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Two-layer Bayesian Gaussian Mixture Model and Derivation of the pos-
terior predictive distribution

We use the following generative model to fit spectral data available in our train-

ing library.

Data model: Lijk ~~ N([,ij, Zk) (1)
Local prior: g, ~ N (g, PINTE (2)
Global prior: g ~ N(po, %k "), Sk ~W (2o, m) (3)

where k, j, and ¢ are indices used to indicate true patterns, their observed instances, and
individual pixels, respectively. W~1(Xg, m) denotes the inverse Wishart distribution with
scale matrix ¥y and degrees of freedom m. This model assumes that pixels x;j are dis-
tributed according to a Gaussian distribution with mean g and covariance matrix Y.
Each true pattern is characterized by the parameters pug and ¥i. The parameter pg is
the mean of the Gaussian prior defined over the mean vectors of true patterns, kg is a

scaling constant that adjusts the dispersion of the centers of true patterns around pg.

Corresponding author: M. Dundar, mdundar@iupui.edu
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A smaller value for kg suggests that pattern means are expected to be farther apart from
each other whereas a larger value suggests they are expected to be closer. On the other
hand, ¥y and m dictate the expected shape of the pattern covariance matrices, as un-
der the inverse Wishart distribution assumption the expected covariance is E(X|Zg,m) =
%, where d denotes the number of channels used. The minimum feasible value of
m is equal to d+2, and the larger the m is the less individual covariance matrices will
deviate from the expected shape. The k1 is a scaling constant that adjusts the disper-
sion of the means of observed pattern instances around the centers of their correspond-
ing true patterns. A larger k1 leads to smaller variations in instance means with respect
to the means of their corresponding true pattern, suggesting small variations among ob-
served instances of the pattern. On the other hand, a smaller k; dictates larger varia-
tions among instances. In Bayesian statistics the likelihood of a pixel @ originating from
pattern k is obtained by evaluating the posterior predictive distribution (PPD) for pat-
tern k. For our two-layer Gaussian mixture architecture PPDs are derived in the form
of student-t distributions by integrating out unknown mean vectors and covariance ma-
trices of the true pattern distributions and their observed instances. This directly links
observed pattern data with the hyperparameters of the model (kg,x1,m,u0, o). Opti-
mizing hyperparameters with pixel data from the training library encodes information

about observed pattern variations into the model.

Let « be the spectral representation of a pixel in an image to be classified. To clas-
sify & we need to evaluate P(x|Z1,. .., En.k, S1ks - - -, On,k) for each true pattern, where
Z;, and S;;, are the sample mean vector and sample covariance matrix of the observed
instance j of pattern k. The derivation of P(x|Z1k, ..., Enyk, S1k, - - - Sn,k) can be car-

ried out in four steps.

In step 1 we integrate out the observed pattern mean vector p;, and connect sam-

ple mean with the unknown mean vector p,;, of the true pattern.

_ 1 1
P(®jklpy, Xr) = Ny, Ze(— + —)) (4)
Njk K1

where n;j, is the number of pixels available for observed instance j of true pattern % in

the training library.

In step 2 we derive the posterior distribution of the mean vector u, by Bayes rule

and show that the posterior mean is weighted average of the sample mean vectors of ob-
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served instances and the prior mean.

P(u’k|"i1ka---ainkkap’072kal§:0) = N(ﬁlmik)
G - Z;Li1 (ni;lfél)a_’jk + Kolg
kK Nk njkk1
22551 Tagenny T 0
Sk = R;lEk
ng
_ njkk1
R = — -tk
F (Z (n'k + Hl) 0)
j=1 "

where ny is the number of observed instances of pattern k, i.e., the number of training

images in which pattern k is detected.

In step 3 we derive the posterior distribution for ¥; by combining Wishart terms

corresponding to all observed instances of pattern k.

P(Zk|Slk7--~7Snkk) = IW(SS,mS) (5)
n

S = EO+ZSjk (6)
J=1

ms = m+Z(njk—1)) (7)

Finally, in step 4 we derive the posterior predictive distribution for pattern k by
integrating out parameters u; and Xg. Thanks to the conjugacy in our model this op-

eration produces a closed form solution in the form of a Student-t distribution.

P("B|"E1k’7---ainkkaslka~-'7Snkk) = T(mji|ﬁkais7l_)s) (8)
_ S,
25 = RsUs
Rs+1

i (Zyil (7:9:7;:1) + Ko)K1

Rs = Tk iRl
Py nyedry) TR0 T K1

ny,
Uy = m+Z(njk71)—d+1
j=1
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Context images of Jezero crater detections

Detections in Jezero crater and the corresponding CTX images are shown in Fig-

ures 1 and 2.

Dataset containing image coordinates of automated detections and ra-

tioed spectra

Image coordinates of automated detections reported in this study are provided in

the attached file.
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Figure 1. (a) CRISM Al phyllosilicate detections in 040FF with (b) accompanying area in
CTX. (c) CRISM Al phyllosilicate and chlorite detections in 05850 with (d) accompanying area
in CTX. (e) CRISM Al phyllosilicate detections in 05850 with (f) accompanying area in CTX. (g)

CRISM Al phyllosilicate detections in 1C558 with (h) accompanying area in CTX.
757
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Figure 2. (i) CRISM silica detections in 047A3 with (j) accompanying area in CTX. (k)
CRISM silica detection in 05C5E with (1) accompanying area in CTX. (m) CRISM jarosite detec-
tion in 05C5E with (n) accompanying area in CTX. (o) CRISM akaganeite detections in 05C5E

and 040FF with (p) accompanying area in CTX.
G-



