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Abstract12

The empirical constitutive modeling framework of Rate- and State-dependent Friction (RSF)13

is commonly used to describe the time-dependent frictional response of fault gouge to perturbations14

from steady sliding. In a previous study (Ferdowsi & Rubin, 2020), we found that a granular-15

physics-based model of a fault shear zone, with time-independent properties at the contact scale, re-16

produces the phenomenology of laboratory rock and gouge friction experiments in velocity-step and17

slide-hold protocols. A few slide-hold-slide simulations further suggested that the granular model18

might outperform current empirical RSF laws in describing laboratory data. Here, we explore the19

behavior of the same Discrete Element Method (DEM) model in slide-hold and slide-hold-slide pro-20

tocols over a wide range of sliding velocities, hold durations, and system stiffnesses, and provide21

additional support for this view. We find that, similar to laboratory data, the rate of stress decay dur-22

ing slide-hold simulations is in general agreement with the “Slip law” version of the RSF equations,23

using parameter values determined independently from velocity step tests. During reslides following24

long hold times, the model, similar to lab data, produces a nearly constant rate of frictional healing25

with log hold time, with that rate being in the range of ∼ 0.5 − 1 times the RSF “state evolution”26

parameter b. We also find that, as in laboratory experiments, the granular layer undergoes log-time27

compaction during holds. This is consistent with the traditional understanding of state evolution28

under the Aging law, even though the associated stress decay is similar to that predicted by the Slip29

and not the Aging law.30

Plain Language Summary31

Numerical models of fault slip (earthquakes, earthquake nucleation, landslides, etc.) require32

“constitutive equations” that describe the time-varying frictional strength of the fault. But despite33

being studied since Da Vinci, there is no consensus concerning the physics that underlies friction.34

Laboratory experiments have shown that frictional strength depends upon both the rate of fault35

slip, and a more nebulous property termed the fault “state”. Conventional wisdom is that varia-36

tions in “state” are generated by time-dependent plastic flow or chemistry at microscopic contact37

points within the fault. Because faults in the Earth are invariably filled by fragmented rock (gouge),38

here we explore an alternative model in which variations in friction derive simply from granular39

rearrangements in a gouge layer, with no rate- or state-dependence at individual grain/grain con-40

tacts. Previously, we showed that this model accurately described laboratory experiments in which a41

gouge layer was subjected to large variations in slip rate. Here we test the same model in “slide-hold-42

slide” protocols, long used to measure the amount of frictional strengthening that occurs during fault43

“holds”. The study has broad implications for our understanding of the origins of transient friction44

on faults, an insight needed for improving geological hazard assessment.45

1 Introduction46

The constitutive framework of Rate- and State-dependent Friction is often used for modeling tran-47

sient frictional behavior of rocks and other Earth materials (e.g., sediment, glacial till), and for48

simulating frictional instabilities relevant to earthquakes, landslides and earthflows (J. H. Dieterich,49

1992, 1978, 1979; J. H. Dieterich et al., 1981; Ruina, 1983; J. Dieterich, 1994; Marone, 1998;50

J. H. Dieterich & Kilgore, 1996; Viesca, 2016; Handwerger et al., 2016; McCarthy et al., 2017). A51

complete prescription of RSF requires an equation for the evolution of the “state variable” defining52

the “state” of the sliding interface. Existing versions of this equation are largely empirical, differ53

fundamentally in the extent to which slip or elapsed time is responsible for state evolution, and gen-54

erally fail to satisfactorily match existing laboratory data beyond the suite of experiments they were55

designed to describe.56

A popular concept has been that in the absence of sliding, state evolution (frictional strength-57

ening, in such cases) is fundamentally a time-dependent process (J. H. Dieterich, 1972). This hy-58

pothesis has received support first from the observed logarithmic-with-time growth of contact area59

between transparent samples of PMMA (Polymethyl methacrylate), due to plastic deformation of60

–2–



manuscript submitted to JGR: Solid Earth

contacting asperities (J. H. Dieterich & Kilgore, 1994), and more recently from the logarithmic-61

with-time increase in acoustic transmissivity across frictional interfaces in rock (Nagata et al., 2012).62

Log-time frictional strengthening of stationary surfaces has been shown to also result from increased63

chemical bonding (Li et al., 2011). The log-time increase in both contact area and chemical bonding64

have been shown to have a sound theoretical basis (Berthoud et al., 1999; Baumberger & Caroli,65

2006; Liu & Szlufarska, 2012). Such behavior is embodied in the “Aging” (or “Dieterich”) equation66

for state evolution (Ruina, 1983). Despite its theoretical basis, however, the Aging law accurately67

describes almost no rock or gouge friction data other than the observed increase in “static” fric-68

tion with the logarithm of hold time in laboratory slide-hold-slide experiments (as measured by the69

friction peak upon resliding).70

In contrast, a second popular equation for state evolution (the “Slip” or “Ruina” law) has no71

well-established theoretical justification, but does a remarkably good job describing the results of72

laboratory velocity-step experiments, as well as the stress decay during the hold portion of slide-73

hold-slide experiments (Ruina, 1983; Nakatani, 2001; Bhattacharya et al., 2015, 2017). A heuristic74

explanation for the Slip law was proposed by Sleep (2006), who showed that Slip law behavior can75

result from a highly nonlinear stress-strain relation at the contacting asperities. The Aging and Slip76

laws are asymptotically identical for small perturbations from steady-state sliding, but diverge as77

the sliding deviates further from steady state. Notably, unlike the Aging law, the Slip law predicts78

no state evolution in the absence of slip. Nonetheless, the Slip law can still generate an increase79

in frictional strength approximately as log hold time during slide-hold-slide experiments, due to80

the small amount of slip accompanying the stress decay during holds applied by an elastic testing81

machine (Ruina, 1983).82

The lack of a physics-based theory for transient friction of rock has motivated exploring the83

physical and chemical origins of rate-state friction in a variety of scientific communities, and has84

also brought significant attention to the contributions of the quantity (contact area) versus the quality85

(shear strength) of contact asperities to the state of a frictional interface (Li et al., 2011; Chen86

& Spiers, 2016; Tian et al., 2017, 2018; Thom et al., 2018). However, future investigations are87

needed to address the implications of asperity-scale (sometimes single-asperity-scale) observations88

for the transient frictional behavior at the macroscopic scale. In addition, more work is necessary89

to determine if any of the single-asperity-scale observations may reproduce or explain the transient90

frictional behavior of rock and gouge materials in the lab.91

In a previous study, we used the discrete element method (DEM) to simulate the transient92

frictional behavior of a sheared granular gouge layer in a loading configuration that mimicked tradi-93

tional rock friction experiments (Ferdowsi & Rubin, 2020). We intentionally implemented constant94

Coulomb friction and no exponential (or thermally activated) creep at grain-grain contacts. We also95

do not keep track of contact temperatures or include temperature-dependent friction. We then sub-96

jected this simulated fault gouge to a series of velocity-stepping protocols. It is noteworthy that97

most laboratory rock friction experiments become to some extent granular gouge experiments after98

a short shearing displacement, as a result of wear products that develop on even initially bare rock99

sliding surfaces, and that the RSF phenomenology is observed in both those experiments that start100

with bare rock surfaces and those that start with a synthetic gouge layer (Marone, 1998). We found101

that the sheared granular model, like the Slip law for state evolution, successfully reproduces the102

characteristic transient frictional response of rock and gouge observed in laboratory velocity-step103

tests. Furthermore, in that study we investigated a limited number of slide-hold and slide-hold-slide104

(SHS) tests, and found that the stress decay during the holds were consistent with the predictions105

of the Slip law, which itself is largely consistent with the stress decay observed in laboratory slide-106

hold experiments. During the reslides, on the other hand, the simulations deviated from the Slip107

law prediction, and it did so in a manner that seemed more consistent with laboratory experiments.108

Together, these results suggested that the granular flow model might do a better job of describing109

(room temperature, nominally dry) rock and gouge friction experiments than the existing, largely110

empirical RSF equations. This is surprising. By eliminating time-dependent chemical reactions and111

plasticity at grain/grain contacts, we are dispensing with what is traditionally considered to be the112

source of the rate- and state-dependence of rock friction. All the velocity-dependence and transient113
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response of the granular flow model results from momentum transfer between grains, even at our114

lowest imposed sliding velocities of 10−4 m/s. However, it is worth noting that the actual contact115

stresses in our model, at the default confining pressure of 5 MPa, are ∼1 GPa, large enough that in116

a physical system exponential creep might be occurring (Berthoud et al., 1999; Baumberger et al.,117

1999; Rice et al., 2001; Nakatani, 2001). Again, we do not include exponential creep in our model,118

because our goal is to investigate the extent to which granular rearrangements alone are capable of119

giving rise to the observed RSF phenomenology.120

The purpose of the present paper is to further test the granular flow model as a descriptor of121

rock friction by more thoroughly examining SHS protocols. Most significantly, we generate a large122

number of reslides following holds of different durations, to compare the rate of frictional healing123

in our simulated holds to the logarithmic increase with time seen nearly universally in laboratory124

data. In addition, for comparison to those data we explore a wider range of system stiffnesses. All125

the SHS simulations in Ferdowsi and Rubin (2020) were conducted at the highest stiffness we could126

achieve, that limit being set by the elastic stiffness of the gouge layer itself. For velocity-step tests127

this is desirable; a high stiffness ensures that the inelastic sliding velocity is always nearly the load128

point velocity, which allows one to infer the RSF parameters directly from the transient frictional129

response without having to account for a varying velocity. However, for slide-hold tests the inelastic130

velocity during the hold is always different from the (zero) load-point velocity, and this velocity is131

controlled to a large extent by the system stiffness. Because the amount of slip during the load-point132

hold has been used to help distinguish between the roles of slip and time in frictional healing (Beeler133

et al., 1994), in this paper we use two additional stiffnesses more appropriate for those laboratory134

experiments. We also employ a wider range of sliding velocities than in the holds of Ferdowsi and135

Rubin (2020), as low as 2 mm/s. This is closer to but still somewhat high by laboratory standards.136

We return to these points in Section 3 of the manuscript.137

If, in the face of these more stringent SHS tests, the physics-based granular flow model con-138

tinues to perform well relative to the the empirical RSF equations, it could help further develop our139

understanding of the processes underlying rate-state friction. In addition, if by interrogating the140

model output we are also able to understand the physics underlying the transient response of the141

model to velocity perturbations, it might allow the development of approximate equations that could142

be used in numerical simulations of fault slip as a substitute for the RSF equations currently in use.143

This provides the motivation, in Section 5, for using the SHS simulations to further explore the pos-144

sibility that the direct velocity-dependence of friction in the granular simulations can be understood145

in terms of the kinetic energy of the gouge particles (Ferdowsi & Rubin, 2020). We previously found146

this kinetic energy to be nearly constant for steady-state driving velocities from ∼1 m/s down to the147

lowest we could achieve, 10−4 m/s. The velocities achieved at the ends of our longest load-point148

holds allow us to extend this observation of near-constant kinetic energy to transient velocities that149

are 3 orders of magnitude lower still.150

We note that even if the granular model performs well relative to the standard RSF equations,151

this does not imply that time-dependent physical and chemical processes at grain contacts are ir-152

relevant. Indeed, exponential creep is expected at microscopic contacts, and numerous experiments153

have shown that chemical environment affects the transient behavior of frictional interfaces (Frye &154

Marone, 2002, e.g.). However, at the moment we lack a physical understanding of state evolution in155

RSF (in the sense of also being able to match most lab friction data) in any system, experimental or156

numerical. If we are able to achieve this understanding for the inert granular system, this could shed157

light on the origins of similar behavior in quite different systems. For this reason the results of this158

study could be of interest to researchers in the fields of granular physics and glassy systems, as well159

as, given the ubiquity of granular material in fault zones, researchers in fault mechanics.160

This paper is organized as follows: In Section 2, we describe the relevant aspects of rate-161

state friction, including those aspects that have been seen previously in simulations of granular162

flow. Section 3 describes the computational model, and important dimensionless parameters that163

can be used to judge how closely our simulations adhere to the laboratory experiments we compare164

them to. Section 4 comprises the bulk of the paper - results of the slide-hold and slide-hold-slide165

simulations and their comparison to relevant lab experiments and models of RSF. Finally, Section 5166
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looks at the energetics of the slide-hold simulations, with an eye toward further evaluating the idea167

that the granular kinetic energy can be used to understand the source of the instantaneous velocity-168

dependence of friction in these simulations.169

2 Rate- and State-Dependent Friction background170

The empirical framework of rate- and state-dependent friction describes the resistance to sliding
as a function two variables: The sliding rate, V , and “something else”, commonly referred to as the
“state variable” θ, that describes the “state” of the sliding interface. In its simplest form, RSF
consists of two equations. The first of these is the “friction equation” alluded to above:

µ = µ∗ + a log
V
V∗

+ b log
θ
θ∗

. (1)

Here µ∗ is the nominal steady-state coefficient of friction at the reference velocity V∗ and state171

θ∗. The RSF parameters a and b control the magnitude of velocity- and state-dependence of the172

frictional strength. The second equation is the “state evolution law” describing the time evolution of173

the state variable θ. The two commonly used forms are:174

Aging Law:
dθ
dt

= 1− Vθ
Dc

(2)

Slip Law:
dθ
dt

= −Vθ
Dc

ln
Vθ
Dc

(3)

where Dc is a characteristic slip distance (J. H. Dieterich, 1979; Ruina, 1983). Eq. 2 is often referred175

to as the Aging law, as state can evolve with time in the absence of slip; Eq. 3 is often referred to176

as the Slip law, as state evolves only with slip (θ̇ = 0 when V = 0). In general, more than one177

state variable might be required to adequately describe friction as observed in the laboratory (Ruina,178

1983; Ikari et al., 2016).179

Previous studies have demonstrated that neither the Aging law nor the Slip law adequately de-180

scribes the full range of laboratory velocity-stepping and slide-hold-slide loading protocols (Beeler181

et al., 1994; Kato & Tullis, 2001). Velocity-stepping experiments with a sufficiently stiff system182

show that following a change in velocity, friction approaches its new steady-state value quasi-183

exponentially over a characteristic slip distance that is independent of both the magnitude and the184

sign of the velocity step (Ruina, 1983; Marone, 1998; Blanpied et al., 1998; Bhattacharya et al.,185

2015). This observation holds for both bare rock and gouge samples, and it is consistent with the186

Slip law prediction for state evolution because the Slip law was designed with that transient behavior187

in mind (Ruina, 1983; Nakatani, 2001). However, the Aging law predicts a strongly asymmetric and188

magnitude-dependent transient frictional response to velocity step increases and decreases, behavior189

that is completely inconsistent with laboratory data (Nakatani, 2001).190

The Aging law was introduced primarily to account for the observation that in SHS experi-191

ments, beyond a “cut-off time” that is typically of order 1 s, the peak stress upon resliding increases192

approximately as the logarithm of the hold time (J. H. Dieterich, 1979; J. H. Dieterich & Kilgore,193

1994; Marone & Saffer, 2015; Carpenter et al., 2016). However, Bhattacharya et al. (2017) rean-194

alyzed the experimental SHS data of Beeler et al. (1994), conducted using two different machine195

stiffnesses (and hence two different amounts of interfacial slip during the load-point hold, as the196

loading machine and rock sample elastically unload), and found that the log-time increase in peak197

stress upon resliding could be fit about as well by the Slip law as by the Aging law. Bhattacharya198

et al. (2017) further showed that the nearly logarithmic-with-time stress decay during the load-point199

holds could be well modeled by the Slip law, which predicts relatively little state evolution owing to200

the small amount of slip. In contrast, this log-time stress decay is completely inconsistent with the201

Aging law, which predicts too much strengthening (state evolution) during the holds, and a rate of202

stress decay that approaches zero as hold time increases (for a/b < 1, as was the case in these exper-203

iments). Despite the failure of the Aging law to fit both velocity-step tests and slide-hold tests, most204
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theoretical justifications for the evolution of state presuppose mechanisms of time-dependent heal-205

ing as embodied by the Aging law (e.g., Baumberger et al., 1999). But even the Slip law is unable206

to model data from both the hold and reslide portions of SHS tests (Bhattacharya et al., 2017).207

2.1 Granular rate- and state-dependent friction208

Both the empirical nature and the inadequacies of the existing RSF equations motivated our209

previous study, in which we modeled the behavior of a granular gouge layer with no time-dependent210

plasticity or chemistry at the grain contacts (Ferdowsi & Rubin, 2020). We subjected the gouge layer211

to velocity-step numerical protocols over load-point velocities Vlp from 10−4 to 2 m/s and normal212

stresses σn from 1 to 25 MPa. We found that, in agreement with RSF and multiple previous DEM213

modeling studies, the simulated granular layer shows a “direct velocity effect” (i.e., an immediate214

change in friction of the same sign as the imposed velocity step), that is then followed by a gradual215

“state evolution effect” as friction evolves in the opposite sense toward its new steady-state value216

(Morgan, 2004; Hatano, 2009; Abe et al., 2002). We further found that the magnitudes of these217

frictional transients were proportional to the magnitudes of the logarithm of the velocity change, as218

in RSF, with values of a and b in equation 1 of ∼0.02, not far from values found in the lab.219

We also observed that the granular model appeared be very similar to lab data during slide-hold220

tests, in that the stress decay during the hold could be well-modeled by the Slip law for state evolu-221

tion when using parameter values determined independently from velocity-step tests (Bhattacharya222

et al., 2017, 2021). The results of our preliminary SHS simulations further indicated that the peak223

stress upon the reslide exceeds the prediction of the Slip law, using the same parameters that fit224

the hold well. This is similar to behavior observed in lab data (Bhattacharya et al., 2017). Note225

that some previous studies also either conceptually or qualitatively showed that frictional healing226

can occur during SHS tests as a result of compaction within the fault gouge (Sleep, 1995, 1997;227

Nakatani, 1998; Chen et al., 2020). However, as we noted earlier, the simulations of Ferdowsi and228

Rubin (2020) employed a stiffness that greatly exceeds those that can be achieved in the laboratory.229

In the current study we also use stiffnesses more similar to laboratory tests.230

3 The computational model231

We have performed the Discrete Element Method (DEM) simulations reported in this study us-232

ing the granular module of LAMMPS (Large scale Atomic/Molecular Massively Parallel Simulator),233

a multi-scale computational platform developed and maintained by Sandia National Laboratories234

(http://lammps.sandia.gov) (Plimpton, 1995). The Hertzian potential for grain-grain in-235

teraction in this study is realized using the “pair style gran/hertz/history” in LAMMPS. Our model236

is made of a packing of 4815 grains, of which there are 4527 in the gouge layer, and 288 in the top237

and bottom layers (Figure 1). The grains in those top and bottom layers form rigid blocks parallel238

to the gouge layer and are used to confine and shear the gouge. The grains in the rigid blocks all239

have a diameter d = 5 mm, whereas those in the gouge layer have a polydisperse, Gaussian-like par-240

ticle size distribution with diameters (d) from 1 to 5 mm, with a mean diameter (Dmean) of 3 mm.241

Grain density and Young’s modulus are modeled after glass beads (Table S1). The model domain is242

rectangular with periodic boundary conditions applied in the x and y directions, with domain size243

Lx = Ly = 1.5Lz = 20 Dmean.244

The system is initially prepared by randomly inserting (under gravity) grains in the simulation245

box with a desired initial packing fraction of ∼0.5. The system is then allowed to relax for about 106
246

time steps, after which it is subjected to confining pressures σn = 5 MPa. The confining pressure247

is applied for one minute, by which time the fast phase of compaction is completed. The confined248

gouge sample is then subjected to shearing at a desired driving velocity imposed by a linear spring249

attached to the top rigid plate, while the vertical position of the top wall is adjusted to maintain a250

constant confining pressure. The shearing run is continued until the system achieves a quasi-steady251

state, at which point subsequent loading protocols (slide-holds, slide-hold-slide, velocity step) are252

imposed on the system.253
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Figure 1. A visualization of the granular gouge simulation. Colors show the velocity of each grain in the x

direction, averaged over an upper-plate sliding distance of Dmean during steady sliding at a driving velocity of

Vi = 2× 10−4 m/s.

We model grains as compressible elastic spheres that interact with each other when they are254

in contact via the Hertz-Mindlin model (Johnson, 1987; Landau & Lifshitz, 1959; Mindlin, 1949).255

The full implementation of the granular physics model used here is described below. The model es-256

sentially solves the linear vector equation F = ma for each grain, along with its angular counterpart,257

with the simplification that the model does not track wave propagation through individual grains.258

Readers uninterested in the details can skip to the paragraph surrounding equation (12) below.259

For two spheres {i, j} in contact with each other that have the positions {ri ,rj }, and diameters
di and dj , the normal (Fnij ) and tangential (Ftij ) forces on particle i in its interaction with particle j
can be calculated from the following equations:

Fnij =
√
δij

√
didj

2(di + dj )
(knδijnij −meff γnvnij ) (4)

Ftij =
√
δij

√
didj

2(di + dj )
(−ktutij −meff γtvtij ) (5)

in which kn and kt are the normal and tangential stiffness, and are defined as kn = (2/3)E/(1− ν2)
and kt = 2E/(1+ν)(2−ν) (Mindlin, 1949). In the relations for the normal and tangential stiffnesses,
E and ν are the Young’s modulus and Poisson’s ratio, respectively, and meff = mimj /(mi +mj ) is
defined as the effective mass of the two interacting spheres that have masses mi and mj . The relative
normal and tangential velocities, vnij and vtij , of the grains used in Eqs. 4 and 5 are defined as:

vnij = (vij ·nij )nij (6)

vtij = vij − vnij −
1
2 (ωi +ωj )× rij (7)

in which {vi ,vj } are the linear, and {ωi ,ωj } are angular components of grain velocities, and rij =
ri − rj , nij = rij /rij , with rij = |rij |, and vij = vi − vj . Additionally, δij is the normal compression
of the grain and is defined as

δij = 1
2 (di + dj )− rij (8)

In Eqs. 4 and 5, the parameters γn and γt are the normal and tangential damping (viscoelastic) con-260

stants of the grain-grain interaction, respectively; For the choices of these two damping constants,261

we use the default LAMMPS option where γt = 0.5γn (it has been shown that the choices of the ratio262

have little impact on the rheology of granular materials in the dense and quasi-static regime of shear-263

ing of hard particles we explore in this work (Ferdowsi & Rubin, 2020; Gaume et al., 2011; da Cruz264

et al., 2005; Silbert et al., 2001)). In the granular module of LAMMPS, the damping is implemented265

as a spring and dashpot in parallel for both the normal and tangential contacts.266
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Having defined the equations for contact forces and torques on each particle, i, we solve the
Newton’s second law to find the translational and rotational accelerations of particles located in a
gravitational field g,

F tot
i = mig +

∑
j

(
Fnij + Ftij

)
(9)

τtoti = −1
2

∑
j

Ftij × rij (10)

Slip occurs at grain contacts when the local shear stress exceeds the specified (constant) local grain-267

grain friction coefficient, µg . The value of µg determines the upper limit of the tangential force268

between two grains from the Coulomb criterion Ft ≤ µgFn. This tangential force grows according269

to the non-linear Hertz-Mindlin contact law up to the point where Ft/Fn = µg . After this point,270

the tangential force is held at Ft = µgFn until the point that due to rearrangement of grains either271

Ft ≤ µgFn or the contact between grains is lost. The rolling friction is set to zero in this study. While272

the model solves the Newton’s second law for each particle, it does not take into account wave273

propagation inside the grains. In this study, we use a grain-grain friction coefficient of µg = 0.5.274

In Ferdowsi and Rubin (2020) we found that the macroscopic friction, at steady-state and during275

transients following velocity steps, did not depend strongly on the choice of µg in the range µg = 0.5276

to µg = 1.0. In addition, it has been established previously by MiDi (2004) that frictional behavior277

of sheared granular materials in the dense quasi-static regime of shearing (the regime that we are in)278

does not depend on the grain-grain friction coefficient (µg ), as long as µg is of order 1 (say larger279

than 0.1). Please see section 3.4 in MiDi (2004) for further information.280

Energy loss at contacts in the granular model is characterized by the “restitution coefficient”,
which potentially varies from 0 (complete energy loss) to 1 (zero loss). At the low sliding speeds
of interest the adopted value of restitution coefficient appears to have very little influence on the
macroscopic behavior of the system (Gaume et al., 2011; da Cruz et al., 2005; Silbert et al., 2001).
The values of restitution coefficients, ϵn and ϵt for the normal and tangential directions respectively,
are controlled by the choices of the damping coefficients γn,t and contact stiffness kn,t . For the
Hertzian grain contact law, the restitution coefficient in the normal direction is obtained from the
equation of relative motion of two spheres in contact:

δ̈+
E
√

2deff
3meff (1− ν2)

(
δ3/2 +

3
2
A
√
δδ̇

)
= 0 (11)

with the the initial condition δ̇(0) = vn and δ(0) = 0. The variable A is defined as A = 1
3

(3γt−γn)2

(3γt+2γn)

(
(1−ν2)(1−2ν)

Eν2

)
,281

and deff = didj /(di + dj ) is the effective diameter for spheres of diameters di and dj . From solving282

this equation, the normal component of the coefficient of restitution is defined as the ratio of normal283

velocity of grains at the end of the collision, defined as δ̇(tcol), to the initial normal impact velocity284

of the grains: ϵn = δ̇(tcol)/δ̇(0). Solving the same equation also gives the collision time tcol for given285

choices of the physical properties of grains and the initial velocity with which two grains collide.286

The restitution coefficient in the tangential direction can be obtained from a similar procedure but287

with implementing a tangential damping coefficient (Brilliantov et al., 1996). The time step of our288

simulations is defined as ∆t = tcol /100, with tcol evaluated here with the assumption of an impact289

velocity δ̇(0) of 25 m/s (to be on the safe side for the choice of the simulation time-step and to solve290

the equations of motions accurately; grain-grain impact velocities are highly unlikely to achieve 25291

m/s in the quasi-static simulations reported in this work). The time-step ∆t = tcol /50 is based on292

previous values used and is recommended by Silbert et al. (2001). The majority of the simulations293

in this study were performed with a very high restitution coefficient of ϵn = 0.98, corresponding294

roughly to performing experiments on gouge saturated with dry air. However, we also have run a295

series of slide-hold simulations with a much lower restitution coefficient of ϵn = 0.3. Consistent296

with previous DEM studies at low sliding speeds, we find that the adopted value of the restitution297

coefficient appears to have very little influence on the macroscopic behavior of systems in the dense298

granular flow regime (Gaume et al., 2011; da Cruz et al., 2005; Silbert et al., 2001; Ferdowsi & Ru-299

bin, 2020) (see also Figure 9 of this paper). The full details of the granular module of LAMMPS are300
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described in the LAMMPS manual and several references (Zhang & Makse, 2005; Silbert et al., 2001;301

Brilliantov et al., 1996). Unless otherwise specified in this paper, all details of the present model,302

except for the values of pulling spring stiffness, are identical to the “default” model of Ferdowsi and303

Rubin (2020). Standard values of some of the adopted parameters are listed in Table 1.304

Table 1. DEM simulation parameters. If in some limited simulations, different parameter values305

are used, they are explicitly mentioned in the text.306

Parameter Value

Grain density, ρ 2500 [kg/m3]

Young’s modulus, E 50 [GPa]

Poisson ratio, ν 0.3

Grain-grain friction coefficient, µg 0.5

Confining pressure, σn 5 [MPa]

Coefficient of restitution, ϵn 0.98

Time step, ∆t 2× 10−8 [s]

307

The relation of the velocity V in equations (1)–(3) to the granular simulations merits some308

discussion. In particular, this V is not the velocity of the upper (driving) plate. In laboratory experi-309

ments, slip parallel to the frictional interface is monitored between two points on opposite sides of,310

and some distance from, that interface, and the actual (inelastic) slip δ is estimated from311

δ = δlp − δel = δlp − τ/k ;

τ = k(δlp − δ) . (12)

Here δlp is the measured “load-point” displacement, δel is the elastic distortion of the system be-312

tween the monitoring points resulting from stress changes, τ is the measured stress, and k is the313

elastic stiffness of the combined testing apparatus plus sample between the monitoring points (units314

of stress/distance). Taking the time-derivative of (12) leads to an estimate of the sliding speed as315

a function of measured quantities. Conceptually, δ in lab experiments is often treated as occurring316

on a discrete plane, but, just as in our numerical simulations, it actually occurs over a region whose317

thickness is a priori unknown.318

We treat our model output in the same way. δlp is the displacement of the end of the spring at
which the velocity is imposed, and τ is the spring force divided by the 6 cm × 6 cm surface area
of the driving plate. The effective stiffness k is given by treating the spring and gouge as being in
series:

k =
kspkH
ksp + kH

(13)

where ksp and kH are the spring and gouge stiffness, respectively, and H denotes the gouge thick-319

ness. Equivalently, we could treat the “load-point” displacement δlp as being the measured displace-320

ment of the driving plate, in which case k = kH (showing, after insertion into (12) and differentiat-321

ing, that V is not the velocity of the upper plate if the stress is changing, as this changes the elastic322

distortion of the gouge).323

The shear modulus of the gouge layer can be estimated from the initially linear (nearly elastic)324

portion of the loading stress-strain curve at the start of a steady-sliding test. In Fig. B1 of Ferdowsi325

and Rubin (2020), we show the sensitivity of the gouge shear modulus to hold time duration in SHS326

tests, and we find that at 5 MPa GH ≈ 270 − 310 MPa regardless of hold time. From the value327

of shear modulus GH ≈ 300 MPa, the stiffness kH can be determined as kH = GH /H = 7.3 × 109
328

Pa/m, where H = 0.04 m is the gouge thickness. We can further determine ksp in Pa/m from the329

spring stiffness input, kpull , in LAMMPS in units of N/m, by dividing kpull by the sample surface330

area. We use 3 pulling spring stiffnesses: kpull = 1 × 1010,8 × 105, 2.7 × 104 N/m corresponding331

to dimensionless system stiffness k̄d ≡ kDc/(bσ ) ≈ 425, 12, 0.4, respectively, where the “≈” sign332

indicates that the values of the normalizing constants b and Dc, determined from fitting simulated333

–9–



manuscript submitted to JGR: Solid Earth

velocity-step tests, are known only to within about 10%. The dimensionless stiffness k̄d ≈ 425 rep-334

resents the approximate upper bound for what we can achieve; kpull = 1010 N/m is large enough that335

essentially all the elastic compliance comes from the gouge. The dimensionless system stiffnesses336

of k̄d ≈ 12 and 0.4 were chosen to be close to the values of k̄ in the SHS experiments performed on337

the rotary shear apparatus of Beeler et al. (1994), to which we compare some of our granular model338

observations. After performing the granular simulations reported in this work, our estimates of k̄d339

for those lab data, based on the analysis of Bhattacharya et al. (2021), were reduced by 1/3 from340

their initial values, to k̄d ≈ 8 and 0.27, so the match with our simulations is not exact. For analysis341

of our simulation data we used values of Dc = 1.77Dmean = 0.0053 m, a = 0.0247, and b = 0.0178342

which were obtained from velocity-stepping simulations (Ferdowsi & Rubin, 2020).343

Unlike most laboratory experiments on gouge, we do not see strain localization within our344

system. We do not consider grain breakage, a process which may contribute to localization in the345

lab and in DEM simulations (Abe & Mair, 2009). Our gouge layer is also only about 14 median grain346

diameters thick, which may be too narrow for localization, although in our previous work, we did not347

observe localization in simulated gouge layers that were either ∼14 or 25 grains thick. Experimental348

studies summarized by Rice (2006) suggested that shear bands in granular sands satisfy the condition349

Dmean/Heff ∼ 1/10 − 1/20 for the ratio of mean grain diameter to active thickness of the gouge350

layer. However, it is not clear that localization should be expected in a gouge layer that, as in our351

simulations, strengthens as the shearing rate increases. Previous studies on fault zone rheology352

suggest that strain-rate-weakening is a necessary condition for localization in sheared fault gouge353

(Tse & Rice, 1986; Sleep, 1997; Rice & Cocco, 2007).354

Friction in our simulations is defined as the ratio of the shear to normal force exerted on the355

upper rigid block by the gouge grains in contact with it. If accelerations of the upper plate are unim-356

portant, this shear force can be equated with the force applied by the pulling spring in (12). If the357

plate velocity suddenly changes to or from ∼1 m/s, this assumption is violated and wave propagation358

within the gouge must be considered (Ferdowsi & Rubin, 2020, Appendix B). The SHS simulations359

reported here were run with initial steady-state velocities of Vi = Vlp = 2 × 10−3, 2 × 10−2, and360

10−1 m/s, and in most simulations we used a reslide velocity equal to the initial velocity. However,361

in a small number of cases we changed the reslide velocity to search for deviations from the pre-362

dictions of existing RSF equations; any such deviations would be relevant to models of earthquake363

nucleation. We also performed a series of slide-hold simulations at the smaller initial sliding veloc-364

ity of Vi = 2 × 10−4 m/s. In laboratory experiments, the sliding velocity is typically on the order365

of 1 − 10 µm/s; however, running simulations at such velocities is not yet possible with the DEM366

method within reasonable computational costs, provided one uses grain elastic properties and den-367

sities appropriate for quartz-like materials. Our fully parallelized simulations at sliding velocities of368

Vi = 2× 10−2, 2× 10−3 and 2× 10−4 m/s, took about a few days, two weeks, and six weeks of real369

time, respectively, to achieve steady-state friction on Princeton’s PICSciE’s computational cluster.370

The longest holds took 5 months.371

To assess the importance of our deviation from lab-like parameters, we turn to dimensionless372

ratios. The sliding velocity enters only one – the Inertial number, a critical parameter in granular373

flows, defined as In ≡ γ̇Dmean
√
ρ/P ≈ V (Dmean/H)

√
ρ/P , where γ̇ is the local shear rate, the ap-374

proximate equality is appropriate for our loading geometry, P is the confining pressure (synonymous375

with the normal stress in these simulations), and ρ and Dmean are the density and mean diameter376

of grains, respectively. The inertial number measures the ratio of the inertial forces of grains to the377

confining forces acting on those grains, such that small values (In ⪅ 10−3) correspond to the dense,378

quasi-static regime of shearing that we desire to model (da Cruz et al., 2005; Forterre & Pouliquen,379

2008). The SHS simulations reported here with Vi = 2 × 10−3 to 10−1 m/s have inertial numbers380

during steady sliding satisfying ∼ 10−6 ≲ In ≲ 10−4, all in this quasi-static regime. Ferdowsi and381

Rubin (2020) explore the range ∼10−7 ≲ In ≲ 10−3 during velocity-step tests, and find no signifi-382

cant variation in the RSF parameter values. There is no a priori expectation that the RSF parameters383

will begin to vary at still lower In, but of course one does not know this, and testing for systematic384

changes with Vi provides the motivation for performing SHS tests at a range of achievable sliding385

velocities within the quasi-static regime.386
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Confining pressure enters the Inertial number discussed above as P −1/2, and also the “dimen-387

sionless pressure” P̄ = (P /E)2/3, where E is Young’s modulus (50 GPa in our simulations). P̄ is388

a measure of the grain strain at the imposed confining pressure; the 2/3 power is appropriate for389

contacting elastic spheres (Hertzian contacts). With P = 5 MPa, P̄ = 2 × 10−3 in our simulations.390

Ferdowsi and Rubin (2020) explored values 0.7×10−3 ≲ P̄ ≲ 6×10−3 (1 < P < 25 MPa), and found391

only modest variations in the RSF parameter values. Rather than tailor our values of P̄ to individual392

experiments, we chose to maintain the default value of P = 5 MPa in Ferdowsi and Rubin (2020),393

and rely on their observation that the RSF parameters do not seem to be very sensitive to this choice.394

In contrast, there is reason to believe that the choice of system stiffness in our slide-hold and395

SHS simulations is quite important. For the longest (load-point) holds conducted by Beeler et al.396

(1994), one can estimate (from their reported stress drops and stiffnesses) that there was ∼2.4 µm397

of accumulated slip in their high-stiffness case and ∼16 µm of slip in their low-stiffness case. For398

Dc ∼ 2µm (Bhattacharya et al., 2021) this corresponds to roughly 1.2Dc and 8Dc of slip. Given the399

potential importance of slip on the order of Dc to state evolution, this difference is quite significant.400

For a complete list and discussion of the governing dimensionless variables of the model, see Ap-401

pendix A of Ferdowsi and Rubin (2020). As one last point, we note that reducing all length scales402

(the grain size and all model dimensions) by the same factor, while keeping Vi the same, results in403

simulations that are dimensionally identical.404

4 Results and discussion405

4.1 General considerations406

Before proceeding to the results of the granular simulations, it is worth considering what it407

means to “compare” our results to laboratory experiments. The ratio a/b for the granular simulations,408

determined from simulated velocity steps, is ∼1.4, and may be fixed by our choice of spherical409

particles, Gaussian-like grain size distribution, and the tangential and normal contact laws we have410

adopted (for example, Ferdowsi and Rubin (2020) found that a more exponential-like grain size411

distribution gave rise to simulations with values of a/b much closer to 1; we did not pursue those here412

because they were noisier and would have required even larger system sizes and more computational413

resources to see clear signals). The value a/b ∼ 1.4 is slightly high by lab standards, and we are414

not aware of lab experiments that push surfaces with such values far enough from steady state to415

be useful for constraining models of state evolution. Therefore we do not necessarily expect our416

granular simulations to match any particular lab experiment. Nonetheless, we were able to claim that417

the simulations successfully capture the phenomenology of laboratory velocity-step experiments.418

This phenomenology entails that the amplitudes of the changes in friction with velocity and state are419

proportional to the logarithm of the velocity step (amplitudes controlled in RSF by the parameters420

a and b), and that friction evolves to its future steady state value over a characteristic slip distance421

(Dc), independent of the size or sign of the velocity step. Because, by design, these attributes of lab422

experiments are replicated by the Slip version of the RSF equations, it was convenient to use Slip423

law fits to our simulation output to determine the values of a, b, and Dc that fit our data well (note424

that absent some conceptual model for friction, we could not even have made the statement above425

that in our simulations “a/b ∼ 1.4”).426

For slide-hold tests the situation is more complicated, because it is less obvious what the “phe-427

nonomenology” of laboratory holds is. Here we made more essential use of comparisons between428

our simulations and the predictions of the Aging and Slip laws for state evolution, on the one hand,429

and comparisons between the Aging and Slip laws and laboratory experiments, on the other. Bhat-430

tacharya et al. (2017; 2021) showed that the stress decay during laboratory holds was fit reasonably431

well by Slip law simulations, using parameter values determined independently from velocity steps,432

and that the Aging law, with its time-dependent healing, predicted too little stress decay. Because433

these features of the lab data were replicated by our numerical simulations, we used this indirect434

comparison (granular simulations to RSF / RSF to lab data) to claim that the granular simulations435

also seemed to do a good job matching laboratory slide-hold experiments (although, as we noted436

previously, the comparison in Ferdowsi and Rubin (2020) was made using a system stiffness that437

–11–



manuscript submitted to JGR: Solid Earth

exceeds those achievable in the lab). For SHS tests, the salient phenomenology is that the peak438

friction upon resliding increases nearly linearly with the logarithm of hold time. For the Aging law,439

which was designed to produce this behavior, the slope of this increase (suitably normalized, i.e.,440

converting between the base 10 and natural logarithms) is the RSF parameter b, whereas in lab ex-441

periments it seems to be variable but roughly a factor of 2 smaller (see Section 4.3). So although in442

this case we could “compare” the slope in our simulations directly to lab data without seeming to443

reference the Aging law, in fact by choosing to compare the slope to b we are implicitly making use444

of the Aging law. That is, absent some moderately successful model prediction, it is not apparent445

what we should be comparing the slope of our healing relation to.446

4.2 Slide-hold simulations447

In this section we present the slide-hold (SH) behavior of the granular model. Since individual448

simulations tend to be somewhat noisy, all simulation signals presented in this manuscript are aver-449

aged over eight different realizations (initial grain arrangements) of the model, all subjected to the450

same boundary conditions. Friction is defined as the ratio of shear to normal stress τ/σ , where τ is451

the shear force per unit area exerted by the gouge particles on the upper (driving) plate, and σ is the452

normal force per unit area on the upper plate.453

Figures 2a-c show the variation of normalized friction with normalized hold time for SH tests,454

with initial sliding velocities of Vi = 2 × 10−3, 2 × 10−2, and 10−1 m/s shown by the cyan, blue,455

and black curves, respectively. Panel (a) shows the results of simulations run with system stiffnesses456

k̄d ≈ 425, while panels (b) and (c) show simulations with system stiffness k̄d ≈ 12 and kd ≈ 0.4,457

respectively. Based on the indicated reductions in friction and the system stiffnesses, the longest458

holds in these simulations correspond to total (inelastic) slips within the gouge layer of roughly459

(from most to least stiff) 0.04Dc, Dc, and 10Dc.460

Lowering the stiffness delays the onset of stress decay because a given stress reduction then461

requires a longer slip distance; at constant sliding velocity, elasticity dictates that the normalized462

friction change ∆µ/b reaches −1 when thold /(Dc/Vi) = k̄−1, which is roughly when the stress tra-463

jectories in Figure 2 leave their initial plateau (the Slip law predictions for k̄d ≈ 12 and k̄d ≈ 0.4464

have been included in panel (a) for reference). From dimensional analysis, standard RSF (equations465

1–3 with constant parameter values) predicts that the curves for the same k̄ but different Vi over-466

lap identically when plotted versus dimensionless hold time t̄hold ≡ thold /(Dc/Vi). Our simulations467

at the three sliding velocities with k̄d ≈ 425 show a stress decay response that is not exactly the468

same, but they are nevertheless similar to each other within their standard deviations. The stress469

decay response for the three velocities differ more significantly at the lower (lab-like) stiffnesses of470

k̄d ≈ 0.4 and 12. Existing lab data addressing this question are mixed. The slide-hold experiments471

of Marone and Saffer (2015) using simulated gouge show a modest dependence on Vi , when plotted472

vs. normalized hold time, but those of Bhattacharya et al. (2021) on initially bare rock surfaces that473

develop a gouge layer do not.474

Figures 2a-c also include the predictions of the Aging and Slip laws for the stiffnesses used in475

the granular model. These predictions are obtained using the RSF parameter values determined in-476

dependently from Slip law fits to simulated velocity steps performed on the identical granular system477

(Ferdowsi & Rubin, 2020). We do not use parameter values determined using the Aging law because478

that model is clearly inappropriate for modeling velocity steps, in both laboratory experiments and479

our DEM, as the Aging-law estimate of Dc depends entirely upon the magnitudes and signs of the480

velocity steps one chooses to fit (Bhattacharya et al., 2015) (for stiff systems, such as that used by481

Ferdowsi and Rubin (2020), only the value of Dc, and not a and b, depend upon the adopted state482

evolution law). For k̄d ≈ 425, the stress decay of the granular model is in excellent agreement with483

the Slip law prediction. There is also reasonable agreement for the lower stiffnesses of k̄d ≈ 0.4 and484

12, where the Slip law prediction generally lies between the curves for the different Vi (we return to485

the differences between the different Vi below). In contrast, for the two larger stiffnesses, where the486

Aging- and Slip-law predictions differ, the Aging-law significantly underestimates the stress decay487

at long hold times. The shallowing slope of the stress decay for the Aging law results from its pre-488
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Figure 2. The slide-hold behavior: The cyan, blue, and black lines in panels (a-c) show the variation of

friction coefficient, normalized by the RSF parameter b, as a function of normalized hold time, for granular

slide-hold simulations with prior sliding velocities Vi of 2 × 10−3 (cyan), 2 × 10−2 (blue), 10−1 (black) m/s.

Panels (a), (b), and (c) show the behavior of the systems with stiffness k̄d ≈ 425, 12,and 0.4, respectively.

The pink and green lines in panels (a-c) further show the predictions of the Slip and Aging laws, respectively,

using the RSF parameters (Dc = 0.0053 m, a = 0.0247, b = 0.0178) determined independently from Slip-law

fits to velocity-step tests performed on the same model (Ferdowsi & Rubin, 2020). The predictions of the Slip

and Aging laws are shown with different line styles for different system stiffnesses (the Slip law predictions

for k̄ = 12 and 0.4 are included in panel (a) only for reference). Granular simulation results in panels (a-c)

are averaged over 8 different realizations (initial grain arrangements) subjected to the same imposed loading

conditions. Black, blue, and cyan lines show the mean behavior of the realizations for each system, and the

width of the gray, blue, and cyan shades around each line shows the 2-sigma deviations. The confining pressure

in all simulations is 5 MPa. (d) The blue line shows the variation of friction coefficient, normalized by the

RSF parameter b, as a function of normalized hold time, for an experiment performed in the Tullis rotary shear

apparatus at Brown University on a granite sample with prior sliding velocity Vi = 0.316 µm/s. The system

stiffness for this experiment is k̄d ≈ 8, and the confining stress is 25 MPa. As in panels (a-c), the pink and

green lines show predictions of the Slip and Aging laws, respectively, using the RSF parameters (Dc = 2 µm,

a = 0.013, b = 0.016) obtained from Slip-law fits to velocity-step tests on the same experimental sample. We

used the same RSF parameters to calculate the dimensionless stiffness k̄ for the lab data.
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diction of continual state evolution, θ̇ ≈ 1 in equation 2, even at vanishing slip rates. Analytically,489

the slope of the stress decay at long hold times for the Aging law (with a/b > 1) is (1 − a/b) when490

plotted vs. ln(t̄hold), and 2.3(1 − a/b) when plotted vs. log10(t̄hold), independent of the system491

stiffness (Bhattacharya et al., 2017, Appendix C). For the Slip law, the long-time slope in general492

depends upon stiffness, but in the “infinite-stiffness limit” it is 2.3(−a/b) when when plotted vs.493

log10(t̄hold) (Bhattacharya et al., 2017), which for the parameter values of our granular simulations494

is 3.6 times larger. All 3 initial velocities for k̄ ≈ 425 in Figure 2a, and the corresponding Slip-law495

prediction, have this “infinite-stiffness limit” slope. For k̄d = 0.4 in Figure 2c, there is sufficiently496

little reduction in slip speed that the predictions of the Aging and Slip laws are extremely similar.497

Because our initial sliding velocities are higher than those typically used in laboratory slide-498

hold experiments, it is important to assess any systematic trends with Vi in the granular simulations.499

At the highest stiffness (k̄ ≈ 425), the curves for the different Vi tend to weave around the Slip-law500

prediction, but they all end up with the same (Slip-law) slope at the longest hold times. At short501

hold times for k̄ ≈ 12 and 0.4, there do not seem to be trends that are monotonic with Vi , with the502

slowest velocity (2× 10−3 m/s) plotting between the two larger velocities. However, at the longest503

hold times in Figure 2b (k̄ ≈ 12), there is a systematic trend of lower stress with lower Vi . Whether504

this trend would persist to longer hold times is not known.505

An example of frictional behavior during a laboratory slide-hold experiment on rock is shown506

in Fig. 2d, from Bhattacharya et al. (2021). The experiment was performed on a granite sample with507

initial sliding velocity Vi = 0.316 µm/s, system stiffness k̄d ≈ 8, and confining stress 25 MPa. The508

Aging and Slip law predictions for the experiment are shown with green and pink lines, respectively.509

These predictions, similar to the RSF predictions for the granular model, are obtained using the RSF510

parameter values determined independently from Slip law fits to velocity-stepping experiments on511

the same sample. Overall, as with the fits to the granular simulations, they indicate that the Aging512

law underestimates the stress decay in the lab at long hold times, while the Slip law provides a very513

good prediction of the behavior. Comparing the behavior of both the lab data and the granular model514

to the Aging and Slip law predictions, especially Figures 2b and 2d with close to the same stiffness,515

we conclude that although the stress decay in the simulations is not strictly log-linear as for the lab516

data, the granular model qualitatively captures the stress decay observed in laboratory slide-hold517

tests.518

The stress decay during slide-hold protocols clearly rules out the Aging law for the evolution519

of state in both the granular model and laboratory experiments. This is despite the fact that log-520

time fault-normal compaction is almost universally observed during laboratory holds under room-521

humidity conditions. This compaction is thought to be consistent with an Aging law-like evolution522

of state; that is, in theoretical justifications of the Aging law, the same mushrooming of highly-523

stressed contacts that is considered to be responsible for log-time increase of true contact area and524

frictional strength, would also lead to log-time compaction (Berthoud et al., 1999; Sleep, 2006).525

The same argument would suggest that if the stress data during holds is well modeled by the Slip526

law, with its relative lack of state evolution, the fault-normal compaction would be much less. This527

potential conflict between the stress and fault-normal displacement data from laboratory holds was528

noted previously by Bhattacharya et al. (2017).529

In our previous work, we observed that in addition to matching the stress decay during labora-530

tory holds, the granular model led to log-time reduction in gouge thickness for k̄d ≈ 425 (Ferdowsi531

& Rubin, 2020). Here we examine the changes in gouge thickness during slide-holds using stiff-532

nesses more appropriate for lab experiments. Figure 3a shows the gouge compaction with hold time533

in the granular model with stiffnesses k̄d ≈ 425 and 12, in comparison to the gouge compaction534

observed in the laboratory for two system stiffnesses k̄d ≈ 8 (filled circles) and 0.27 (lab data from535

Beeler et al. (1994), as reported by Bhattacharya et al. (2017)). The lab experiments were performed536

in a rotary shear apparatus, so there is no need to correct for sample dilation/compaction due to537

a Poisson effect as the loading stress changes (Beeler et al., 1996). The gouge compaction in the538

granular model with the lower stiffness k̄d ≈ 0.4 is shown separately in Fig. 3b for clarity, where539

now the lab data for k̄d ≈ 0.4 are shown as filled circles. These plots indicate that the magnitude540

of gouge compaction in the granular model is in general agreement with laboratory observations,541
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Figure 3. Gouge compaction during slide-holds: The cyan, blue, and black lines in panels (a) & (b) show

the variation of gouge compaction, normalized by the RSF characteristic slip distance Dc, as a function of

normalized hold time, for granular slide-hold simulations with prior driving velocities Vi of 2 × 10−3 (cyan),

2 × 10−2 (blue), and 10−1 (black) m/s. Panel (a) shows the behavior for stiffnesses k̄d ≈ 425 and 12, while

panel (b) shows the behavior of stiffness k̄d ≈ 0.4. The widths of the gray, blue, and cyan shades around the

mean behavior lines indicate 2-sigma deviations. (c) The pink and green lines show the evolution of log(state)

under the Slip and Aging laws, respectively, using the RSF parameters determined independently from Slip-

law fits to velocity-step simulations (Ferdowsi & Rubin, 2020). The state evolutions are scaled by the factor

−d(Hss/Dc)/d logθ ≈ 0.035 (Fig. 2c in Ferdowsi and Rubin (2020)), where the Hss is the steady-state thick-

ness of the granular layer (see text for discussion). Different line styles correspond to different system stiff-

nesses as described in the legend. The filled and empty dots in all panels show the change in gouge thickness

during hold experiments on a granite sample reported by Beeler et al. (1994), who used two different (k̄d ≈ 8

and 0.27) machine stiffnesses. The dots are filled or empty in panels (a) and (b) depending on the machine

stiffness that is most appropriate to compare the granular model behavior to in that panel. An estimated slip-

weakening distance Dc ≈ 2µm is used to normalize compaction data in laboratory experiments (Bhattacharya

et al., 2021). The lab experiments with stiffness k̄d ≈ 0.27 and 8 were performed with sliding velocities Vi = 1

µm/s and 0.32 µm/s, respectively. Both low and high stiffness laboratory experiments were performed at 25

MPa confining pressure.

after both are normalized by their appropriate value of Dc. For the granular simulations this is the542

sensible normalization; Ferdowsi and Rubin (2020) found that the ratio of gouge thickness changes543

to Dc was independent of the nominal gouge thickness over the range they explored. For the lab544

data, normalization by Dc is intended to account for the fact that deformation is typically localized545

over a layer of unknown thickness; inherent in this approach is the assumption that both slip and546

compaction are concentrated within this layer. Together, panels (a) and (b) show that gouge com-547

paction in the granular model is much less strongly dependent on system stiffness than is the stress548

decay, and that the normalized rate of compaction with log time is close to that of the lab data (most549

obviously for the simulation with lowest stiffness, panel (b), which is also the simulation for which550

the compaction is most nearly log-linear). The lab data show more of a stiffness-dependent offset551

along the time axis than do the simulations, although the simulations with the lowest Vi of 2×10−3
552

m/s show a modest offset of the proper sign.553

The relatively weak dependence of the compaction rate on stiffness in the granular simulations554

is reminiscent of the Aging-law prediction for the evolution of state θ, because for long Aging-law555

holds θ̇ ∼ 1, independent of all else. Fig. 3c shows the evolution of log(state) as predicted using556

the RSF Aging and Slip laws (in green and red, respectively), for the three stiffnesses used in the557

granular model. To plot log(state) on the same axis as compaction, we use the linear relation between558

steady-state gouge thickness and log velocity found by Ferdowsi and Rubin (2020), combined with559

the RSF relation that at steady state velocity is inversely proportional to state. That is, we multiply560
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the computed change in log(state) by the factor −d(Hss/Dc)/d logθ, found to be ∼0.035 in Figure561

2c of their paper, where Hss is the steady-state thickness of the gouge layer. The agreement between562

this Aging law prediction and the lab data, and from comparison to Figures 3a and 3b the agreement563

between the granular simulations and the lab data, is quite remarkable. The evolution of state under564

the Slip law for the lowest stiffness is, as with the stress decay, very similar to that for the Aging law.565

However, as the system stiffness increases, the evolution of state under the Slip law significantly566

decreases because the amount of slip decreases. Translating this state evolution to fault-normal567

compaction as in Figure 3c, the prediction would be that compaction for the Slip law should be568

strongly stiffness-dependent, completely unlike compaction in the simulations and in the lab data.569

All of this serves to emphasize the point that while stress during the holds is fit well by the Slip law,570

compaction during the holds is fit much better by the Aging law prediction of state evolution.571

4.3 Slide-hold-reslide simulations572

A main motivation for conducting SHS experiments on rock is to better understand the fault573

healing that occurs during interseismic intervals, healing that is necessary for repeated earthquakes574

to occur on the same section of fault. This healing historically has been measured by the peak stress575

∆µpeak upon resliding following a hold (see the inset in Figure 4a), under the assumption that little576

state evolution occurs in the short time or slip distance between the start of the reslide and the peak577

stress (we leave aside here the question of whether room temperature and humidity experiments are578

relevant to natural faults at depth). Because the Aging law embodies fault healing (state evolution)579

with time even in the absence of slip, for the same parameter values it generates more healing during580

holds than the Slip law. More diagnostically, sufficiently long hold times lead to Vθ/Dc ≪ 1, so581

from equation 2 for the Aging law, θ̇ ≈ 1. This means that for long hold times the rate of healing582

with log hold time is independent of how much slip accumulates during the hold, and hence it is583

independent of the elastic stiffness of the loading system (Beeler et al., 1994; Bhattacharya et al.,584

2017). These authors further showed that the Aging law predicts that the reduction in log(state)585

between the start of the reslide and peak stress is independent of hold duration, and hence that the586

predicted change in peak friction with log hold time, d∆µpeak/d ln(t̄hold), equals the RSF parameter587

b (equation (1); note that at peak stress dτ/dt = 0, so from elasticity the sliding velocity at5 that588

moment equals the load-point velocity). This property was exploited by Beeler et al. (1994), who589

ran lab experiments with two loading machine stiffnesses and found that, indeed, for long hold590

times, the rate of healing was independent of stiffness. Bhattacharya et al. (2017) later showed that,591

for the two stiffnesses and hold durations of those experiments, the same stiffness-independent rate592

of healing could be achieved by the Slip law, but over a more restricted range of RSF parameters.593

Those parameters do not include the ratio of a/b appropriate for our granular simulations.594

It is well established from decades of laboratory experiments on rock and gouge that the peak595

friction upon resliding increases nearly linearly with log hold time (J. H. Dieterich, 1972; Beeler et596

al., 1994; Baumberger & Caroli, 2006; Marone & Saffer, 2015; Carpenter et al., 2016). The only597

study of which we are aware that compares the observed rate of increase to the Aging law prediction,598

d∆µpeak/d ln(t̄hold) = b, using values of b determined independently from velocity-step tests, is the599

combined work of Ikari et al. (2016) and Carpenter et al. (2016) on natural and synthetic gouge600

materials. Excluding their synthetic clay gouges, for which our granular simulations with spherical601

grains are likely inappropriate, Ikari et al. (2016) found slopes mostly in the range of ∼0.3b to 0.7b.602

Beeler et al. (1994) found d∆µpeak/d ln(t̄hold) ∼ 0.01 for their granite sample, close to the expected603

value of b for granite, but a slope of ∼0.004 for quartzite, probably a factor of ∼2 lower than the604

expectation for b. Marone and Saffer (2015) found slopes of ∼0.0035, plus or minus several tens of605

percent depending upon Vi , values that seem within the range of Ikari et al. (2016).606

Beyond this, results seem to be limited to single studies. As mentioned previously, Beeler et al.607

(1994) showed that the rate of frictional strengthening d∆µp/d ln(t̄hold) was independent of system608

stiffness, and interpreted this as suggesting that frictional healing depends upon time rather than slip.609

Marone and Saffer (2015) showed that the rate of frictional strengthening in their synthetic gouge610

samples depended upon Vi , increasing by nearly a factor of 2 over the range 1–100 µm/s, indica-611

tive of a velocity-dependence of the RSF parameters or a characteristic velocity in the governing612
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Figure 4. Frictional healing in the granular model: Solid circles show ∆µpeak normalized by the RSF pa-

rameter b (estimated from velocity steps), as a function of normalized hold time in granular slide-hold-slide

simulations at Vi = 2 × 10−3, 2 × 10−2, and 10−1 m/s. Panels (a), (b), and (c) show the results for system

stiffnesses of k̄d ≈ 425, 12, and 0.4, respectively. Error bars are 2-sigma deviations of 8 different realizations.

The green and pink lines in each panel show the predictions of the Aging and Slip laws, respectively, for that

specific system stiffness using the RSF parameters obtained from velocity-step tests. The inset in panel (a)

shows the schematic of a slide-hold-slide test and the definition of frictional healing, ∆µpeak . (d) Frictional

healing in the lab: Solid circles show ∆µpeak as a function of normalized hold time, in slide-hold-slide experi-

ments performed on a granite sample at 25 MPa confining pressure (Beeler et al., 1994) with machine stiffness

k̄d ≈ 0.27 and 8, at sliding velocities of Vi = 1 µm/s and 0.32 µm/s, respectively. The green dashed lines show

the evolution of frictional healing, ∆µpeak , normalized by the RSF parameter b = 0.0109 (estimated from the

slope of healing vs. time data in this figure) with a− b = −0.0027 (Bhattacharya et al., 2017) and Dc = 2 µm

(Bhattacharya et al., 2021). These parameters result in normalized stiffness values of k̄d ≈ 0.472 and 14.165

for the Aging law predictions in this plot.

equations not captured by the standard RSF equations (1)–(3). However, over the same range of613

velocities Carpenter et al. (2016) found no significant dependence of the rate of healing upon Vi .614

Here we present results of granular SHS simulations for a wide range of hold times at Vi =615

2× 10−3, 2× 10−2, and 10−1 m/s. Panels (a), (b) and (c) in Fig. 4 show the changes in peak stress616

with hold time for simulations performed with stiffnesses k̄d ≈ 425, 12, and 0.4, respectively.617

These panels show that for the longest holds, the peak stress increases nearly logarithmically with618

hold time, in qualitative agreement with laboratory rock friction data. In each panel the green and619

red lines indicate the predictions of Aging and Slip law simulations, respectively, using parameter620

values determined from Slip law fits to our velocity-step simulations. For each stiffness (each panel)621
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the slope of the green Aging-law prediction is equal to b, when plotted vs. ln(t̄hold) rather than622

log10(t̄hold). Comparison to the granular simulations show that the slope of the log-time healing623

ranges from ∼0.5b to b, also in qualitative agreement with laboratory data. However, unlike the data624

of Beeler et al. (1994), the rate of healing at long hold times differs by nearly factor of 2 between625

the simulations with k̄ ≈ 12 and k̄ ≈ 0.4. In addition, unlike the data of Marone and Saffer (2015),626

but similar to that of Carpenter et al. (2016), there is not an obvious dependence of this slope upon627

Vi .628

In contrast to the Aging law, the Slip law simulations produce a strongly stiffness-dependent629

rate of frictional healing. For k̄ ≈ 425, there is so little slip that there is almost no state evolution630

(healing). For k̄ ≈ 0.4, there is so much slip that the rate of healing is not much less than that for631

the Aging law. Note that the healing in the granular simulations is more than that predicted by the632

Slip law when k̄d ≈ 425 and 12, but less than predicted when k̄d ≈ 0.4. Thus, the observation of633

Ferdowsi and Rubin (2020) that for k̄ ≈ 425 the healing in the granular model lies between the634

Aging and Slip law predictions is not generalizable to all stiffnesses.635

The laboratory rock friction data of Beeler et al. (1994) are shown in Figure 4d. Only (a − b)636

was determined in this study, so for the Aging law simulations shown we take Dc = 2µm determined637

for the same sample by Bhattacharya et al. (2021), and fix b = 0.0109 to match the slope of the lab638

healing curves. This comparison shows that while healing in the lab data leads that of the Aging law639

prediction (for the higher lab stiffness) or is in general agreement with it (for the lower stiffness),640

healing in the granular simulations generally lags the corresponding Aging-law prediction. This641

comparison should be extended to lab experiments where the RSF parameters were determined642

independently. A full comparison and discussion of how the RSF Aging and Slip laws perform in643

fitting the lab data of Beeler et al. (1994) are presented in section 3 of Bhattacharya et al. (2017),644

and we refer the interested reader to that work.645

In laboratory slide-hold-slide experiments, the reslide is accompanied by dilation of the gouge646

layer, dilation that continues monotonically beyond the moment of peak stress to the future steady-647

state thickness. We observe the same behavior in our simulations. Figures 5a to 5c show the variation648

of dilation at peak stress in the granular model for the sliding velocities Vi = 0.1, 0.02, and 0.002649

m/s, respectively, for each of the 3 stiffnesses we used. This dilation increases nearly linearly with650

log-hold time. For the simulations with Vi = 0.1 and 0.02, the magnitude of this dilation (at large651

normalized hold times) decreases with increasing system stiffness, opposite to the trend seen in the652

lab data of Beeler et al. (1994) and shown in Fig. 5d. The trend of the change in dilation at peak653

stress with system stiffness for the simulations with Vi = 0.002 m/s is in better agreement with the654

laboratory observations in Fig. 5d. We further normalize the dilation at peak stress by the amount655

of compaction at the end of the corresponding hold. The ratio of dilation/compaction that results656

from this analysis is shown in Fig. 5e, plotted alongside the same quantity observed in the lab data657

of Beeler et al. (1994). Comparing the lab data to the simulations conducted at roughly the same658

stiffnesses, we find that the relative slopes of the log-linear portion of the dilation and compaction in659

both the simulations and lab (normalized hold times ≳ 101) are in the fairly narrow range ∼ 0.4−0.5,660

and are there therefore in qualitative agreement with each other. For shorter hold times, both the lab661

data and simulations show considerable scatter.662

Among other features observed in slide-hold-slide tests, Figure 5 of Marone and Saffer (2015)663

suggests that the slip-weakening distance following the peak stress upon resliding increases with664

hold duration. This feature is inconsistent with the Slip law prediction, but we see evidence of665

similar behavior in our SHS simulations. Figures 6a & b show the variation of friction coefficient666

with sliding distance in the reslide portion of SHS simulations performed after a range of hold times,667

for Vi = 0.1 and 0.02 m/s, referenced to the steady-state friction value at Vi . These signals show668

(more obviously in Fig. 6a) that the slip distance to peak friction increases with increasing hold time,669

as for the Marone and Saffer (2015) data (their Figure 12). Panels c-d in Fig. 6 also include the Slip670

law prediction for a one-order velocity-step increase, normalized to the same peak-residual value as671

the reslide friction signals. These two panels more clearly demonstrate the increase in weakening672

distance with hold time. The reslides at shorter holds have a weakening distance, Dc, roughly equal673

to the distance observed in the velocity-steps. At longer hold times, Dc further increases, although674

–18–



manuscript submitted to JGR: Solid Earth

Vi = 0.1 m/s(a) (b) Vi = 0.02 m/s (c)Vi = 0.002 m/s

(d) (e)

Figure 5. The variation of normalized dilation at peak stress (∆H peak stress / Dc) versus hold time, following

reslides for the granular model with sliding velocities of (a) Vi = 0.1 m/s, (b) Vi = 0.02 m/s, and (c) Vi = 0.002

m/s. The amount of dilation is defined as the change in gouge thickness between the end of the hold and the

moment of peak stress, as in Fig. B1 of Bhattacharya et al. (2017). The simulations are performed at three

different stiffnesses and 5 MPa confining stress. (d) dilation at peak stress (∆H peak stress) in the lab (data of

Beeler et al. (1994)), (e) The ratio of dilation at peak stress (∆H peak stress) to compaction at the end of the

corresponding hold in the granular model (circles) and in the lab (diamonds) (data of Beeler et al. (1994)). The

lab data shown in panels (d) and (e) are reported by Bhattacharya et al. (2017).

the amount of increase in Dc in the granular model appears to be less than that observed in lab data.675

Sleep et al. (2000) proposed a model in which delocalization of slip within a granular layer during676

a hold led to an increase in the effective slip-weakening distance after a reslide, as slip gradually677

re-localized. If this explanation is correct, the relatively small increase in Dc that we observe could678

be due to the lack of obvious localization in our simulations.679

In our SHS simulations, we have also investigated whether changing the re-sliding velocity680

changes either the peak friction or the approach to the future steady-state friction. Any behavior that681

deviates from the RSF prediction is relevant to models of earthquake nucleation, as the perimeter of682

an expanding nucleation zone subjects regions that have not slipped for a long time (as in a hold)683

to successively larger velocity jumps (Ampuero & Rubin, 2008). For this purpose, we have run684

reslide simulations after a hold time t̄hold ∼ 1650, with the initial sliding velocity Vi = 0.02 m/s685

and reslide velocities Vr of 0.02, 0.05, 0.1, and 0.3 m/s. In a sense these are velocity-step tests, but686

run from a single value of state that is much larger than the steady-state value at velocity Vi . The687

results are shown in Fig. 7, where friction is plotted relative to its future steady-state value. The688

prediction of equation (1), assuming that the change in state between the end of the hold and peak689

stress is either small or independent of the reslide velocity, is that the difference in ∆µpeak between690

two reslide velocities V2 and V1 is equal to b ln(V2/V1). The inset in Fig. 7-a shows that this is very691

nearly the case, with ∆µpeak increasing linearly with ln(Vr /Vi) with a slope of 0.0155, or 87% of692

the value b = 0.0178 measured in velocity-steps. Furthermore, scaling the ∆µ curves by the value693
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Figure 6. The variation of friction (µ − µss) versus slip distance (Slip / Dc) during the reslide portion of

slide-hold-slide simulations, for different values of normalized hold time thold /(Dc/Vi ) and sliding velocities

of (a) Vi = 0.1 m/s and (b) Vi = 0.02 m/s. Panels (c) and (d) show the signals in panels (a) and (b) with values

normalized by the peak friction value in each simulation. All simulations are performed with stiffness k̄d ≈ 425

at 5 MPa confining stress. The black dashed line in panels (c) and (d) show the Slip law predictions for a one

order of magnitude velocity-step increase, using the RSF parameters that provide good fits to velocity steps of

various sizes performed with the granular model (Ferdowsi & Rubin, 2020). The Slip law prediction is scaled

to the same peak-residual scale as the granular simulation data in the panels. The lines are added to show that

the slip-weakening distance Dc increases with hold duration from a minimum value that is consistent with the

value appropriate for velocity steps.

[C + ln(Vr /Vi)] in Fig. 7-b, with the value of C = 5 determined empirically (the value of ∆µpeak/b694

determined for Vr = Vi), collapses the frictional response for all the reslide velocities onto a single695

curve, consistent with the Slip law prediction. In other words, within the range of velocities that696

we have explored, changing the reslide velocity does not affect the weakening distance Dc in the697

granular model, consistent with the Slip law prediction, and changes the peak friction in accordance698

with standard RSF.699

5 Energetics of granular slide-holds700

Granular materials are non-equilibrium thermodynamic systems; as such, if the “effective ther-701

modynamic temperature” of a granular system could be determined, this would allow extrapolating702

frameworks and relations from equilibrium thermodynamics to these systems. Although the exact703

definition of an effective temperature for granular materials is still a matter of much debate (Ono704

et al., 2002; Blumenfeld & Edwards, 2009; Puckett & Daniels, 2013; Bi et al., 2015; D. Richard705

et al., 2021), recent research results suggest that the fluctuating kinetic energy in these systems can706

play a role similar to the effective temperature. For this reason, the fluctuating kinetic energy (that707

is, the kinetic energy determined after subtracting from the velocity vector of each grain the average708
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,  m/s t̄hold = 1650 Vi = 0.02(a) ,  m/s t̄hold = 1650 Vi = 0.02(b)

Vr /Vi

Δμ
pe

ak
b = 0.0178Slope = 0.0155

Figure 7. The variation of (a) friction (µ − µss) versus slip distance (Slip / Dc), and (b) normalized friction

(µ−µss)/(C + ln(Vr /Vi )) versus slip distance (Slip / Dc), during reslide portion of slide-hold-slide simulations

for normalized hold time t̄hold ≈ 1650, with the initial sliding velocity, Vi = 0.02 m/s, and different reslide

velocities, Vr = 0.05 m/s, 0.1, and 0.3 m/s. The value of C ∼ 5 is chosen empirically. The inset in panel

(a) shows the variation of peak friction (µ − µss)peak versus the ratio of reslide to initial velocity, Vr /Vi . All

simulations are run with system stiffness k̄d ≈ 425 at the confining stress 5 MPa.

velocity vector of all the grains in its immediate environment) is often referred to as the “granular709

temperature”, and it has proven to be an important control on the rheological behavior of these sys-710

tems (Campbell, 1990; Losert et al., 2000; Kim & Kamrin, 2020). In our previous work, we found711

that the magnitude of the RSF direct effect parameter a in the sheared granular gouge could plau-712

sibly be explained as the ratio of the fluctuating kinetic energy to the stored potential energy in the713

system (Ferdowsi & Rubin, 2020), although this proposal requires further investigation. We further714

showed that in the quasi-static shearing regime (V ≲ 1 m/s, for a normal stress of 5 MPa), the fluc-715

tuating kinetic energy becomes nearly constant, which would suggest a nearly constant magnitude716

of the direct effect, consistent with most laboratory rock and gouge friction experiments (Kilgore et717

al., 1993; Bhattacharya et al., 2015). A nearly constant value of effective granular temperature in718

the quasi-static regime has also been previously reported in experimental granular physics studies719

(Song et al., 2005; Corwin et al., 2005), although more recent studies of granular systems with dif-720

ferent loading geometries (i.e., other than tabular gouge layers between parallel plates) shows that721

this behavior could be influenced by localized deformation close to driving boundaries (Gaume et722

al., 2020; Kim & Kamrin, 2020; P. Richard et al., 2020).723

In this work, we further examine the evolution of fluctuating kinetic energy in granular slide-
hold simulations. The instantaneous per-grain fluctuating kinetic energy is defined in the tensorial
form,

δEk(t) =
1
N

N∑
i=1

miδv⃗i(t)⊗ δv⃗i(t), (14)

where δv⃗i(t) = v⃗i(t) − v⃗i(zk , t), mi is the mass of the ith particle, and N is the total number of724

particles within the sheared granular layer. In these calculations, v⃗i(zk , t) is the instantaneous linear725

velocity field, calculated with coarse-graining of the granular model data, according to v⃗i(zk , t) =726

(1/Nk)
∑Nk

i=1 v⃗i(t), in which vi(t) is the linear velocity of the ith particle within the rectangular cuboid727

with dimensions (Lx, Ly , ∆z = 1.37Dmean), and Nk is the total number of grains within each cuboid.728

The variation of per grain fluctuating energy δEk with hold time for slide-holds with initial729

sliding velocities Vi = 0.1 and 0.02 m/s and three different system stiffnesses are shown in Figs. 8a730

and 8b, respectively. The curves appear somewhat noisy because the individual data points are731

snapshots and not averages over some time window. The results show that with these two initial732

velocities, for moderate hold times δEk decreases log-linearly over about 4 orders of magnitude in733

hold time, and then plateaus at roughly 50% of its initial steady-state value. Decreasing the system734
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Figure 8. The variation of per grain fluctuating kinetic energy (δEk) with hold time in slide-hold simulations

performed with three system stiffnesses k̄d ≈ 425, 12, and 0.4, at two sliding velocities of (a) Vi = 0.1 m/s

and (b) Vi = 0.02 m/s. (c) The variation of δEk with (hold time)× (system stiffness, k̄d )
2
3 for all data shown

in panels (a) and (b). (d) same as panel (c) with δEk referenced to its initial value (δEk,0) for each simulation.

The green lines in panels (c) and (d) show the variation of δEk and δEk − δEk,0 for simulations with sliding

velocity Vi = 2× 10−4 m/s and stiffness k̄d ≈ 425. All simulations are performed at 5 MPa confining stress.

stiffness delays the onset of the reduction in δEk , presumably because this allows stresses and sliding735

velocities near the prior steady state to persist for longer times, but does not otherwise change the736

shape of the energy reduction curves. This is shown by Fig. 8c, where for both Vi we further multiply737

the normalized hold time t̄hold by k̄2/3
d , resulting in the collapse of all the simulation results for each738

initial velocity (at this point the choice of 2/3 for the power is strictly empirical). Plotting the change739

in δEk from its initial steady state value further shows that the onset of the kinetic energy reduction740

is similar for both values of Vi (Figure 8d).741

Figure 8c also shows that although the curves for the lower Vi have a slightly smaller δEk at742

steady state (δEk,ss), for all stiffnesses both Vi appear to plateau to the same value of δEk at large743

hold times. This raises the question of whether there would be any reduction in δEk during the hold744

for values of Vi small enough for δEk,ss to be at or below this plateau value. Ferdowsi and Rubin745

(2020) found that the steady-state value of δEk decreased from about 1.7× 10−5 J at V = 10−1 m/s746

to slightly below 10−5 J at V = 10−4 m/s (triangles in Figure 9b), close to the plateau value of δEk747

in Figure 8c. For this reason we ran slide-hold simulations with V = 2×10−4 m/s, about the lowest748

value that could reach moderate values of t̄hold in a reasonable amount of computation time (about749

1.5 months). For the same reason the simulations were run only at the largest stiffness; this leads to750

the largest reduction in δEk for a given t̄hold . We find that, indeed, δEk for these simulations starts751

near the plateau value for the larger Vi in Figure 8c, and undergoes very little decay during the hold.752

Despite this, the stress decay, when plotted vs. dimensionless hold time, appears very similar to that753

for Vi = 2×10−2 and 10−1 m/s (Fig. 10. This result raises the possibility that the value of 0.8×10−5
754
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Figure 9. (a) Estimated sliding velocities during the slide-hold simulations with k̄ ≈ 425 and initial sliding

velocities Vi = 0.02 m/s and 0.1 m/s in Figure 2a (solid lines), and the times at which measurements of the

per grain fluctuating kinetic energy (δEk) were made (open circles), as functions of dimensionless hold time.

Determining the slip speed directly from the simulations by taking the time-derivative of equation (4) (with

δlp = 0) results in very noisy velocity histories. Instead, we estimate the slip speed from the Slip law fit to

these data. These estimated velocities equal the actual velocities whenever the simulations and the Slip law

fit (solid red line in Figure 2a) have the same slope at the same value of thold . (b) The variation of per grain

fluctuating kinetic energy with sliding velocity in the slide-hold simulations of panel (a) (magenta and brown

circles) and in steady-state simulations reported in Ferdowsi and Rubin (2020) (blue triangles; the break in slope

just below 1 m/s marks the boundary between the quasi-static and inertial regimes of flow). All simulations are

performed at 5 MPa confining stress.

J for δEk represents something of a floor for this granular system, as long as stresses are large enough755

to drive inelastic deformation. Because of the long computation times required we have been unable756

to explore this under conditions of steady-state sliding, but for the largest-stiffness holds in Figure757

8, the velocities at the end of the simulations were ∼ 10−8 − 10−7 m/s for the different Vi (Fig. 9a).758

The variation of per grain fluctuation energy versus sliding velocity during holds follows closely the759

trend we have observed in the steady-state simulations, although it extends that trend to much lower760

velocities (Fig. 9b), and this suggests the sliding velocity is likely a primary factor in controlling the761

fluctuating energy, whether or not the system is at quasi-steady state.762

We do not yet understand what controls the nearly fixed value of the fluctuating kinetic energy763

at long hold times or low steady-state sliding speeds in our simulations. For as long as δEk is nearly764

constant, the energy loss from grain-grain friction and inelastic collisions must be balanced by work765

done on the gouge by the moving upper plate (or a reduction in elastic potential energy, but this is not766

an option during steady sliding, and even during holds, at constant confining pressure this strikes us767

as a less likely source). During load-point holds this work comes from both shearing (equivalent to768

the potential energy loss of the attached spring) and compaction. In these high-stiffness simulations769

the shearing and compaction velocities are of the same order of magnitude. As both decay roughly770

logarithmically with time during the hold, the rate of energy loss must also decay logarithmically771

with time. For our default restitution coefficient ϵ of ∼0.98, collisions are nearly perfectly elastic772

and we presume that most of the energy loss is due to grain-grain friction. To explore the effect of773

increasing the collisional energy loss, we ran simulations with ϵ ∼ 0.3, for k̄d ≈ 12. The results774

of these highly damped simulations are shown in Fig. 11. We find that the stress decay is nearly775

indistinguishable from that with the higher restitution coefficient (Figure 11a), and that while δEk for776

the lower restitution coefficient is offset to lower values, the shape of the curve of fluctuating energy777

with hold time is not much different (Figure 11b). We conclude that within the range explored, the778

choice of restitution coefficient does not significantly influence the mechanical behavior of these779
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Figure 10. The variation of friction coefficient in slide-hold simulations with prior sliding velocities Vi of

2 × 10−4, 2 × 10−3, 2 × 10−2, and 10−1 m/s. All simulations are run with system stiffness k̄d ≈ 425 at the

confining stress 5 MPa. The lines show the mean behavior of 8 realizations for each system, and the width

of the shades regions around each line shows the 2-sigma deviations. The pink and green lines in panels

(a) & (b) further show the predictions of the Slip and Aging laws, respectively, using the RSF parameters

(Dc = 0.0053 m, a = 0.0247, b = 0.0178) determined independently from Slip-law fits to velocity-step tests

performed on the same model (Ferdowsi and Rubin, 2020).

systems at such low strain rates, consistent with previous results (MiDi, 2004; Ferdowsi & Rubin,780

2020).781

Figure 11. (a) The variation of friction coefficient, normalized by the RSF parameter b, as a function of

normalized hold time, for granular slide-hold simulations with sliding velocity 10−1 m/s and two restitution

coefficients of ϵ ∼ 0.98 and ϵ ∼ 0.3. (b) The variation of fluctuating kinetic energy with normalized hold time

for the simulations in panel (a). The shaded regions indicate 2-σ standard deviations of 8 different realizations.

The gray curve shows the fluctuating kinetic energy for the simulation with ϵ ∼ 0.98 shifted vertically.

If, as was proposed by Ferdowsi and Rubin (2020), the RSF direct effect parameter a is pro-782

portional to δEk , then Figure 8 suggests that a might vary by a factor of ∼2 over the duration of783

the holds with the larger Vi . One could then ask if the generally good fit of the Slip law, using784

constant parameter values, to the decay of friction during these same holds and to laboratory data,785

as in Figure 2, is really supportive of the Slip law for state evolution (that is, supportive of a model786

in which healing does not occur in the absence of slip). For example, is it possible that the friction787

data could be well fit by the Aging law (that is, by a model in which healing occurs with time even788
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in the absence of slip), given the proper velocity-dependence of a? However, we note that for the789

highest-stiffness simulations in Figures 2 and 8, the continual log-linear stress decay continues to790

be well fit by the Slip law with constant parameter values even for dimensionless hold times larger791

than ∼100.5, where δEk is essentially constant. In addition, for the simulation with Vi = 2 × 10−4
792

m/s in Figure 10, δEk is roughly constant and thold is arguably large enough to show that the friction793

data are more consistent with slip-dependent rather than time-dependent healing. We leave further794

investigation of the potential relation between measures of effective temperature and the value of a795

in granular simulations for future work.796

6 Conclusions797

In this work, we investigated the behavior of a sheared granular layer subjected to loading con-798

ditions designed to mimic laboratory slide-hold-slide experiments, for a range of sliding velocities799

and system stiffnesses. We compared the transient frictional behavior of the model to existing rock800

friction data, as well as to the predictions of standard rate-state friction (RSF) constitutive equations.801

The behavior of the granular flow model in slide-hold simulations appears to closely resem-802

ble laboratory experiments in two important respects. First, the continual stress decay during the803

hold is reasonably well modeled by the Slip version of the RSF equations, using parameter values804

determined independently from velocity step tests on the identical system. This is consistent with805

lab data, as is the result that for both the granular simulations and lab data, the Aging version of806

the RSF equations predicts too little stress decay, a by-product of log-time healing (Bhattacharya807

et al., 2017, 2021). Second, in both the granular simulations and laboratory experiments, the fault808

layer undergoes compaction roughly linearly with log time. Even the rates are roughly comparable,809

at ∼ 0.05Dc per decade of hold time in Figure 4. Log-time compaction is consistent with standard810

interpretations of the time-dependent Aging law for state evolution (compaction being a proxy for811

growth of true contact area), even though in both the granular simulations and lab experiments the812

stress decay is consistent with the Slip law and not the Aging law. As with the large velocity-step813

decreases described by Ferdowsi and Rubin (2020), this suggests a decoupling between state evolu-814

tion and changes in fault or gouge thickness, in both the lab and the granular simulations, that seems815

inconsistent with traditional interpretations of RSF (Segall & Rice, 1995, e.g.).816

The reslide portions of our granular slide-hold-slide simulations share with laboratory experi-817

ments the result that, for sufficiently long holds, the peak friction upon resliding (“frictional healing”,818

∆µpeak) increases nearly linearly with the logarithm of hold time (J. H. Dieterich, 1972; Marone et819

al., 1990). For our maximum stiffness and larger lab-like stiffness (k̄ ≈ 12), the long-time healing820

rate d∆µpeak/d ln(t̄hold) is very close to the RSF evolution-effect parameter b, as predicted by the821

Aging law for all stiffnesses, but for our smaller lab-like stiffness (k̄ ≈ 0.4) it is only half that value.822

The range of slopes we find is close to the range ∼ 0.3 − 0.7b seen in a study where the value of823

b was determined independently from velocity-step tests (Ikari et al., 2016; Carpenter et al., 2016).824

However, unlike the lab data of Beeler et al. (1994), we find this slope to be dependent upon the825

stiffness of the testing apparatus, by a factor of 2.826

Thus, despite several shortcomings, including the use of spherical grains with a geologically827

narrow size distribution, and a range of sliding velocities that, due to computational expense, are very828

high by lab standards, it can still be argued that the granular model does a better job of matching829

laboratory experiments than existing, and empirical, rate-state friction equations. Unlike the com-830

parison of velocity-step simulations to lab experiments emphasized by Ferdowsi and Rubin (2020),831

for the SHS protocols there are clearly some failures as well as successes of the granular model. It832

is entirely possible that some of these failures are due to time-dependent contact-scale processes in833

lab experiments that we specifically excluded from our simulations.834

In our previous study, we evaluated the variation in fluctuating kinetic energy (δEk) at steady-835

state shear velocities as low as 10−4 m/s, and found that δEk becomes nearly-constant in quasi-static836

shear velocities (Ferdowsi & Rubin, 2020). In the slide-hold simulations reported here, we find that837

δEk becomes even more nearly constant down to transient sliding velocities below 10−7 m/s. Further838
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understanding what controls the changes in fluctuating kinetic energy, its near-constant value in the839

quasi-static limit, and its relation to the direct effect parameter a, may guide future studies of the840

proper formulations of rate-and-state friction laws for describing the transient frictional response of841

granular layers, and for connecting the RSF framework to more physics-based models.842

Additional future research may explore recent definitions of state variable for amorphous ma-843

terials (e.g., D. Richard et al. (2021)) in the context of elastoviscoplastic rheology for soft glassy844

materials (e.g., Fielding (2020)). Also, our study here has been focused on the stress relaxation and845

healing behavior of a sheared granular layer that shows velocity-strengthening frictional behavior.846

It has been recently observed that, even without implementing any sophisticated or time-dependent847

grain-contact scale processes in granular simulations, granular models that use certain grain shapes848

(Salerno et al., 2018), or grain-grain contact potentials/laws in certain regions of normal pressure849

and grain stiffness (such as the Hookean contact law, in the grain strain range smaller than 10−3
850

(Kim & Kamrin, 2020; DeGiuli & Wyart, 2017)) show velocity-weakening friction in the dense851

quasi-static flow regime. Exploring the transient rheology of such velocity-weakening systems in852

velocity-step and slide-hold-slide protocols, may provide more insights into the physics of granular853

rate-state behavior, and additional opportunities for comparing the behavior of the granular model854

to lab data when both are in the velocity-weakening regime of friction.855
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