1994), conducted using two different machine stiffnesses (and hence two different130

amounts of interfacial slip during the load-point hold, as the loading machine and rock sample elas-131

tically unload), and found that the log-time increase in peak stress upon resliding could be fit about132

as well by the Slip law as by the Aging law. Bhattacharya et al. (2017) further found that the nearly133

logarithmic-with-time stress decay during the load-point holds could be well modeled by the Slip134

law, which predicts relatively little state evolution owing to the small amount of slip. In contrast,135

this log-time stress decay is completely inconsistent with the Aging law, which predicts too much136

strengthening (state evolution) during the holds, and a rate of stress decay that approaches zero as137

hold time increases (for a/b < 1, as was the case in these experiments). Despite the failure of the138

Aging law to fit both velocity-step tests and slide-hold tests, most theoretical justifications for the139

evolution of state presuppose mechanisms of time-dependent healing as embodied by the Aging law140

(e.g., Baumberger et al., 1999). But even the Slip law is unable to model data from both the hold141

and reslide portions of SHS tests (Bhattacharya et al., 2017).142

2.1 Granular rate- and state-dependent friction143

Both the failures of existing RSF equations and their empirical nature motivated our previous144

study, in which we modeled the behavior of a granular gouge layer with no time-dependent plasticity145

at the grain-grain contact scale, using the discrete element modeling method (Ferdowsi & Rubin,146

2020). We explored the frictional behavior of the gouge layer in velocity-step numerical experiments147

over a range of driving velocities (V = 1⇥ 10�4 to 2 m/s) and normal stresses (�n = 1 to 25 MPa).148

We further performed a limited number of slide-hold-slide granular simulations. Consistent with149

RSF and several earlier numerical studies of sheared granular layers, we found that in response to150

imposed velocity steps, there is an immediate “direct velocity effect” (i.e., an increase in friction in151
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response to a step velocity increase), followed by a more gradual “state evolution effect” where the152

sign of the friction change is reversed (Morgan, 2004; Hatano, 2009; Abe et al., 2002). Furthermore,153

the magnitudes of these direct and evolution effects are proportional to the logarithm of the velocity154

jump, with implied values of the RSF parameters a and b (⇠0.02) that are not far from lab values.155

We further observed that overall the behavior of the granular model appears be very similar to lab156

data for velocity step and slide-hold tests. In this respect, the model agrees well also with the Slip157

law for state evolution. The results of our preliminary granular SHS simulations further indicated158

that the peak stress upon the reslide exceeds the prediction of the Slip law, using the same parameters159

that fit the hold well. This is similar to behavior observed in lab data (Bhattacharya et al., 2017);160

however, to highlight the role of state evolution, those earlier simulations employed a very large161

system stiffness so that the sliding velocity was very nearly equal to the load-point velocity. This162

stiffness greatly exceeds those that can be achieved in the laboratory. In the current study we also163

use stiffnesses more similar to laboratory tests.164

3 The computational model165

Our Discrete Element Method (DEM) simulations are performed using the granular module166

of LAMMPS (Large scale Atomic/Molecular Massively Parallel Simulator), a multi-scale compu-167

tational platform developed and maintained by Sandia National Laboratories (http://lammps168

.sandia.gov) (Plimpton, 1995). Our model consists of a packing of 4815 grains: 4527 in the169

gouge layer, and 288 in the top and bottom rigid blocks. The grains in the gouge layer have a poly-170

disperse normal-like size distribution, with a diameter range d = [1 : 5]mm and average diameter171

Dmean = 3mm (Figure 1A). The granular gouge is confined between two parallel and rigid plates172

that are constructed from grains with diameter d = 5 mm. Grain density and Young’s modulus are173

chosen equal to properties of glass beads (Table S1). The model domain is rectangular with periodic174

boundary conditions applied in the x and y directions. The size of the system in each direction175

is Lx = Ly = 1.5Lz = 20 Dmean. The system is initially prepared by randomly inserting (under

Figure 1. A visualization of the granular gouge simulation. Colors show the velocity of each grain in the x

direction, averaged over an upper-plate sliding distance of Dmean during steady sliding at a driving velocity of
Vi = 2⇥ 10�4 m/s.

176
gravity) grains in the simulation box with a desired initial packing fraction of ⇠0.5. The system177

is then allowed to relax for about 106 time steps, after which it is subjected to confining pressures178

�n = 5 MPa. The confining pressure is applied for one minute, by which time the fast phase of179

compaction is completed. The confined gouge sample is then subjected to shearing at a desired180

driving velocity imposed by the top rigid plate, while the vertical position of the top wall is adjusted181

by a servo-control system to maintain the specified (constant) confining pressure. The driving ve-182

locity is applied to the system via a linear spring attached to the top plate with one of 3 stiffnesses:183

kpull = {1⇥1010,8⇥105, 2.7⇥104} N/m. We will get back to the choices of the spring stiffness at184

the end of this section.185

–5–



manuscript submitted to JGR: Solid Earth

The grains are modeled as compressible elastic spheres of diameter d that interact when in186

contact via the Hertz-Mindlin model (Johnson, 1987; Landau & Lifshitz, 1959; Mindlin, 1949).187

Slip occurs at grain contacts when the local shear stress exceeds the specified (constant) local friction188

coefficient. Energy loss at contacts is characterized by the “restitution coefficient”, which potentially189

varies from 0 (complete energy loss) to 1 (zero loss). At the low sliding speeds of interest the adopted190

value appears to have very little influence on the macroscopic behavior of the system (Ferdowsi &191

Rubin, 2020; MiDi, 2004). The full details of the granular module of LAMMPS are described in the192

LAMMPS manual and several references (Zhang & Makse, 2005; Silbert et al., 2001; Brilliantov et193

al., 1996). For the details of the implementation of the model in this manuscript, and a complete list194

of the governing dimensionless variables, we refer the reader to the “Computational Model” section195

and Appendix A of Ferdowsi and Rubin (2020). All details of the present model, except for the196

values of pulling spring stiffness or unless otherwise specified in the following, are identical to the197

“default” model of our previous paper.198

The velocity V in the RSF equations (1)–(3) is interpreted in laboratory experiments as the199

inelastic component of the relative tangential displacement rate between two parallel planes. This200

displacement rate is typically treated conceptually as occurring across a plane of zero thickness,201

but in fact it occurs across a zone whose thickness is generally unknown. In lab experiments, the202

relative displacement is measured between two points outside the zone of inelastic deformation, and203

the inelastic component of that displacement � is determined by subtracting the estimated elastic204

displacement �el from the measured (total) displacement, i.e.205

� = �lp � �el = �lp � ⌧/k ,

⌧ = k(�lp � �) , (4)

where �lp is the measured “load-point” displacement (in our simulations the displacement of the206

end of the spring not attached to the upper plate), ⌧ the spring force divided by the nominal sample207

surface area (6 cm ⇥ 6 cm), and k the elastic stiffness of the combined testing apparatus plus sample208

between the measurement points. In our numerical simulations this stiffness is given by the effective209

stiffness of two springs in series,210

ke↵ =
kspkH

ksp + kH

(5)

where ksp and kH are the spring and gouge stiffness, respectively (H is the gouge thickness). The211

shear modulus of the gouge layer can be estimated from the initially linear (assumed to be elastic)212

portion of the loading stress-strain curve at the start of a steady-sliding test. In Fig. B1 of Ferdowsi213

and Rubin (2020), we show the sensitivity of the gouge shear modulus to hold time duration in SHS214

tests, and we find that at 5 MPa GH ⇡ 270 � 310 MPa regardless of hold time. From the value215

of shear modulus GH ⇡ 300 MPa, the stiffness kH can be determined as kH = GH/H = 7.3 ⇥ 109216

Pa/m, where H = 0.04 m is the gouge thickness. We can further determine ksp in Pa/m from the217

spring stiffness input, kpull , in LAMMPS in units of N/m, by dividing kpull by the sample surface218

area. The pulling spring stiffnesses of kpull = 1⇥ 1010,8⇥ 105, 2.7⇥ 104 N/m then correspond to219

dimensionless system stiffness k̄d ⌘ keffDc/(b�) ⇡ 425, 12, 0.4, respectively, where the “⇡” sign220

indicates that the values of the normalizing constants b and Dc, determined from fitting simulated221

velocity-step tests, are known only to within about 10%. The dimensionless stiffness k̄d ⇡ 425 rep-222

resents the approximate upper bound for what we can achieve; kpull = 1010 N/m is large enough that223

essentially all the elastic compliance comes from the gouge. The dimensionless system stiffnesses of224

k̄d ⇡ 12 and 0.4 were chosen to be close to the values of k̄ in the SHS experiments performed on the225

Tullis rotary shear apparatus at Brown University (Beeler et al., 1994), to which we compare some226

of our granular model observations. After performing the granular simulations reported in this work,227

our estimates of k̄d for the lab data were reduced by 1/3 from their inital values, to k̄d ⇡ 8 and 0.27.228

For analysis of our simulation data we used values of Dc = 1.77Dmean = 0.0053 m, a = 0.0247,229

and b = 0.0178 which were obtained from velocity-stepping simulations (Ferdowsi & Rubin, 2020).230
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The simulations reported here were performed primarily with two initial steady-state load-point231

velocities of Vi = 2⇥ 10�2 and 10�1 m/s, and in most simulations we used a reslide velocity equal232

to the initial velocity. However, in a small number of cases we changed the reslide velocity to233

search for deviations from the predictions of existing RSF equations; any such deviations would be234

relevant to models of earthquake nucleation. We also performed a series of slide-hold simulations at235

the smaller sliding velocity of Vi = 2⇥ 10�4 m/s. In laboratory experiments, the sliding velocity is236

typically on the order of 1 µm/s; however, running simulations at such velocities is not yet possible237

with the DEM method within reasonable computational costs. Our velocities still correspond to238

the quasi-static regime of shearing (Ferdowsi & Rubin, 2020). In the simulations described here,239

reducing the grain size and model dimensions by the same factor, while keeping Vi the same, results240

in simulations that are dimensionally identical (except for the effect of gravity, which is active but241

insignificant in our model) (See Appendix A in Ferdowsi and Rubin (2020) for details). The majority242

of the simulations were performed with a very high restitution coefficient of ✏n = 0.98, such that243

the system is damped minimally. However, we also have run a series of slide-hold simulations with244

a much lower restitution coefficient of ✏n = 0.3.245

4 Results and discussion246

4.1 Slide-hold simulations247

In this section we present the slide-hold (SH) behavior of the granular model. Since individ-248

ual simulations tend to be somewhat noisy, all simulation signals presented in this manuscript are249

averaged over eight different realizations (initial grain arrangements) of the model, all subjected to250

the same boundary conditions. We define friction as the ratio of shear to normal stress ⌧/� , with251

⌧ and � defined as the shear and normal force per unit area exerted by the gouge particles on the252

upper (driving) plate. This definition ensures that we are measuring the frictional strength of the253

gouge at the boundary with the upper plate, should that differ from the applied spring force (any254

mismatch leading to acceleration of the upper plate). In the absence of significant accelerations that255

are coherent when averaged over x�y planes, from force balance the shear stress as we have defined256

it is uniform throughout the gouge.257

Figures 2a-b show the variation of normalized friction with normalized hold time for SH tests,258

with initial sliding velocities of Vi = 2 ⇥ 10�2 and 10�1 m/s shown by the blue and black curves,259

respectively. Panel (a) shows the results of simulations run with system stiffnesses k̄d ⇡ 425 and 0.4260

(solid and dashed lines, respectively), while panel (b) shows simulations with system stiffness261

k̄d ⇡ 12 (panels (a) and (b) have been separated only for clarity). Lowering the stiffness delays262

the onset of stress decay because a given stress reduction then requires a longer slip distance; at con-263

stant sliding velocity, elasticity dictates that the normalized stress change �⌧/b� reaches �1 when264

thold /(Dc/Vi ) = k̄
�1, which is roughly when the stress trajectories in Figure 2 leave their initial265

plateau. From dimensional analysis, standard RSF (equations 1–3 with constant parameter values)266

predicts that the curves for the same k̄ but different Vi overlap identically when plotted versus di-267

mensionless hold time t̄hold ⌘ thold /(Dc/Vi ). Our simulations at the two sliding velocities with268

k̄d ⇡ 425 show a stress decay response that is not exactly the same, but they are nevertheless similar269

to each other within their standard deviations. The stress decay response for the two velocities differ270

more significantly at the lower stiffnesses of k̄d ⇡ 0.4 and 12.271

Figures 2a & b also include the predictions of the Aging and Slip laws for the stiffnesses used272

in the granular model. These predictions are obtained using the RSF parameter values determined273

independently from Slip law fits to simulated velocity steps performed on the identical granular274

system (Ferdowsi & Rubin, 2020). For k̄d ⇡ 425, the stress decay of the granular model is in275

excellent agreement with the Slip law prediction. There is also reasonable agreement for the lower276

stiffnesses of k̄d ⇡ 0.4 and 12, where the Slip law prediction generally lies between the curves for277

the different Vi . In contrast, for the two larger stiffnesses the Aging-law prediction significantly278

underestimates the stress decay at long hold times. The shallowing slope of the stress decay for279

the Aging law results from its prediction of continual state evolution, ✓̇ ⇡ 1 in equation 2, even at280

vanishing slip rates. For k̄d = 0.4, the Aging and Slip law predictions are almost indistinguishable.281
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(a)

For all line colors:

(b) (c)
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��
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Figure 2. The slide-hold behavior: The blue and black lines in panels (a) & (b) show the variation of friction
coefficient, normalized by the RSF parameter b, as a function of normalized hold time, for granular slide-hold
simulations with prior sliding velocities Vi of 2 ⇥ 10�2 (blue) and 10�1 (black) m/s. Panel (a) shows the
behavior of the systems with stiffness k̄d ⇡ 425 and 0.4, while panel (b) shows the behavior of the system
with stiffness k̄d ⇡ 12. The pink and green lines in panels (a) & (b) further show the predictions of the Slip
and Aging laws, respectively, using the RSF parameters (Dc = 0.0053 m, a = 0.0247, b = 0.0178) determined
independently from Slip-law fits to velocity-step tests performed on the same model (Ferdowsi & Rubin, 2020).
The predictions of the Slip and Aging laws are shown with different line styles for different system stiffnesses
(the Slip law prediction for k̄ = 12 is included in panel (a) only for reference). Granular simulation results in
panels (a) & (b) are averaged over 8 different realizations (initial grain arrangements) subjected to the same
imposed loading conditions. Black and blue lines show the mean behavior of the realizations for each system,
and the width of the gray and blue shades around each line shows the 2-sigma deviations. The confining
pressure in all simulations is 5 MPa. (c) The blue line shows the variation of friction coefficient, normalized by
the RSF parameter b, as a function of normalized hold time, for an experiment performed in the Tullis rotary
shear apparatus at Brown University on a granite sample with prior sliding velocity Vi = 0.316 µm/s. The
system stiffness for this experiment is k̄d ⇡ 8, and the confining stress is 25 MPa. As in panels (a) and (b),
the pink and green lines show predictions of the Slip and Aging laws, respectively, using the RSF parameters
(Dc = 2 µm, a = 0.013, b = 0.016) obtained from Slip-law fits to velocity-step tests on the same experimental
sample. We used the same RSF parameters to calculate the dimensionless stiffness k̄ for the lab data.

This can be rationalized by noting that for this low stiffness and the hold times reached in these282

simulations, the interface never gets far below steady state, and in the vicinity of steady state the283

Aging and Slip laws are asymptotically identical.284

An example of frictional behavior during a laboratory slide-hold experiment on rock is shown in285

Fig. 2c. The experiment was performed with the Tullis rotary shear apparatus at Brown University,286

on a granite sample with initial sliding velocity Vi = 0.316 µm/s, system stiffness k̄d ⇡ 8, and287

confining stress 25 MPa. The Aging and Slip law predictions for the experiment are also shown288

with green and pink lines, respectively. These predictions, similar to the RSF predictions for the289

granular model, are obtained using the RSF parameter values determined independently from Slip290

law fits to the experimental velocity-stepping tests on the same sample. Overall, as with the fits to291

the granular simulations, they indicate that the Aging law underestimates the stress decay in the lab292

at long hold times, while the Slip law provides a very good prediction of the behavior. Similar results293

were obtained from the laboratory slide-hold data of Beeler et al. (1994) analyzed by Bhattacharya294

et al. (2017), although in that case the constrained Slip law fit to the hold data was not as good as295

that in Figure 2c (in this case only a � b was constrained by velocity steps on the same sample).296

Comparing the behavior of both the lab data and the granular model to the Aging and Slip law297

predictions, especially Figures 2b and c with close to the same stiffness, we conclude that although298
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the stress decay in the simulations is not strictly log-linear as for the lab data, the granular model299

qualitatively captures the stress decay observed in laboratory slide-hold tests.300

(b)(a)

For all line colors:

(c)

For all line colors:

Figure 3. Gouge compaction during slide-holds: The blue and black lines in panels (a) & (b) show the
variation of gouge compaction, normalized by the RSF characteristic slip distance Dc , as a function of nor-
malized hold time, for granular slide-hold simulations with prior driving velocities Vi of 2 ⇥ 10�2 (blue) and
10�1 (black) m/s. Panel (a) shows the behavior for stiffnesses k̄d ⇡ 425 and 12, while panel (b) shows the
behavior of stiffness k̄d ⇡ 0.4. The widths of the gray and blue shades around the mean behavior lines indicate
2-sigma deviations. (c) The pink and green lines show the evolution of log(state) under the Slip and Aging
laws, respectively, using the RSF parameters that are determined independently from Slip-law fits to velocity-
step simulations (Ferdowsi & Rubin, 2020). The state evolutions are scaled by an arbitrary factor � = 0.0377

to match the lab compaction data. Different line styles correspond to different system stiffnesses as described
in the legend. The filled and empty dots in all panels show the change in gouge thickness during hold experi-
ments on a granite sample reported by Beeler et al. (1994), who used two different (k̄d ⇡ 8 and 0.27) machine
stiffnesses. The dots are filled or empty in panels (a) and (b) depending on the machine stiffness that is most
appropriate to compare the granular model behavior to in that panel. An estimated slip-weakening distance
Dc ⇡ 2µm is used to normalize compaction data in laboratory experiments. The lab experiments with stiffness
k̄d ⇡ 0.27 and 8 were performed with sliding velocities Vi = 1 µm/s and 0.32 µm/s, respectively. Both low
and high stiffness laboratory experiments were performed at 25 MPa confining pressure.

The stress decay during slide-holds clearly rules out the Aging law for the evolution of state301

in both the granular model and laboratory experiments. This is despite the fact that log-time fault-302

normal compaction is almost universally observed during laboratory holds. This compaction is303

thought to be consistent with an Aging law-like evolution of state; that is, in theoretical justifica-304

tions of the Aging law, the same mushrooming of highly-stressed contacts that is considered to be305

responsible for log-time increase of true contact area and frictional strength, would also lead to log-306

time compaction (Berthoud et al., 1999; Sleep, 2006). The same argument would suggest that if307

the stress data during holds is well modeled by the Slip law, with its relative lack of state evolution,308

the fault-normal compaction would be much less. This potential conflict between the stress and309

fault-normal displacement data from laboratory holds was noted previously by Bhattacharya et al.310

(2017).311

In our previous work, we observed that in addition to matching the stress decay during labora-312

tory holds, the granular model led to log-time reduction in gouge thickness for k̄d ⇡ 425 (Ferdowsi313

& Rubin, 2020). Here we examine the changes in gouge thickness during slide-holds using stiff-314

nesses more appropriate for lab experiments. Figure 3a shows the gouge compaction with hold time315

in the granular model with stiffnesses k̄d ⇡ 425 and 12, in comparison to the gouge compaction316

observed in the laboratory for two system stiffnesses k̄d ⇡ 8 (filled circles) and 0.27 (lab data from317

Beeler et al. (1994), as reported by Bhattacharya et al. (2017). This plot indicates that the magnitude318

of gouge compaction in the granular model is in general agreement with laboratory observations,319
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after both are normalized by their appropriate value of Dc. The gouge compaction in the granular320

model with the lower stiffness k̄d ⇡ 0.4 is shown separately in Fig. 3b for clarity, where now the321

lab data for k̄d ⇡ 0.4 are shown as filled circles. Together, panels (a) and (b) show that gouge com-322

paction in the granular model is not strongly dependent on system stiffness, and that the normalized323

rate of compaction with log time is close to that of the lab data (most obviously for the simulation324

with lowest stiffness, panel (b), which is the simulation for which the compaction is most nearly325

log-linear). However, the lab data show more of a stiffness-dependent offset along the time axis326

than do the simulations.327

The weak dependence of the compaction rate on stiffness in the granular simulations contrasts328

with the strong dependence of the stress decay rate in the same simulations (Fig. 2). Fig. 3c329

shows the evolution of log(state) as predicted using the RSF Aging and Slip laws for the three330

stiffnesses used in the granular model, scaled by an arbitrary factor � = 0.0377. State evolution331

under the Aging law is largely independent of stiffness (because except for the very earliest hold332

times, ✓̇ ⇡ 1) In this the Aging-law prediction resembles the compaction behavior observed in333

both the lab and in the granular model. The evolution of state under the Slip law for the lowest334

stiffness k̄d ⇡ 0.4 is again very similar to that for the Aging law. However, as the system stiffness335

increases, the evolution of state under the Slip law significantly decreases because the amount of slip336

decreases. Translating this state evolution to fault-normal compaction as in Figure 3c, the prediction337

would be that compaction for the Slip law should be strongly stiffness-dependent, completely unlike338

compaction in the simulations and the lab data (Figures 3a and b). This happens at the same time339

that the Slip law matches the stress decay in the model (and lab experiments) quite well.340

4.2 Slide-hold-reslide simulations341

We have thus far presented a detailed comparison of the slide-hold behavior of the granular342

model to both lab data and the RSF Aging and Slip laws. A main motivation for conducting SHS343

experiments in rock friction laboratories is to better understand the fault healing that occurs during344

interseismic intervals, healing that is necessary for repeated earthquakes to occur on the same section345

of fault. This healing historically has been measured by the peak stress �µpeak upon resliding346

following a hold (see the inset in Figure 4a), under the assumption that little state evolution occurs347

in the short time or slip distance between the start of the reslide and the peak stress. Because the348

Aging law embodies fault healing (state evolution) with time even in the absence of slip, for the same349

parameter values it generates more healing during holds than the Slip law. More diagnostically,350

sufficiently long hold times lead to V✓/Dc ⌧ 1, so from equation 2 for the Aging law, ✓̇ ⇡ 1.351

This means that for long hold times the rate of healing with log hold time is independent of how352

much slip accumulates during the hold, and hence it is independent of the elastic stiffness of the353

loading system (Beeler et al., 1994; Bhattacharya et al., 2017). These authors further showed that the354

Aging law predicts that the reduction in log(state) between the start of the reslide and peak stress is355

independent of hold duration, and hence that the predicted change in peak friction with log hold time,356

d�µpeak/d ln(thold ), equals the RSF parameter b (equation (1); note that at peak stress d⌧/dt = 0357

so from elasticity the sliding velocity equals the load-point velocity). This property was exploited358

by Beeler et al. (1994), who ran lab experiments with two loading machine stiffnesses and found359

that, indeed, for long hold times, the rate of healing was independent of stiffness. Bhattacharya et al.360

(2017) later showed that, for the two stiffnesses and hold durations of those experiments, the same361

stiffness-independent rate of healing could be achieved by the Slip law, but over a more restricted362

range of RSF parameters. Those parameters do not include the ratio of a/b appropriate for our363

granular simulations.364

Before proceeding to the results of the granular slide-hold-reslide simulations, it is worth con-365

sidering what it means to compare those results to laboratory experiments. The ratio a/b for the366

granular simulations, determined from simulated velocity steps, is ⇠1.4, and may be fixed by our367

choice of spherical particles, the particular grain size distribution, and the tangential and normal368

contact laws we have adopted (Ferdowsi & Rubin, 2020). This value of a/b is slightly high by lab369

standards, and we are not aware of lab experiments that push surfaces with such values far enough370

from steady state to be useful for constraining models of state evolution. Therefore we do not neces-371
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Figure 4. Frictional healing in the granular model: Solid circles show �µpeak normalized by the RSF pa-
rameter b (estimated from velocity steps), as a function of normalized hold time in granular slide-hold-slide
simulations at Vi = 2⇥ 10�2 and 1⇥ 10�1 m/s. Panels (a), (b), and (c) show the results for system stiffnesses
of k̄d ⇡ 425, 12, and 0.4, respectively. Error bars are 2-sigma deviations of 8 different realizations. The green
and pink lines in each panel show the predictions of the Aging and Slip laws, respectively, for that specific
system stiffness using the RSF parameters obtained from velocity-step tests. The inset in panel (a) shows the
schematic of a slide-hold-slide test and the definition of frictional healing, �µpeak .

sarily expect our granular simulations to match any particular lab experiment. Nonetheless, we were372

able to claim that the simulations successfully capture the phenomenology of laboratory velocity-373

step experiments. For velocity steps, this phenomenology entails that the amplitudes of the changes374

in friction with velocity and state evolution are proportional to the logarithm of the velocity step (in375

RSF these amplitudes are controlled by the magnitudes of the parameters a and b), and that friction376

evolves to its future steady state value over a characteristic slip distance, independent of the size or377

sign of the velocity step. As a corollary, because these same attributes of velocity-step experiments378

are well-captured by the Slip law for state evolution, we were able to find parameter values for the379

Slip version of the RSF equations that matched the granular simulations. A similar approach allowed380

us to make the claim that the granular simulations also captured the phenomenology of laboratory381

slide-hold protocols – that is, for both the granular simulations and lab experiments, the Slip-law382

parameters determined from velocity steps did a reasonable job matching the stress decay during383

holds (Figure 2), even though the values of the RSF parameters used to match the simulations and384

the lab experiments were not the same.385

Because neither the Aging law nor the Slip law successfully models laboratory reslide data386

using parameters constrained by other protocols (either velocity steps or the hold portions of slide-387

hold-reslides), a similar approach for comparing the granular simulations to laboratory reslide data is388

not available to us. Instead, we are limited to trying to reproduce the phenomenology of the reslide389

experiments, which can be summarized as follows. It is well established that the peak friction390

upon resliding increases approximately linearly with log hold time (J. H. Dieterich, 1972; Beeler391

et al., 1994; Baumberger & Caroli, 2006; Marone & Saffer, 2015). The slope of this increase,392

d�µp/d ln(thold ), is plausibly equal to b, as predicted by the Aging law, but in fact we are unaware393

of any SHS experiments in which the value of b was determined independently on the same sample394

(e.g., from velocity steps) These slopes vary from a maximum of ⇠0.01 for granite in the study of395

Beeler et al. (1994), similar to the expected value of b, to a minimum of ⇠0.0035, plus or minus396

several tens of percent depending upon Vi , in the study of Marone and Saffer (2015), a value that397

seems lower than typical estimates of b by a factor of 2–3.398

Beyond this, results seem to be limited to single studies. As mentioned previously, Beeler399

et al. (1994) showed that the rate of frictional strengthening d�µp/d ln(thold ) was independent of400

system stiffness, and interpreted this as suggesting that frictional healing depends upon time rather401

than slip. Marone and Saffer (2015) showed that the rate of frictional strengthening depended upon402
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Vi , indicative of a velocity-dependence of the RSF parameters or a characteristic velocity in the403

governing equations not captured by the standard RSF equations (1)–(3).404

(a)

For all line/symbol colors:

≈
  m/sVi = 0.02

 m/sVi = 0.1
(b)k̄ � 0.27

k̄ � 8
k̄ � 0.27 , shifted

thold /(Dc/Vi) thold /(Dc/Vi)
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Figure 5. (a) Frictional healing in the lab: Solid circles show �µpeak as a function of normalized hold time,
in slide-hold-slide experiments performed on a granite sample at 25 MPa confining pressure (Beeler et al.,
1994) with machine stiffness k̄d ⇡ 0.27 and 8, at sliding velocities of Vi = 1 µm/s and 0.32 µm/s, respectively.
The green dashed lines show the evolution of frictional healing, �µpeak , normalized by the RSF parameter
b = 0.0109 (estimated from the slope of healing vs. time data in this figure) with a�b = �0.0027 (Bhattacharya
et al., 2017) and Dc = 2 µm. These parameters result in normalized stiffness values of k̄d ⇡ 0.472 and 14.165

used in the Aging law predictions in this plot. (b) The green lines show the predictions of the Aging law for
the RSF parameters of the granular model and the three normalized stiffnesses used; note that, as in (a), all the
Aging law predictions asymptote to the same slope for large thold . The data points with shades of gray and
blue show the frictional healing in the granular model, �µpeak , normalized by the RSF parameter b = 0.0185,
versus normalized hold time for the three stiffnesses shown in Figs. 4a-c. The granular model data are shifted
horizontally for all stiffnesses and velocities, except for k̄d ⇡ 12 at velocity Vi = 0.02 m/s, to produce a
reasonable collapse of the data.

Here we present results of granular SHS simulations for a wide range of hold times at Vi =405

2⇥ 10�2 and 10�1 m/s. Panels (a), (b) and (c) in Fig. 4 show the changes in peak stress with hold406

time for simulations performed with stiffnesses k̄d ⇡ 425, 12, and 0.4, respectively. The simula-407

tions with the highest stiffness produce the most frictional healing over the range of t̄hold we could408

achieve. Figure 4a shows that for the longest holds, the peak stress increases nearly logarithmically409

with hold time, in qualitative agreement with laboratory rock friction data. Furthermore, the slope of410

this increase is very nearly equal to the independently-determined value of b, which as noted above411

is at least approximately the case for laboratory experiments. In Fig. 4a this is shown by the par-412

allelism between the granular simulation results and the prediction of the Aging law, shown by the413

green curve, which has the slope b for large hold times (when plotted vs. ln[t̄hold ]). The value of b414

used for the Aging prediction was determined from fits to simulated velocity steps (note that because415

this value depends only upon the total change in friction from the peak value following a velocity in-416

crease to the future steady state value, it is determined independently of any state evolution law; the417

state evolution laws control the rate of approach to steady state and hence Dc). However, unlike the418

lab data of Marone and Saffer (2015), there does not appear to be a significant dependence upon Vi ,419

most obviously for the highest-stiffness simulations that have healed the most. Future experiments420

and simulations that explore a broader range of rate-state parameters, system stiffnesses, and sliding421

velocities might better illuminate whether there is velocity-dependence in a broad area of parameter422

space, and the potential origins of such dependence.423

Frictional healing in the lowest-stiffness system (k̄d ⇡ 0.4) has not progressed as far. However,424

the behavior of all three systems suggest that they may follow the same frictional healing path, just425

to different extents. This is shown in Figure 5b, where we plot the data for all three stiffnesses, after426

shifting them along the horizontal axis by an amount that makes the data nearly collapse onto the427

–12–



manuscript submitted to JGR: Solid Earth

data for Vi = 0.02 m/s and k̄d ⇡ 12. Note that the data for k̄d ⇡ 425 and k̄d ⇡ 12 in Figure 4 show428

something of a break in slope at t̄hold ⇠ 102, but for k̄d ⇡ 0.4 this behavior has not yet begun. In this429

interpretation the data share with laboratory rock friction data (Fig. 5a) the feature that the healing is430

independent of system stiffness, except for a shift along the t̄hold axis. The predictions of the Aging431

and Slip laws for the three stiffnesses are further shown in Fig. 4, panels a-c. They demonstrate432

that the Slip law evolution of state produces a strongly stiffness-dependent frictional healing, while433

the Aging law produces a healing curve with a stiffness-independent slope, consistent with lab data434

(Beeler et al., 1994). The log(thold )) shift required to align the data seems to be different for the435

granular simulations and the lab data, however. For the simulations, healing seems to lag the Aging436

law predictions (green lines in Figure 4) by roughly the same distance on the log(time) axis at each437

stiffness, whereas the lab data seem to be consistent with the Aging law prediction for the lower438

stiffness system, but exceed the predicted healing for the high stiffness system (Figure 5a).439

In comparing the granular models to the predictions of the Aging and Slip laws in Fig. 4, we440

also observe that the healing in the granular model is less than that predicted by the Aging law for all441

stiffnesses (using RSF parameters obtained from Slip law fits to model velocity-step simulations).442

The healing in the model is more than that predicted by the Slip law for k̄d ⇡ 425 and 12, but less443

than predicted for k̄d ⇡ 0.4. Thus, the observation of Ferdowsi and Rubin (2020) that for k̄ ⇡ 425 the444

healing in the granular model lies between the Aging and Slip law predictions is not generalizable445

to all stiffnesses.446
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Figure 6. The variation of normalized dilation at peak stress (�H peak stress / Dc) versus hold time, following
reslides for the granular model with sliding velocities of (a) Vi = 0.02 m/s and (b) Vi = 0.1 m/s. The amount
of dilation is defined as the change in gouge thickness between the end of the hold and the moment of peak
stress, as in Fig. B1 of Bhattacharya et al. (2017). The simulations are performed at three different stiffnesses
and 5 MPa confining stress. (c) The ratio of dilation at peak stress (�H peak stress) to compaction at the end of
the respective slide-hold in the granular model (circles) and in the lab (diamonds) (data of Beeler et al. (1994),
as reported by Bhattacharya et al. (2017)).

In laboratory slide-hold-slide experiments, the reslide portion is accompanied by dilation of the447

gouge layer, dilation that continues monotonically beyond the moment of peak stress to the future448

steady-state thickness. We observe the same behavior in our simulations with stiffnesses k̄d ⇡ 425449

and ⇡ 12. However, the simulations with stiffness k̄d ⇡ 0.4 show dilation past the moment of peak450

stress followed by compaction at larger sliding distances; that is, a non-monotonic approach to the451

future steady-state value (the steady-state thickness of the simulations at a given sliding velocity are452

independent of the system stiffness). Figure 6a & b show the variation of dilation at peak stress453

upon reslides in the granular model for the sliding velocities Vi = 0.02 m/s and Vi = 0.1 m/s,454

respectively. We observe that this dilation increases nearly linearly with log-hold time. We further455

normalize the dilation by the amount of compaction at the end of the respective slide-holds. The456

ratio of dilation/compaction that results from this analysis is shown in Fig. 6c, and it is plotted457

alongside the same quantity observed in the lab data of Beeler et al. (1994). Comparing the lab data458

to the simulations conducted at roughly the same stiffnesses, we find that the relative slopes of the459
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log-linear portion of the dilation and compaction in both the simulations and lab are in the range460

⇠ 0.4� 0.5, and are there therefore in qualitative agreement with each other.461

Vi = 0.1 m/s(a) Vi = 0.02 m/s(b)

Vi = 0.1 m/s(c) Vi = 0.02 m/s(d)

Figure 7. The variation of friction (µ � µss) versus slip distance (Slip / Dc) during the reslide portion of
slide-hold-slide simulations, for different values of normalized hold time thold /(Dc/Vi ) and sliding velocities
of (a) Vi = 0.1 m/s and (b) Vi = 0.02 m/s. Panels (c) and (d) show the signals in panels (a) and (b) with values
normalized by the peak friction value in each simulation. All simulations are performed with stiffness k̄d ⇡ 425

at 5 MPa confining stress. The black dashed line in panels (c) and (d) show the Slip law predictions for a one
order of magnitude velocity-step increase, using the RSF parameters that provide good fits to velocity steps of
various sizes performed with the granular model (Ferdowsi & Rubin, 2020). The Slip law prediction is scaled
to the same peak-residual scale as the granular simulation data in the panels. The lines are added to show that
the slip-weakening distance Dc increases with hold duration from a minimum value that is consistent with the
value appropriate for velocity steps.

Among other features observed in slide-hold-slide tests, Figure 5 of Marone and Saffer (2015)462

suggests that the slip-weakening distance following the peak stress upon resliding increases with463

hold duration. This feature is inconsistent with the Slip law prediction, but we see evidence of similar464

behavior in our granular slide-hold-slide simulations. Figures 7a & b show the variation of friction465

coefficient with sliding distance in the reslide portion of slide-hold-slide simulations performed after466

a range of hold times, at two sliding velocities Vi = 0.1 and 0.02 m/s, referenced to the steady-state467

friction value at Vi . These signals show (more obviously in Fig. 7a) that the slip distance to peak468

friction increases with increasing hold time, as for the Marone and Saffer (2015) data (their Figure469

12). Panels c-d in Fig. 7 also include the Slip law prediction for a one-order velocity-step increase,470

normalized to the same peak-residual value as the reslide friction signals. These two panels more471

clearly demonstrate the increase in weakening distance with hold time. The reslides at shorter holds472

have a weakening distance, Dc, roughly equal to the distance observed in the velocity-steps. At473

longer hold times, Dc further increases, although the amount of increase in Dc in the granular model474

appears to be less than that observed in the lab data.475
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In our SHS simulations, we have also investigated whether changing the re-sliding velocity476

changes either the peak friction or the approach to the future steady-state friction. Any behavior that477

deviates from the RSF prediction is relevant to models of earthquake nucleation, as the perimeter of478

an expanding nucleation zone subjects regions that have not slipped for a long time (as in a hold) to479

successively larger velocity jumps (Ampuero & Rubin, 2008). For this purpose, we have run reslide480

simulations after a hold time t̄hold ⇠ 1650, with the initial sliding velocity Vi = 0.02 m/s and reslide481

velocities Vr of 0.02, 0.05, 0.1, and 0.3 m/s. In a sense these are velocity-step tests, but run from482

a single value of state that is much larger than the steady-state value at velocity Vi . The results are483

shown in supplementary Fig. S2a, where friction is plotted relative to its future steady-state value.484

The prediction of equation (1), assuming that the change in state between the end of the hold and485

peak stress is either small or independent of the reslide velocity, is that the difference in �µpeak486

between two reslide velocities V2 and V1 is equal to b ln(V2/V1). The inset in Fig. S2-a shows that487

this is very nearly the case, with �µpeak increasing linearly with ln(Vr/Vi ) with a slope of 0.0155,488

or 87% of the value b = 0.0178 measured in velocity-steps. Furthermore, scaling the �µ curves by489

the value [C + ln(Vr/Vi )] in Fig. S2-b, with the value of C = 5 determined empirically (the value of490

�µpeak/b determined for Vr = Vi ), collapses the frictional response for all the reslide velocities onto491

a single curve, consistent with the Slip law prediction. In other words, within the range of velocities492

that we have explored, changing the reslide velocity does not affect the weakening distance Dc in the493

granular model, consistent with the Slip law prediction, and changes the peak friction in accordance494

with standard RSF.495

5 Energetics of granular slide-holds496

Although the exact definition of an effective thermodynamic temperature for granular materials497

is still a matter of much debate (Ono et al., 2002; Blumenfeld & Edwards, 2009; Puckett & Daniels,498

2013; Bi et al., 2015; D. Richard et al., 2021), recent research results suggest that the fluctuating499

kinetic energy in these systems can play a role similar to the effective temperature. For this rea-500

son, the fluctuating kinetic energy in granular systems (that is, the kinetic energy determined after501

subtracting from the velocity vector of each grain the average velocity vector of all the grains in its502

immediate environment) is often referred to as the “granular temperature”, and it has proven to be an503

important control on the rheological behavior of these systems (Campbell, 1990; Losert et al., 2000;504

Kim & Kamrin, 2020). In our previous work, we found that the magnitude of the RSF direct effect505

parameter a in the sheared granular gouge could plausibly be explained as the ratio of the fluctuating506

kinetic energy to the stored potential energy in the system (Ferdowsi & Rubin, 2020), although this507

proposal requires further investigation. We further showed that in the quasi-static shearing regime508

(V . 1 m/s, for a normal stress of 5 MPa), the fluctuating kinetic energy becomes nearly constant,509

which would suggest a nearly constant magnitude of the direct effect, consistent with most labora-510

tory rock and gouge friction experiments (Kilgore et al., 1993; Bhattacharya et al., 2015). A nearly511

constant value of effective granular temperature in the quasi-static regime has also been previously512

reported in experimental granular physics studies (Song et al., 2005; Corwin et al., 2005), although513

more recent studies of granular systems with different loading geometries (i.e., other than tabular514

gouge layers between parallel plates) shows that this behavior could be influenced by localized de-515

formation close to driving boundaries (Gaume et al., 2020; Kim & Kamrin, 2020; P. Richard et al.,516

2020).517

In this work, we further examine the evolution of fluctuating kinetic energy in granular slide-
hold simulations. The instantaneous per-grain fluctuating kinetic energy is defined in the tensorial
form,

�Ek(t) =
1
N

NX

i=1

⇥
�~vi (t)⌦ �~vi (t) + � ~!i (t)⌦ � ~!i (t)

⇤
, (6)

where �~vi (t) = ~vi (t) � ~vi (zk, t), and � ~!i (t) = ~!i (t) � ~!i (zk, t). In these calculations, ~vi (zk, t) and518

~!i (zk, t) are the instantaneous linear and angular velocity fields, respectively, and they are calculated519

with coarse-graining of the granular model data. The instantaneous linear velocity field is defined520

as ~vi (zk, t) = (1/Nk)
PNk

i=1 ~vi (t), in which vi (t) is the linear velocity of the ith particle within the521

rectangular cuboid with dimensions (Lx, Ly , �z = 1.37Dmean), and Nk is the total number of grains522
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Figure 8. The variation of per grain fluctuating kinetic energy (�Ek ) with hold time in slide-hold simulations
performed with three system stiffnesses k̄d ⇡ 425, 12, and 0.4, at two sliding velocities of (a) Vi = 0.1 m/s
and (b) Vi = 0.02 m/s. (c) The variation of �Ek with (hold time)⇥ (system stiffness, k̄d )

2
3 for all data shown

in panels (a) and (b). (d) same as panel (c) with �Ek referenced to its initial value (�Ek,0) for each simulation.
The green lines in panels (c) and (d) show the variation of �Ek and �Ek � �Ek,0 for simulations with sliding
velocity Vi = 2⇥ 10�4 m/s and stiffness k̄d ⇡ 425. All simulations are performed at 5 MPa confining stress.

within each cuboid. The instantaneous angular velocity field is similarly defined as ~!i (zk, t) =523

(1/Nk)
PNk

i=1 ~!i (t), where ~!i (t) is the angular velocity of the ith particle.524

The variation of per grain fluctuating energy �Ek with hold time for slide-holds with initial525

sliding velocities Vi = 0.1 and 0.02 m/s and three different system stiffnesses are shown in Figs. 8a526

and 8b, respectively. The curves appear somewhat noisy because the individual data points are527

snapshots and not averages over some time window. The results show that with these two initial528

velocities, for moderate hold times �Ek decreases log-linearly over about 4 orders of magnitude in529

hold time, and then plateaus at roughly 50% of its initial steady-state value. Decreasing the system530

stiffness delays the onset of the reduction in �Ek , presumably because this allows stresses and sliding531

velocities near the prior steady state to persist for longer times, but does not otherwise change the532

shape of the energy reduction curves. This is shown by Fig. 8c, where for both Vi we further multiply533

the normalized hold time t̄hold by k̄
2/3
d

, resulting in the collapse of all the simulation results for each534

initial velocity (at this point the choice of 2/3 for the power is strictly empirical). Plotting the change535

in �Ek from its initial steady state value further shows that the onset of the kinetic energy reduction536

is similar for both values of Vi (Figure 8d).537

Figure 8c also shows that although the curves for the lower Vi have a slightly smaller �Ek at538

steady state (�Ek,ss), for all stiffnesses both Vi appear to plateau to the same value of �Ek at large539

hold times. This raises the question of whether there would be any reduction in �Ek during the hold540

for values of Vi small enough for �Ek,ss to be at or below this plateau value. Ferdowsi and Rubin541

(2020) found that the steady-state value of �Ek decreased from about 1.7⇥ 10�5 J at V = 10�1 m/s542
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to slightly below 10�5 J at V = 10�4 m/s (triangles in Figure 9b), close to the plateau value of �Ek543

in Figure 8c. For this reason we ran slide-hold simulations with V = 2⇥10�4 m/s, about the lowest544

value that could reach moderate values of t̄hold in a reasonable amount of computation time (about545

1.5 months). For the same reason the simulations were run only at the largest stiffness; this leads546

to the largest reduction in �Ek for a given t̄hold . We find that, indeed, �Ek for these simulations547

starts near the plateau value for the larger Vi in Figure 8c, and undergo very little decay during the548

hold. Despite this, the stress decay, when plotted vs. dimensionless hold time, appears very similar549

to that for Vi = 2 ⇥ 10�2 and 10�1 m/s (supplementary Fig. S1). This result raises the possibility550

that the value of 0.8 ⇥ 10�5 J for �Ek represents something of a floor for this granular system, as551

long as stresses are large enough to drive inelastic deformation. Because of the long computation552

times required we have been unable to explore this under conditions of steady-state sliding, but for553

the largest-stiffness holds in Figure 8, the velocities at the end of the simulations were ⇠ 10�8�10�7554

m/s for the different Vi (Fig. 9a). The variation of per grain fluctuation energy versus sliding velocity555

during holds follows closely the trend we have observed in the steady-state simulations, although it556

extends that trend to much lower velocities (Fig. 9b), and this suggests the sliding velocity is likely557

a primary factor in controlling the fluctuating energy, whether or not the system is at quasi-steady558

state.559

(b)(a)

Figure 9. (a) Estimated sliding velocities during the slide-hold simulations with k̄ ⇡ 425 and initial sliding
velocities Vi = 0.02 m/s and 0.1 m/s in Figure 2a (solid lines), and the times at which measurements of the
per grain fluctuating kinetic energy (�Ek ) were made (open circles), as functions of dimensionless hold time.
Determining the slip speed directly from the simulations by taking the time-derivative of equation (4) (with
�lp = 0) results in very noisy velocity histories. Instead, we estimate the slip speed from the Slip law fit to
these data. These estimated velocities equal the actual velocities whenever the simulations and the Slip law
fit (solid red line in Figure 2a) have the same slope at the same value of thold . (b) The variation of per grain
fluctuating kinetic energy with sliding velocity in the slide-hold simulations of panel (a) (magenta and brown
circles) and in steady-state simulations reported in Ferdowsi and Rubin (2020) (blue triangles; the break in slope
just below 1 m/s marks the boundary between the quasi-static and inertial regimes of flow). All simulations are
performed at 5 MPa confining stress.

We do not yet understand what controls the nearly fixed value of the fluctuating kinetic energy560

at long hold times or low steady-state sliding speeds in our simulations. For as long as �Ek is nearly561

constant, the energy loss from grain-grain friction and inelastic collisions must be balanced by work562

done on the gouge by the moving upper plate (or a reduction in elastic potential energy, but this is not563

an option during steady sliding, and even during holds, at constant confining pressure this strikes us564

as a less likely source). During load-point holds this work comes from both shearing (equivalent to565

the potential energy loss of the attached spring) and compaction. In these high-stiffness simulations566

the shearing and compaction velocities are of the same order of magnitude. As both decay roughly567

logarithmically with time during the hold, the rate of energy loss must also decay logarithmically568
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with time. For our default restitution coefficient ✏ of ⇠0.98, collisions are nearly perfectly elastic569

and we presume that most of the energy loss is due to grain-grain friction. To explore the effect of570

increasing the collisional energy loss, we ran simulations with ✏ ⇠ 0.3, for k̄d ⇡ 12. The results571

of these highly damped simulations are shown in Fig. 10. We find that the stress decay is nearly572

indistinguishable from that with the higher restitution coefficient (Figure 10a), and that while �Ek for573

the lower restitution coefficient is offset to lower values, the shape of the curve of fluctuating energy574

with hold time is not much different (Figure 10b). We conclude that within the range explored, the575

choice of restitution coefficient does not significantly influence the mechanical behavior of these576

systems at such low strain rates, consistent with previous results (MiDi, 2004; Ferdowsi & Rubin,577

2020).578

� 10�5

(a) (b)

��
/(b

�)

Figure 10. (a) The variation of friction coefficient, normalized by the RSF parameter b, as a function of
normalized hold time, for granular slide-hold simulations with sliding velocity 10�1 m/s and two restitution
coefficients of ✏ ⇠ 0.98 and ✏ ⇠ 0.3. (b) The variation of fluctuating kinetic energy with normalized hold time
for the simulations in panel (a). The shaded regions indicate 2-� standard deviations of 8 different realizations.
The gray curve shows the fluctuating kinetic energy for the simulation with ✏ ⇠ 0.98 shifted vertically.

If, as was proposed by Ferdowsi and Rubin (2020), the RSF direct effect parameter a is pro-579

portional to �Ek , then Figure 8 suggests that a might vary by a factor of ⇠2 over the duration of the580

holds with the larger Vi . One could then ask if the generally good fit of the Slip law, using constant581

parameter values, to the decay of friction during these same holds and to laboratory data, as in Figure582

2, is really supportive of the Slip law for state evolution. For example, is it possible that the friction583

data could be well fit by the Aging law, given the proper velocity-dependence of a? However, we584

note that for the highest-stiffness simulations in Figures 2 and 8, the continual log-linear stress decay585

continues to be well fit by the Slip law with constant parameter values even for dimensionless hold586

times larger than ⇠ 100.5, where �Ek is essentially constant. In addition, for the simulation with587

Vi = 2⇥ 10�4 m/s in supplementary Figure S1, �Ek is roughly constant and thold is arguably large588

enough to show that the friction data are more consistent with the Slip law than the Aging law. We589

leave further investigation of the potential relation between measures of effective temperature and590

the value of a in granular simulations for future work.591

6 Conclusions592

In this work, we investigated the behavior of a sheared granular layer subjected to loading con-593

ditions designed to mimic laboratory slide-hold-slide experiments, for a range of sliding velocities594

and system stiffnesses We compared the transient frictional behavior of the model to existing rock595

friction data, as well as to the predictions of standard rate-state friction (RSF) constitutive equa-596

tions. For the past few decades it has been common in the rock deformation and earthquake physics597

communities to interpret the direct rate dependence of RSF as resulting from a thermally-activated598

process involving the breaking of chemical bonds at contacting asperities, and to interpret state599
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evolution as due to time-dependent plasticity (or perhaps time-dependent bond strengthening) at600

those asperities. We have removed this basic ingredient from our simulations, and instead explored601

whether transient friction as observed in the laboratory could arise simply from momentum transfer602

in a granular layer with constant friction at grain/grain contacts. Such a granular layer might repre-603

sent a natural fault gouge, or, in the laboratory context, a synthetic gouge layer, a powder that arises604

during slip on initially bare rock surfaces, or, owing to similarities in behavior between granular sys-605

tems and disordered solids (references?), perhaps amorphous wear products on those surfaces. Sim-606

ulated velocity steps in the same granular model have already shown a direct velocity-dependence607

and an opposing state evolution-dependence of friction, each proportional to the logarithm of the608

velocity jump, with magnitudes (the RSF parameters a and b) of ⇠0.02, not far from lab values. In609

addition, state evolution following the velocity jumps occurs over a slip distance that is independent610

of the size and sign of the velocity step, consistent with laboratory experiments and the Slip law for611

state evolution. A final motivation for our simulations is that while the RSF equations are largely612

empirical, the granular model is physics-based, and its output allows us to investigate and perhaps613

understand why it behaves as it does.614

The behavior of the granular flow model in slide-hold (SH) simulations appears to closely re-615

semble laboratory experiments in two important respects. First, the continual stress decay during the616

hold is reasonably well modeled by the Slip version of the RSF equations, using parameter values617

determined independently from velocity step tests on the identical system. This is consistent with618

lab data, as is the result that for both the granular simulations and lab data, the Aging version of the619

RSF equations predict too little stress decay (too much healing, i.e. state evolution, which for the620

Aging law progresses with time rather than slip) (Bhattacharya et al., 2017). Under standard RSF,621

with no intrinsic velocity scale, the stress decay as a function of normalized hold time thold /(Dc/Vi )622

must be independent of the initial sliding velocity Vi . This is approximately the case for our stiffest623

simulations (k̄ ⇠ 425), but larger differences arise for the stiffnesses more appropriate for lab exper-624

iments (k̄ ⇠ 12 and 0.4), where the prediction of the Slip law falls roughly between the simulation625

results. There is not much lab data investigating this, but the experiments of (Marone & Saffer,626

2015) on simulated gouge show a modest dependence on Vi , however, the sign of the dependence627

seems to be opposite from the granular simulations. The source of the Vi -dependence in the granu-628

lar simulations, and whether it might be related to the variation of �Ek for 10�4 . V . 10�1 m/s in629

Figure 9b, is unknown.630

Second, in both the granular simulations and laboratory experiments, the fault layer undergoes631

compaction roughly linearly with log time. Even the rates are roughly comparable, at ⇠ 0.05Dc632

per decade of hold time in Figure 4. Log-time compaction is consistent with standard interpreta-633

tions of the time-dependent Aging law for state evolution (compaction being a proxy for growth634

of true contact area), even though in both the granular simulations and lab experiments the stress635

decay is consistent with the Slip law and not the Aging law. As with the large velocity-step de-636

creases decribed by Ferdowsi and Rubin (2020), this suggests a decoupling between state evolution637

and changes in fault or gouge thickness, in both the lab and the granular simulations, that seems638

inconsistent with traditional interpretations of RSF.639

The reslide portion of our granular slide-hold-slide simulations share with laboratory experi-640

ments the result that for sufficiently long holds the peak friction upon resliding (“frictional healing”,641

�µpeak) increases nearly linearly with the logarithm of hold time. (J. H. Dieterich, 1972; Marone642

et al., 1990). This long-term healing rate, d�µpeak/d ln(thold ), is insensitive to the system stiffness,643

meaning it is independent of how much slip accumulates during the hold, consistent with laboratory644

experiments (Beeler et al., 1994). It is also consistent with the Aging law for state evolution but,645

except over a limited range of parameter space, not the Slip law. In the granular simulations the646

long-time healing rate is very close the RSF evolution-effect parameter b, as predicted by the Aging647

law, and as is approximately the case for some but not all laboratory experiments (Beeler et al., 1994;648

Marone & Saffer, 2015). The granular simulations cannot be fully described by the Aging law, in649

that the onset of the log-linear healing is delayed to longer hold times in the granular model than in650

the Aging law prediction, using RSF parameters determined by fitting velocity steps. However, we651

note that similar mismatches arise between the Aging law and laboratory experiments, even when652
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b and Dc in the RSF equations are treated as free parameters (e.g., Figure 6a of Bhattacharya et al.653

(2017), where only a� b is held fixed because that is all that was determined from velocity steps on654

the same sample in the experiments of Beeler et al. (1994)). Laboratory observations on synthetic655

gouge samples (Marone & Saffer, 2015) suggest that frictional healing as a function of normalized656

hold time may be dependent upon Vi , inconsistent with standard RSF with no intrinsic velocity657

scale. We see a modest Vi -dependence only for our intermediate stiffness of k̄ = 12.658

To summarize, the granular model mimics laboratory slide-hold experiments in that the stress659

decay during the hold is well approximated by the Slip law for state evolution, using parameter val-660

ues determined from velocity steps on the same sample. In addition, both the granular simulations661

and laboratory experiments undergo roughly log-time compaction at comparable rates, when those662

rates are normalized by the appropriate value of Dc. For slide-hold-slide protocols, the granular663

model mimics laboratory experiments in that the rate of healing at sufficiently long hold times is664

roughly linear with log time, with a slope that is independent of the system stiffness and close to665

the RSF parameter b. Thus, despite several attributes that could be considered to be shortcomings,666

including the the use of spherical grains with a geologically narrow size distribution, the granular667

model still arguably does a better job of matching laboratory experiments than existing, and em-668

pirical, rate-state friction equations. The increase in apparent slip-weakening distance with hold669

duration is another feature the model shares with laboratory data but not the Slip law for state evo-670

lution, providing yet additional motivation for continuing to explore the granular model of fault671

friction.672

Researchers in the fields of granular physics and granular rheology have previously found that673

the fluctuating kinetic energy, �Ek , sometimes referred to as the “granular temperature”, in part674

controls the rheology of these materials in steady-state and some transient regimes (Kim & Kamrin,675

2020; Gaume et al., 2020; Campbell, 1990). In our previous study, we found that although �Ek676

varied with confining pressure, the ratio of �Ek to elastic strain energy within the gouge varied only677

slightly with pressure and steady-state sliding speed, and was close to the (also nearly constant) value678

of the the direct velocity effect parameter a of the granular layer (Ferdowsi & Rubin, 2020). In that679

paper we evaluated the variation in fluctuating kinetic energy at steady-state shear velocities as low680

as 10�4 m/s. In the slide-hold simulations reported here, we find that �Ek becomes even more nearly681

constant down to transient sliding velocities below 10�7 m/s. We also find here that changing the682

damping (energy loss) for grain-grain interactions does not substantially alter the variation of �Ek ,683

or the stress decay during holds, for the range of parameters explored. Further understanding what684

controls the changes in fluctuating kinetic energy, its near-constant value in the quasi-static limit,685

and its relation to the direct effect parameter a, may guide future studies of the proper formulations686

of rate-and-state friction laws for describing the transient frictional response of granular layers, and687

for connecting the RSF framework to more physics-based models.688

Additional future research may explore recent definitions of state variable for amorphous ma-689

terials (e.g., D. Richard et al. (2021)) in the context of elastoviscoplastic rheology for soft glassy690

materials (e.g., Fielding (2020)). These works may also address the applications of some of the691

latest developments in constitutive modeling of complex fluids with potentially similar (but as-yet692

unexplored in the context of rock and sediment friction) rate-dependent rheological response and693

hysteresis to rate- and state-dependent behavior of Earth materials.694
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