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S1 On the importance of pointwise divergence free velocity field approx-7

imation8

Our goal in this section is to demonstrate the importance of precise approximation of9

the mass continuity equation in geodynamics simulations. We show by example that näıve10

imposition of the mass conservation constraint in the Stokes system may yield qualita-11

tively spurious results. We do this by reproduction of the numerical experiment exhibited12

in Christensen and Hofmann (1994) and also demonstrated in Brandenburg and van Keken13

(2007).14

We refer to Sime et al. (submitted) for more details regarding so-called divergence free15

approximation schemes and their importance in tracer advection. Futhermore we refer to16

Maljaars et al. (in press) for details regarding our computational implementation with the17

LEoPart library. The code used to generate the results exhibited in this section is available18

in the repository (Sime, 2020).19

S1.1 Numerical experiment20

The numerical model is composed as follows, where the physical constants imposed in21

the system are tabulated in table S1. In the computational rectangle domain Ω = (0, 4) ×22

(0, 1) we seek finite element approximations of velocity, pressure and temperature, u, p and23

T , respectively, in addition to an approximation of composition Γ by tracer data, such that:24

∂T

∂t
−∇2T + u · ∇T = Q, (S1)

−∇ · σ = (α(z)RaT − β(z)RbΓ)k̂, (S2)

∇ · u = 0. (S3)

Here t is the simulation time, Ra is the thermal Rayleigh number, Rb is the compositional25

Rayleigh number, Q is the heat source constant, k̂ = (0, 1)> is the buoyancy unit vector26

and27

σ = 2η(T )(∇u +∇u>)− pI (S4)

is the stress tensor defined in terms of the identity tensor I and viscosity28

η(T ) = η0 exp
(
−b
(
T − 1

2

)
+ c

(
z − 1

2

))
, (S5)

where η0, b and c are constants. Furthermore,29

α(z) =
d

1− e−d e
−dz, (S6)

β(z) =
s

1− e−s e
−sz, (S7)

z = 1− y, (S8)
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where d and s are prescribed constants.30

The velocity boundary conditions are imposed as follows:31

1. τ · (σ · n) = 0 and u · n = 0 on the bottom, left and right boundaries, y = 0, x = 032

and x = 4, respectively. Here τ is a unit vector lying tangential to the boundary,33

2. u = (uh,top, 0)> on the top boundary y = 1.34

Here the function utop is prescribed to be35

utop = ±u0 +
πu0

10
sin

(
πu0

5
t

)
(S9)

where36

±u0 =

{
+u0 x ≤ xc,
−u0 x > xc,

(S10)

xc = 2 + cos

(
πu0

5
t

)
(S11)

and u0 is a constant. We use a mollified Heaviside function to approximate utop by uh,top37

so to satisfy the regularity requirements of conforming finite element methods such that38

uh,top = −u0

(
2

1 + e−2k(x−xc)
− 1

)
+
πu0

10
sin

(
πu0

5
t

)
, (S12)

where k is a constant. Equation (S12) can intuitively be interpreted as a ‘smoothing’ of the39

step function equation (S10), see Figure S1 for example.40

Constant Value

Ra 5× 105

Rb 3.88× 105

η0 1
Q 2.5
b 65 536
c 64
s ln 2
d ln 6
k 10
u0 500
xm 0.08
zm 0.08
zc 0.01

Table S1: Physical and mathematical constants employed in the numerical experiment.

S1.2 Melting41

Two rectangular melting regions are defined at the top left and top right of the com-42

putational domain43

Ωmelt,left = (0.0, xm)× (1− zm, 1− zc), (S13)

Ωmelt,right = (4− xm, 4)× (1− zm, 1− zc), (S14)
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Figure S1: Boundary condition function utop and uh,top where k = 10 at simulation time
t = 0. The smoothed function uh,top adheres to the smoothness regularity requirement of
standard finite element methods.

where xm is the width of the melt zones and (zm, zc) is the depth interval of the melt zones.44

Given Np tracers in the simulation, should a tracer’s position xn = (xn, yn)>, n = 1, . . . , Np45

enter a melt zone as defined above, its y-coordinate position will be changed such that the46

tracer now resides in the melted regions47

Ωmelted,left = (0.0, xm)× (1− zc, 1), (S15)

Ωmelted,right = (4− xm, 4)× (1− zc, 1), (S16)

respectively. In essence, those particles in the melt zones have their positions changed ac-48

cording to49

xn,melted =
(
xn,U(1− zc, 1)

)> ∀xn ∈ Ωmelt,left ∪ Ωmelt,right, n = 1, . . . , Np. (S17)

Here U(a, b) is a number selected from the uniform random distribution defined on the50

interval (a, b).51

S1.3 Divergence free constraint (pointwise) correction52

A key component in modeling incompressible flow is the precise approximation of the53

continuity constraint equation (S3). Sime et al. (submitted) demonstrates the benefits of54

pointwise satisfaction of the continuity constraint (referred to as a pointwise divergence free55

velocity approximation) such that56

∇ · uh(x) = 0 ∀x ∈ Ω, (S18)

where uh is the finite element approximation of the velocity. This is achieved in Sime et57

al. (submitted) be employing the hybridized discontinuous Galerkin finite element method.58

However, in this example we will use a Taylor–Hood discretisation scheme and solve for the59

Stokes system by an iterated penalty method demonstrated in Morgan and Scott (2018). In60

this setting, although we do not satisfy equation (S18) to machine precision, we achieve a61

better approximation by orders of magnitude compared with the standard solution obtained62

by the Taylor–Hood scheme.63

In the following results section by ‘div-corrected’ we refer to the solution scheme by the64

iterated penalty method (Morgan & Scott, 2018) offering a corrected divergence free field.65

By ‘non div-corrected’ we refer to the standard solution of the Stokes system discretized by66

Taylor–Hood elements.67
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S1.4 Results68

Tracer distribution snapshots are shown in Figure S2. For direct comparison with69

Christensen and Hofmann (1994) and Brandenburg and van Keken (2007) we convert the70

time scale to dimensional time by71

t′ = tu0T , (S19)

where T = 60 Ma is the characteristic overturn time of the mantle. Clearly we see the72

formation of piles at the base of the geometry in the div-corrected scheme. In the non73

div-corrected scheme we obtain a qualitatively different result to Christensen and Hofmann74

(1994) and Brandenburg and van Keken (2007) in which piles do not form. Examining75

further we plot histograms of depth dependent tracer frequencies in Figure S4. In the non76

div-corrected scheme we see evidence of tracers ‘settling’ to the base of the geometry.77

The rate of accumulation Fs is shown in Figure S3, where78

Fs = the fraction of particles in piles at the core-mantle boundary

relative to the total number of particles in the model. (S20)

where piles are quantitatively defined by grid cells that have a particle concentration >30%79

and are part of a vertically continuous column starting at the CMB. Particle concentration80

assumes a particle volume Voln defined by81

Voln =
C ×Vol(Ω)

Np
, n = 1, . . . , Np, (S21)

where C=0.125 is the fraction of the mantle assumed to be composed of basalt, Vol(Ω) =82 ∫
Ω

dx is the total domain volume and Np is the total number of particles in the model.83

In the div-corrected case we see in Figure S3 that our computed value of Fs compares84

well with Christensen and Hofmann (1994) and Brandenburg and van Keken (2007), con-85

solidating at around Fs ≈ 0.12. However, in the non div-corrected case, the tracers sinking86

to the bottom of the geometry yield consistent growth of the Fs curve.87
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Figure S2: Snapshots of the tracer distribution in the numerical experiment at specified
dimensional times t′ (see equation (S19)). The left and right columns depict div-corrected
and non div-corrected simulations, respectively. Note the qualitative appearance of piles
only in the simulation where the div-correction has been applied.
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Figure S3: Computed functional Fs measuring the accumuluation of piles. Note that in
the non div-corrected simulation the tracer settling towards the base of the geometry yields
the spurious result of consistent growth in Fs. Employing the div-correction scheme, Fs

consolidates around approximately 0.12 (cf. Christensen & Hofmann, 1994; Brandenburg &
van Keken, 2007).
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Figure S4: Histograms of tracer frequency with depth y. Note the ‘smooth’ distribution of
tracers in the div-corrected scheme as the simulation evolves. In the non div-corrected case,
tracers rapidly sink to the base of the geometry. The inset axes show histograms of tracer
frequency at the base of the geometry in the depth interval y ∈ (0, 0.01).
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