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We use the following generative model to fit spectral data available in our train-

ing library.

Data model: xijk ∼ N(µjk,Σk) (1)

Local prior: µjk ∼ N(µk,Σkκ
−1
1 ) (2)

Global prior: µk ∼ N(µ0,Σjκ
−1
0 ),Σk ∼W−1(Σ0,m) (3)

where k, j, and i are indices used to indicate true patterns, their observed instances, and16

individual pixels, respectively. W−1(Σ0,m) denotes the inverse Wishart distribution with17

scale matrix Σ0 and degrees of freedom m. This model assumes that pixels xijk are dis-18

tributed according to a Gaussian distribution with mean µjk and covariance matrix Σk.19

Each true pattern is characterized by the parameters µk and Σk. The parameter µ0 is20

the mean of the Gaussian prior defined over the mean vectors of true patterns, κ0 is a21

scaling constant that adjusts the dispersion of the centers of true patterns around µ0.22
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A smaller value for κ0 suggests that pattern means are expected to be farther apart from23

each other whereas a larger value suggests they are expected to be closer. On the other24

hand, Σ0 and m dictate the expected shape of the pattern covariance matrices, as un-25

der the inverse Wishart distribution assumption the expected covariance is E(Σ|Σ0,m) =26

Σ0

m−d−1 , where d denotes the number of channels used. The minimum feasible value of27

m is equal to d+2, and the larger the m is the less individual covariance matrices will28

deviate from the expected shape. The κ1 is a scaling constant that adjusts the disper-29

sion of the means of observed pattern instances around the centers of their correspond-30

ing true patterns. A larger κ1 leads to smaller variations in instance means with respect31

to the means of their corresponding true pattern, suggesting small variations among ob-32

served instances of the pattern. On the other hand, a smaller κ1 dictates larger varia-33

tions among instances. In Bayesian statistics the likelihood of a pixel x originating from34

pattern k is obtained by evaluating the posterior predictive distribution (PPD) for pat-35

tern k. For our two-layer Gaussian mixture architecture PPDs are derived in the form36

of student-t distributions by integrating out unknown mean vectors and covariance ma-37

trices of the true pattern distributions and their observed instances. This directly links38

observed pattern data with the hyperparameters of the model (κ0,κ1,m,µ0, Σ0). Opti-39

mizing hyperparameters with pixel data from the training library encodes information40

about observed pattern variations into the model.41

Let x be the spectral representation of a pixel in an image to be classified. To clas-42

sify x we need to evaluate P (x|x̄1k, . . . , x̄nkk, S1k, . . . , Snkk) for each true pattern, where43

x̄jk and Sjk are the sample mean vector and sample covariance matrix of the observed44

instance j of pattern k. The derivation of P (x|x̄1k, . . . , x̄nkk, S1k, . . . , Snkk) can be car-45

ried out in four steps.46

In step 1 we integrate out the observed pattern mean vector µjk and connect sam-47

ple mean with the unknown mean vector µk of the true pattern.48

P (x̄jk|µk,Σk) = N(µk,Σk(
1

njk
+

1

κ1
)) (4)

where njk is the number of pixels available for observed instance j of true pattern k in49

the training library.50

In step 2 we derive the posterior distribution of the mean vector µk by Bayes rule51

and show that the posterior mean is weighted average of the sample mean vectors of ob-52
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served instances and the prior mean.53

P (µk|x̄1k, . . . , x̄nkk,µ0,Σk, κ0) = N(µ̄k, Σ̄k)

µ̄k =

∑nk

j=1
njkκ1

(njk+κ1) x̄jk + κ0µ0∑nk

j=1
njkκ1

(njk+κ1) + κ0

Σ̄k = κ̄−1
k Σk

κ̄k = (

nk∑
j=1

njkκ1

(njk + κ1)
+ κ0)

where nk is the number of observed instances of pattern k, i.e., the number of training54

images in which pattern k is detected.55

In step 3 we derive the posterior distribution for Σk by combining Wishart terms56

corresponding to all observed instances of pattern k.57

P (Σk|S1k, . . . , Snkk) = IW (S̄s, m̄s) (5)

S̄s = Σ0 +

nk∑
j=1

Sjk (6)

m̄s = m+

nk∑
j=1

(njk − 1)) (7)

Finally, in step 4 we derive the posterior predictive distribution for pattern k by58

integrating out parameters µk and Σk. Thanks to the conjugacy in our model this op-59

eration produces a closed form solution in the form of a Student-t distribution.60

P (x|x̄1k, . . . , x̄nkk, S1k, . . . , Snkk) = T (xji|µ̄k, Σ̄s, v̄s) (8)

Σ̄s =
S̄s
κ̄svs
κ̄s+1

κ̄s =
(
∑nk

j=1
njkκ1

(njk+κ1) + κ0)κ1∑nk

j=1
njkκ1

(njk+κ1) + κ0 + κ1

v̄s = m+

nk∑
j=1

(njk − 1)− d+ 1
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Context images of Jezero crater detections61

Detections in Jezero crater and the corresponding CTX images are shown in Fig-62

ures 1 and 2.63

Dataset containing image coordinates of automated detections and ra-72

tioed spectra73

Image coordinates of automated detections reported in this study are provided in74

the attached file.75
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Figure 1. (a) CRISM Al phyllosilicate detections in 040FF with (b) accompanying area in

CTX. (c) CRISM Al phyllosilicate and chlorite detections in 05850 with (d) accompanying area

in CTX. (e) CRISM Al phyllosilicate detections in 05850 with (f) accompanying area in CTX. (g)

CRISM Al phyllosilicate detections in 1C558 with (h) accompanying area in CTX.
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Figure 2. (i) CRISM silica detections in 047A3 with (j) accompanying area in CTX. (k)

CRISM silica detection in 05C5E with (l) accompanying area in CTX. (m) CRISM jarosite detec-

tion in 05C5E with (n) accompanying area in CTX. (o) CRISM akaganeite detections in 05C5E

and 040FF with (p) accompanying area in CTX.
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