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1. Background of the Discrete Element Method (DEM) used in this study

For two spheres {i, j} in contact with each other that have the positions {ri, rj}, and diameters

di and dj, the normal (Fnij
) and tangential (Ftij) forces on particle i in its interaction with particle

j can be calculated from the following equations:

F nij
=
√
δij

√
didj

2(di + dj)
(knδijnij −meffγnvnij

) (1)

F tij =
√
δij

√
didj

2(di + dj)
(−ktutij −meffγtvtij) (2)

in which kn and kt are the normal and tangential stiffness, and are defined as kn = (2/3)E/(1−ν2)

and kt = 2E/(1 + ν)(2 − ν) (Mindlin, 1949). In the relations for the normal and tangential

stiffnesses, E and ν are the Young’s modulus and Poisson’s ratio, respectively, and meff =

mimj/(mi +mj) is defined as the effective mass of the two interacting spheres that have masses

mi and mj. The relative normal and tangential velocities, vnij
and vtij , of the grains used in

Eqs. 1 and 2 are defined as:

vnij
= (vij · nij)nij (3)

vtij = vij − vnij
− 1

2
(ωi + ωj)× rij (4)

in which {vi,vj} are the linear, and {ωi,ωj} are angular components of grain velocities, and

rij = ri − rj , nij = rij/rij, with rij = |rij|, and vij = vi − vj. Additionally, δij is the normal

compression of the grain and is defined as
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δij = 1
2
(di + dj)− rij (5)

In Eqs. 1 and 2, the parameters γn and γt are the normal and tangential damping (viscoelastic)

constants of the grain-grain interaction, respectively; For the choices of these two damping con-

stants, we use the default lammps option where γt = 0.5γn (it has been shown that the choices

of the ratio have little impact on the rheology of granular materials in the dense and quasi-static

regime of shearing of hard particles we explore in this work (Ferdowsi & Rubin, 2020; Gaume

et al., 2011; da Cruz et al., 2005; Silbert et al., 2001)). In the granular module of lammps, the

damping is implemented as a spring and dashpot in parallel for both the normal and tangential

contacts.

Having defined the equations for contact forces and torques on each particle, i, we solve the

Newton’s second law to find the translational and rotational accelerations of particles located in

a gravitational field g,

F tot
i = mig +

∑
j

(
F nij

+ F tij

)
(6)

τ toti = −1

2

∑
j

F tij × rij (7)

Slip occurs at grain contacts when the local shear stress exceeds the specified (constant) local

grain-grain friction coefficient, µg. The value of µg determines the upper limit of the tangential

force between two grains from the Coulomb criterion Ft ≤ µgFn. This tangential force grows

according to the non-linear Hertz-Mindlin contact law up to the point where Ft/Fn = µg. After

this point, the tangential force is held at Ft = µgFn until the point that due to rearrangement

of grains either Ft ≤ µgFn or the contact between grains is lost. While the model solves the
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Newton’s second law for each particle, it does not take into account wave propagation inside the

grains.

Energy loss at contacts in the granular model is characterized by the “restitution coefficient”,

which potentially varies from 0 (complete energy loss) to 1 (zero loss). At the low sliding speeds

of interest the adopted value of “restitution coefficient” appears to have very little influence on

the macroscopic behavior of the system (Gaume et al., 2011; da Cruz et al., 2005; Silbert et al.,

2001). The values of restitution coefficients, εn and εt for the normal and tangential directions

respectively, are controlled by the choices of the damping coefficients γn,t and contact stiffness

kn,t. For Hertzian contact law at the grain-grain scale, the restitution coefficient in the normal

direction is obtained from the equation of relative motion of two spheres in contact:

δ̈ +
E
√

2deff

3meff (1− ν2)

(
δ3/2 +

3

2
A
√
δδ̇

)
= 0 (8)

with the the initial condition δ̇(0) = vn and δ(0) = 0. Further, the variable A is defined as

A = 1
3
(3γt−γn)2
(3γt+2γn)

(
(1−ν2)(1−2ν)

Eν2

)
, and deff = didj/(di + dj) is the effective diameter for spheres of

diameters di and dj. From solving this equation, the normal component of the coefficient of

restitution is defined as the ratio of normal velocity of grains at the end of the collision, defined

as δ̇(tcol), to the initial normal impact velocity of the grains: εn = δ̇(tcol)/δ̇(0). Solving the same

equation also gives the collision time tcol for given choices of the physical properties of grains and

initial velocities that two grains collide. The restitution coefficient in the tangential direction

can be obtained from a similar procedure but with implementing tangential damping coefficient

(Brilliantov et al., 1996). The time step of our simulations is defined as ∆t = tcol/100 , with tcol

evaluated here with the assumption of an impact velocity δ̇(0) of 25 m/s (to be on the safe side for

the choice of the simulation time-step and solve the equations of motions accurately; grain-grain

impact velocities are highly unlikely to achieve 25 m/s at a given time-step in the quasi-static
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simulations reported in this work). The time-step criteria ∆t = tcol/50 is based on previous

values used and recommended by Silbert et al. (2001). The majority of the simulations in this

study were performed with a very high restitution coefficient of εn = 0.98, such that the system

is damped minimally. However, we also have run a series of slide-hold simulations with a much

lower restitution coefficient of εn = 0.3. It can be argued that damping introduces some time-

dependence at the contact scale. However, we have previously tested the transient behavior of the

model considered here using the restitution coefficients that varied from nearly zero (complete

damping) to nearly 1 (no damping) and found that the choice of the restitution coefficient exerted

no significant influence on the system’s behavior in the slow-sliding regime that we have been

interested in exploring here and in the previous work (Ferdowsi & Rubin, 2020). With the very

high choice of the restitution coefficient (εn = 0.98), we refer to the model as practically having

no time-dependence at the contact scale. Further information about the granular module of

lammps can be found in the lammps manual and several references (Zhang & Makse, 2005;

Silbert et al., 2001; Brilliantov et al., 1996). For more details about the implementation of

the model in this manuscript, and a complete list of the governing dimensionless variables, we

refer the reader to the “Computational Model” section and Appendix A of Ferdowsi and Rubin

(2020). All details of the present model, except for the values of pulling spring stiffness or unless

otherwise specified in the following, are identical to the “default” model of our previous paper.

It can be argued that damping introduces some time-dependence at the contact scale. However,

we have previously tested the transient behavior of the model considered here using the restitution

coefficients that varied from nearly zero (complete damping) to nearly 1 (no damping) and found

that the choice of the restitution coefficient exerted no significant influence on the system’s

behavior in the slow-sliding regime that we have been interested in exploring here and in the
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previous work (Ferdowsi & Rubin, 2020). With the very high choice of the restitution coefficient

(εn = 0.98), we refer to the model as practically having no time-dependence at the contact scale.
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Table S1. DEM simulation parameters. If in some limited simulations, different parameter

values are used, they are explicitly mentioned in the text.

Parameter Value

Grain density, ρ 2500 [kg/m3]

Young’s modulus, E 50 [GPa]

Poisson ratio, ν 0.3

Grain-grain friction coefficient, µg 0.5

Confining pressure, σn 5

Coefficient of restitution, εn 0.98

Time step, ∆t 2 × 10−8 [s]
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Figure S1. The variation of friction coefficient in slide-hold simulations with prior sliding

velocities Vi of 2 × 10−4, 2 × 10−3, 2 × 10−2, and 10−1 m/s. All simulations are run with

system stiffness k̄d ≈ 425 at the confining stress 5 MPa. The lines show the mean behavior of

8 realizations for each system, and the width of the shades regions around each line shows the

2-sigma deviations. The pink and green lines in panels (a) & (b) further show the predictions of

the Slip and Aging laws, respectively, using the RSF parameters (Dc = 0.0053 m, a = 0.0247,

b = 0.0178) determined independently from Slip-law fits to velocity-step tests performed on the

same model (Ferdowsi and Rubin, 2020).
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,  m/s t̄hold = 1650 Vi = 0.02(a)

,  m/s t̄hold = 1650 Vi = 0.02(b)

Vr /Vi
Δμ

pe
ak

b = 0.0178Slope = 0.0155

Figure S2. The variation of (a) friction (µ − µss) versus slip distance (Slip / Dc), and (b)

normalized friction (µ − µss)/(C + ln(Vr/Vi)) versus slip distance (Slip / Dc), during reslide

portion of slide-hold-slide simulations for normalized hold time t̄hold ≈ 1650, with the initial

sliding velocity, Vi = 0.02 m/s, and different reslide velocities, Vr = 0.05 m/s, 0.1, and 0.3 m/s.

The value of C ∼ 5 is chosen empirically. The inset in panel (a) shows the variation of peak

friction (µ− µss)peak versus the ratio of reslide to initial velocity, Vr/Vi. All simulations are run

with system stiffness k̄d ≈ 425 at the confining stress 5 MPa.
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