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Abstract14

The vertical structure of vegetation canopies creates micro-climates, which can substan-15

tially affect ecosystem responses to climate change. However, the land components of16

most Earth System Models, including the Energy Exascale Earth System Model (E3SM),17

typically neglect vertical canopy structure by using a single layer big-leaf representa-18

tion to simulate water, CO2, and energy exchanges between the land and the atmosphere.19

In this study, we developed a standalone Multi-Layer Canopy Model (MLCMv1) for the20

E3SM Land Model (ELM) to resolve the micro-climate created by vegetation canopies.21

The support for the heterogeneous computation architectures is included by using the22

Portable Extensible Toolkit for Scientific Programming. The numerical implementation23

of ELM-MLCMv1 was verified against CLM-ml v1 for a month-long simulation using24

data from the Ameriflux US-University of Michigan Biological Station (US-UMB) site.25

Model structural uncertainty was explored by performing control simulations for five26

stomatal conductance models (SCMs). All SCMs after calibration were able to accurately27

match observations of sensible and latent heat flux, though the bias of the three SCMs28

with plant hydrodynamics (PHD) was slightly lower than that of two SCMs without PHD.29

Additionally, six idealized simulations were performed to study the impact of environ-30

mental variables on canopy processes. All SCMs agreed on the direction of simulated31

changes in canopy processes due to the changes in these environmental variables. ELM-32

MLCMv1 achieves a speedup of 25-50 times when comparing performance on a GPU33

relative to a CPU. This study provides the first necessary model development for includ-34

ing the representation of vertical canopies within ELM.35

Plain Language Summary36

Vegetation in Earth System Models is typically represented by a sunlit and shaded37

big-leaf at a certain height above the ground surface. Such a simplified representation38

of vegetation ignores key terrestrial processes arising due to the vertical structure of veg-39

etation canopies. In this work, we developed a multi-layer canopy model for the Energy40

Exascale Earth System Model that can efficiently use the upcoming class of supercom-41

puters. The new model is verified against an existing benchmark model and site-level42

observations. Multiple configurations of the new model are able to accurately reproduce43

observations of surface energy fluxes.44
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1 Introduction45

The vertical structure of a vegetation canopy creates micro-climates. The vertical46

variations of leaf area density (LAD) creates turbulence within vegetation canopies that47

lead to vertically-varying profiles of wind speed, temperature, and scalar concentrations,48

such as water vapor and CO2 (Harman & Finnigan, 2007). Wind speed decreases within49

canopies and interior daytime temperature in dense forest canopies can be several de-50

grees cooler than the temperature above the canopy (Lenoir et al., 2013). Under unsta-51

ble atmospheric conditions and during daytime, CO2 is higher above the canopy and52

decreases within the canopy due to the uptake of CO2 by plants through photosynthe-53

sis and increases again near the soil surface due to soil respiration (Scanlon & Albert-54

son, 2001). Under similar unstable atmospheric conditions, the water vapor in the canopy55

and near the soil surface is higher than in the atmosphere due to evapotranspiration dur-56

ing the day. Vegetation canopies intercept and scatter radiation, thereby creating het-57

erogenous vertical light environments (Fisher et al., 2018). Vegetation canopies have ver-58

tical gradients of leaf nitrogen and phosphorous per unit leaf area with higher nutrients59

at the top of the canopy (Bond et al., 1999). During the day, vertical gradients of water60

potential lead to water transport from the soil to the leaves (Fatichi et al., 2016).61

The vertical structure of canopies can affect ecosystem responses to climate change.62

Drought and warmer temperatures have increased forest mortality by causing low soil63

moisture and high atmospheric vapor pressure deficit (VPD) (Allen et al., 2010; Stovall64

et al., 2019). Tall trees with high LAD, low hydraulic conductivity, and strong stomatal65

regulation in response to leaf water potential are at a higher mortality risk in the future (McDowell66

& Allen, 2015). Forrest canopies can create micro-climates that buffer the understory from67

macro-climate temperatures (Zellweger et al., 2020). Using paired measurements, De Frenne68

et al. (2019) showed that vegetation cover decreases the maximum temperature within69

the understory, while simultaneously increasing the minimum temperature. They re-70

ported that the difference in temperature between above and within the canopy becomes71

larger as the above-canopy air temperature increases, and this temperature difference72

can be of greater magnitude than the increase in land surface temperature over the last73

century.74

The vertical structure of canopies is neglected in most current global Land Surface75

Models (LSMs), although a few next-generation models are addressing this shortcom-76
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ing. The vegetation canopy in current LSMs is typically represented by a single big-leaf77

that, along with a surface soil layer, exchanges water, energy, and CO2 fluxes with the78

atmosphere. The Monin–Obukhov similarity theory (MOST) is used to describe the ver-79

tical transport of momentum, energy, and water vapor betweeen the canopy and over-80

lying atmosphere. The variation of light is typically accounted for by including a sun-81

lit and shaded big-leaf, both of which are assumed to be at the same canopy height. Plant82

hydrodynamics (PHD) has been included in many site-level and regional ecosystem mod-83

els (Sperry et al., 1998; Bohrer et al., 2005; Grant et al., 2006; Xu et al., 2016; Agee et al.,84

2021), but only recently PHD has been included in global LSMs (Kennedy et al., 2019;85

Fang et al., 2021). Recently, multi-layer canopy models (MLCMs) have been added in86

LSMs (G. Bonan et al., 2014; Ryder et al., 2016; G. B. Bonan et al., 2018; Longo et al., 2019).87

MLCMs vertically resolve radiation (solar and longwave), photosynthesis, and leaf tem-88

peratures within canopies, though the canopy air space (CAS) can be represented with89

one or multiple layers. The standard boundary-layer flux-gradient relationships used90

in the MOST turbulence scheme are violated within the canopy and in the roughness91

sublayer (RSL) near the top of the canopy. MLCMs employ turbulence schemes that are92

valid for the turbulent transport of momentum, energy, and scalars within the canopy93

and RSL. The turbulence scheme of Massman and Weil (1999) is used in ED2.2 (Longo94

et al., 2019) and ORCHIDEE-CAN v1.0 (Chen et al., 2016), while the Harman and Finni-95

gan (2007, 2008) turbulent scheme is used in CLM-mlv0 (G. B. Bonan et al., 2018) and96

CLM-ml v1 (G. B. Bonan et al., 2021).97

Multiple stomatal conductance models (SCMs) have been developed to account98

for the stomatal control of photosynthesis. SCMs use semi-empirical relationships or op-99

timization theory and may additionally account for PHD. A commonly used SCM is the100

Ball-Berry (BB) model that uses a semi-empirical approach for modeling the dependence101

of stomatal conductance on VPD by using fractional humidity at the leaf surface (Ball102

et al., 1987). Leuning (1995) modified the BB model by adjusting for the CO2 compen-103

sation point and directly included dependence on VPD. Alternatively, optimization the-104

ory has also been used to model stomatal conductance, gs, in which stomata maximize105

the carbon gain relative to a cost associated with the carbon gain. The commonly used106

objective functions in optimization-based SCMs are water-use efficiency (WUE = ∆An/∆E)107

and intrinsic water-use efficiency (iWUE = ∆An/∆gs), defined as the marginal carbon108

gain (∆An) with respect to water loss (∆E) and stomatal opening (∆gs), respectively (Cowan109
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& GD, 1977; Katul et al., 2010; G. Bonan et al., 2014; Buckley et al., 2017). A few semi-110

empirical and iWUE/WUE SCMs additionally include the control of PHD on gs (Manzoni111

et al., 2011; Christoffersen et al., 2016; Mirfenderesgi et al., 2016). G. Bonan et al. (2014)112

developed an optimization-based gs model that simultaneously satisfied two constraints113

of iWUE and leaf water potential to be greater than a minimum threshold. An objective114

function other than WUE and iWUE has also been used in optimization-based SCMs.115

Wang et al. (2020) evaluated 10 optimization-based SCMs for seven criteria that tested116

for a valid mathematical solution and realistic biological stomatal responses to the en-117

vironment that were consistent with empirical studies. They found that only four SCMs118

met all seven criteria. Two of those four models used the loss of xylem hydraulic con-119

ductivity as the marginal cost for carbon gain (Sperry et al., 2017; Wang et al., 2020), while120

the other two models used non-stomatal limitations on photosynthesis as the marginal121

cost for carbon gain (Hölttä et al., 2017; Dewar et al., 2018). Stomatal conductance mod-122

els that use optimization theory and include a hydraulic constraint have shown supe-123

rior skill in reproducing observations (G. Bonan et al., 2014; Eller et al., 2020; Wang et124

al., 2020, 2021)125

Development of new process models within LSMs should include support for the126

upcoming heterogeneous high-performance architectures and have a flexible core to ex-127

plore model structural uncertainty. High-performance computing architectures are tran-128

sitioning from homogeneous CPUs-based systems to heterogeneous systems that include129

CPUs and GPU accelerators. Currently, there are many GPU programming models such130

as Kokkos (Edwards et al., 2014), RAJA (Beckingsale et al., 2019), CUDA (NVIDIA et al.,131

2020), ROCm (ROCm, 2019), and OpenCL (Stone et al., 2010); and it is not feasible for132

LSMs to include native support for all of the programming models. The profusion of133

these programming models has led the Exascale Computing Project (ECP) to develop134

performance portable programming models that aim to provide high-level abstractions135

for mapping code to appropriate hardware. The Portable Extensible Toolkit for Scien-136

tific computation (PETSc) library, supported by ECP, provides scalable numerical solvers (Balay137

et al., 2021) and allows application code (e.g. LSMs) to be agnostic of the underlying com-138

puter architectures (Mills et al., 2021). Additionally, PETSc provides a flexible framework139

to assemble individual physics problems into a single tightly coupled multiphysics sys-140

tem via DMComposite (Brown et al., 2012). The DMComposite has been previously used141

in the open-source, multi-physics problem (MPP) library to flexibly couple multiple bio-142
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physics problems within multiple domains e.g. transport of water through soil-root-xylem143

and thermal advection-diffusion in the subsurface (Bisht & Riley, 2019).144

Objectives of this work include developing a model that resolves micro-climate cre-145

ated by the vertical structure of the vegetation canopy and providing support for het-146

erogeneous computing architectures. In this study, a standalone MLCM is developed147

for ELM, hereafter referred to as ELM-MLCMv1. The new model is based on CLM-ml148

v1 and includes three additional optimization-based SCMs as compared to CLM-ml v1.149

PETSc is used in ELM-MLCMv1 to provide numerical solutions of discretized equations,150

flexible model coupling, and performance portability. First, the numerical implemen-151

tation of the model was verified by comparing results against CLM-ml v1 for a month-152

long simulation performed using data from the AmeriFlux station at the University of153

Michicigan Biological (UMB). Second, the impact of SCM model structure on the sim-154

ulation of biophysical processes was studied. Five SCMs, calibrated against site-level155

observations of sensible and latent heat fluxes, were then used to study the response of156

vegetation under three idealized climate change (CC) scenarios: (i) higher air temper-157

ature, (ii) higher atmospheric CO2 concentrations, and (iii) drier soil moisture. Third,158

the performance portability of ELM-MLCMv1 was studied by performing simulations159

across a range of problem sizes on two GPU systems that used NVIDIA and AMD GPUs.160

The model developed in this study provides the foundation for ELM to undertake re-161

search to better understand the role of vertical canopy heterogeneity on the ecosystem162

climate sensitivity.163

2 Model description164

The ELM-MLCMv1 (Figure 1) accounts for sunlit and shaded leaves at each canopy165

level and includes the following four sub-models: (i) shortwave and longwave radia-166

tion, (ii) stomatal conductance, (iii) RSL parameterization, and (iv) transport of heat and167

water vapor in the CAS. The radiation model and RSL parameterization lump sunlit and168

shaded leaves as one at each canopy layer, while the other two sub-models explicitly ac-169

count for sunlit and shaded leaves. Similar to CLM-ml v1, it is assumed that water from170

the soil is transported to each leaf via unconnected xylems (Figure 1d). The vertical pro-171

files of the leaf and stem of a plant are described using a beta distribution (see Text S1172

in the Supporting Information).173
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2.1 Shortwave and longwave radiation sub-model174

The shortwave radiation sub-model is based on Norman (1979) and accounts for175

direct beam and diffuse radiation. At each canopy level, the sunlit and shaded leaves176

are first lumped into a single leaf. The lumped leaf intercepts a fraction of the beam and177

diffuse radiation incident on the leaf surface. The intercepted radiation is absorbed or178

scattered as diffuse radiation. The radiation at each canopy position thus consists of (i)179

non-intercepted beam radiation, (ii) non-intercepted diffuse radiation, and (iii) intercepted180

beam and intercepted diffuse radiation that is scattered upward and downward. The181

shortwave radiation model resolves radiation in the visible and near-infrared bands. For182

N canopy layers, the discretized model leads to a linear system of equations with (N+183

1) × 2 unknowns corresponding to upward and downward radiation at each canopy184

level and the soil surface. The simulated radiation absorbed by a lumped leaf at each185

canopy level is disaggregated for sunlit and shaded leaves. It is assumed that shaded186

leaves absorb diffuse radiation, while sunlit leaves absorb beam and diffuse radiation.187

The details about the shortwave radiation model are provided in Text S2 in the Support-188

ing Information.189

The longwave radiation sub-model is also based on Norman (1979). Unlike the short-190

wave radiation model, the longwave radiation model only includes diffuse radiation.191

The emitted longwave radiation of sunlit and shaded leaves is weighted by their frac-192

tions at each canopy layer. The sunlight and shaded leave absorb equal longwave ra-193

diation per unit leaf area. The discretized model also leads to a linear system of equa-194

tions with (N + 1) × 2 unknowns corresponding to upward and downward radiation195

at each canopy level and the soil surface. The details about the longwave radiation model196

are provided in Text S3 in the Supporting Information.197

2.2 Stomatal conductance sub-model198

Photosynthesis is modeled assuming the biological demand for CO2 uptake is met199

by the diffusive transport of CO2 from the CAS into the stomata. In such a modeling ap-200

proach, there are two equations with three unknowns. The two equations describe the201

biological uptake and diffusive transport of CO2, while the three unknowns include net202

CO2 assimilation, CO2 concentration within the stomata, and stomatal conductance (see203

Text S4 and Text S5 in the Supporting Information). Thus, in order to close the system204
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of equations, a third equation for stomatal conductance is needed. ELM-MLCMv1 in-205

cludes five previously published SCMs that use semi-empirical relationship or optimiza-206

tion theory and may additionally account for PHD (see Table 1). All five SCMs result207

in a nonlinear equation that is solved for sunlight and shaded leaves at each canopy level.208

A detailed description of all supported SCMs and their numerical solutions are presented209

in Text S6 and S7 in the Supporting Information. The model for the transport of CO2 from210

the CAS into the stomata additionally includes parameterizations for the leaf bound-211

ary layer, which is presented in Text S8 in the Supporting Information.212

2.3 Turbulent transport sub-model213

Unlike big-leaf canopy models, MLCMs require models to describe vertical pro-214

files of scalars (i.e. wind, air temperature, and water vapor) within the canopy. ELM-215

MLCMv1 uses the model of Harman and Finnigan (2007, 2008) that provides a unified216

theory of turbulent transport within and above the canopy. The scalars within RSL of217

the canopy follow an exponential profile, while the log profile above the canopy devi-218

ates from the MOST predicted profile. Continuity of scalar values is assumed at the canopy219

height which leads to a system of equations that is solved iteratively. A detailed descrip-220

tion of the RSL model is presented in Text S9 in the Supporting Information. Similar to221

the radiation models, the RSL model lumps sunlit and shaded leaves together at each222

canopy level.223

2.4 Multi-layer canopy air space sub-model224

ELM-MLCMv1 simulates the transport of energy and water vapor within the CAS225

using a one-dimensional vertical diffusion model. The conservation of energy for sun-226

lit and shaded leaves is modeled explicitly at each canopy level. The sensible and latent227

heat fluxes from the leaves tightly couple CAS water and energy transport equations with228

leaf energy balance equations leading to a system of four tightly coupled equations. The229

water vapor and energy flux between the leaf and CAS take into account stomatal and230

leaf boundary conductances, while the vertical fluxes of water and energy account for231

aerodynamic turbulence within and above the canopy. The equations are solved using232

finite-volume spatial discretization and an implicit time integration scheme. Similar to233

CLM-ml v1, the non-linear source and sink terms of water and energy are linearized lead-234
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ing to a linear system of equations. A detailed description of the MLC sub-model is pre-235

sented in Text S10 in the Supporting Information.236

3 Numerical implementation237

The discretized equations of ELM-MLCMv1’s four sub-models result in linear and238

non-linear equations that are solved using PETSc’s KSP and SNES solvers, respectively.239

Unlike CLM-ml v1, ELM-MLCMv1 allows for multiple vegetation canopies to simul-240

taneously interact with a CAS (Figure 2). The DMComposite of PETSc, a special type of241

the DM (“Domain Management”) abstraction in PETSc, is used to provide a flexible frame-242

work to solve equations for the transport of energy and water within CAS which are tightly243

coupled to the energy balance equation for sunlit and shaded leaves. Similar to the pre-244

vious use of DMComposite in the MPP library (Bisht & Riley, 2019), the multi-layer CAS245

model includes four governing equation (GE) objects that correspond to GEs for (1) CAS246

temperature, (2) CAS vapor pressure, (3) sunlit leave temperature, and (4) shaded leaf247

temperature. The four GE objects make up a system of equations SoE object that is used248

to obtain the numerical solution via DMComposite. The detail about the use of GE and SoE249

is presented in Bisht and Riley (2019). A schematic representation of two vegetation canopies250

sharing a CAS is shown in Figure 2a, while the resulting discretized linear system, Ax =251

b, with four GEs is shown in Figure 2b. The entries of GE corresponding to air temper-252

ature and air water vapor within the x and b vector are shown in blue and magenta, re-253

spectively The entries of GEs corresponding to the sunlit leave (in light green) and shaded254

leave (in dark green) includes unknown temperature values for the two vegetation canopies.255

The cyan colored sub-block of matrix A indicates non-zero values. The DMComposite al-256

lows the flexibility to grow the linear system when multiple vegetation canopies share257

a CAS.258

An important detail associated with using DMComposite has a potentially large im-259

pact on performance. To avoid very high costs due to repeated memory allocation and260

copying during assembly, accurate preallocation—that is, giving PETSc an estimate of261

how many nonzero elements will be present in each row—for sparse matrices in PETSc262

is required. When a DM is being used to manage the computational domain, PETSc can263

usually use the information in the DM to automatically perform the appropriate preal-264

location, but when DMComposite is being used to glue many different subdomains to-265

gether, there is not always a good way to determine, a priori, the nonzero pattern of the266
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full coefficient matrix. It is important to accurately characterize this patter since under-267

estimating the number of nonzero elements can dramatically increase the time required268

for matrix assembly, and overestimating can easily exhaust available memory resources.269

We address this issue in ELM-MLCMv1 by using two passes through the routines that270

calculate the matrix elements: In the first pass, we perform no actual computation of ma-271

trix entries and “assemble” a “matrix” of type MATPREALLOCATOR, a dummy Mat type that272

is used simply to count nonzero elements. With the accurate counts made in this first273

phase, we then preallocate storage for the actual coefficient matrix, which is assembled274

during the second pass. This simple optimization is absolutely necessary; without it, the275

matrix assembly is several orders of magnitude more time-consuming than it should be—276

so slow as to make using the code impracticable.277

Besides providing data management tools such as DMComposite and implemen-278

tations of many state-of-the-art nonlinear and linear solver algorithms, utilizing PETSc279

also provides a means to offload to GPU accelerator devices the most computationally280

expensive portion of the ELM-MLCMv1 model: the solution of the large linear system,281

which comprises at least half of the total execution time of the model when running ex-282

ecuting purely on CPUs. The design of PETSc makes this transparent to the application283

developer; changing from CPU to GPU execution simply requires specifying the appro-284

priate runtime options. PETSc follows a delegation pattern approach to object-oriented285

design, in which each PETSc object is an instance of a class whose specific data struc-286

tures and functionality are determined by choosing a delegated implementation type287

at runtime. GPUs can be used for linear algebra operations by simply choosing appro-288

priate delegated types for the Vec and Mat objects that use the desired GPU back-end289

for executing vector and matrix operations, respectively. Because higher level compo-290

nents of PETSc (KSP linear solvers, SNES nonlinear solvers, TS time steppers, etc.) em-291

ploy Vec and Mat operations for the bulk of their underlying computations, most of the292

computation in these solvers will occur on the GPU. The current back-ends supported293

by PETSc’s Vec and Mat classes include CUDA (NVIDIA’s native model), HIP (AMD’s294

“Heterogeneous Interface for Portability” model, which we use to target their ROCm295

GPU platform), and Kokkos (a performance portability framework that targets NVIDIA,296

AMD, and Intel GPUs as well as parallel CPU execution).297
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4 Methodology298

4.1 Experiment design for model verification299

We verified the numerical implementation of ELM-MLCMv1 by comparing results300

against CLM-ml v1. Simulations were performed using atmospheric data from the Amer-301

iflux US-University of Michigan Biological Station (US-UMB), which is a temperate de-302

ciduous broadleaf forest site (Schmid et al., 2003). The simulations follow the model con-303

figuration of G. B. Bonan et al. (2021) and use 92 vertical layers with a vertical spacing304

of 0.5 m. The CAS is occupied by a single tree with an LAI and SAI of 4.15 m2 m−2 and305

0.90 m2 m−2, respectively (Figure 3). Half-hourly atmospheric forcing data from July 2006306

is used that included (1) downwelling direct and diffused solar radiation in the near-307

infrared and visible bands, (2) downwelling longwave radiation, (3) near-surface air tem-308

perature, (4) near-surface specific humidity, (5) near-surface atmospheric pressure, (6)309

near-surface wind speed, (7) near-surface atmospheric CO2 concentration, and (8) near-310

surface atmospheric O2 concentration. The time series of vertically-resolved soil mois-311

ture, surface temperature, and surface albedo was prescribed as boundary conditions.312

Simulations were performed for the BB and Medlyn SCMs. The relative error for ELM-313

MLCMv1 with respect to CLM-ml v1 was computed at each model time steps to ver-314

ify the numerical implementation.315

4.2 Experiment design for studying the impact of environmental variables on316

canopy processes317

After establishing confidence in the numerical implementation of ELM-MLCMv1,318

a series of seven simulations (Table 2) were designed to investigate the impact of envi-319

ronmental variables on canopy processes and how these impacts vary across the differ-320

ent SCMs. First, a control simulation for each SCM was first performed to calibrate model321

output to match observations of the monthly average diurnal cycle of sensible heat flux322

and latent heat fluxes using the same model setup as described in Section 4.1. The model323

performance was evaluated using the following metrics: (1) bias, (2) root-mean-square-324

error (RMSE), (3) correlation coefficient (R2), (4) the Kling-Gupta Efficiency (KGE) (Gupta325

et al., 2009), and (5) the Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970). Next,326

additional simulations were performed for each SCM by changing the following three327

environmental variables: (1) air temperature, (2) atmospheric CO2, and (3) soil moisture.328
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Each environmental variable is changed twice while keeping the other variables unchanged.329

The simulated changes in net CO2 assimilation, leaf temperature, and leaf water poten-330

tial were studied.331

4.3 Experiment design for studying the computational performance on hetero-332

geneous computing architectures333

The computational performance of the multi-layer CAS sub-model of ELM-MLCMv1334

on CPU and GPU is studied by performing simulations for a range of problem sizes, us-335

ing two platforms at the Oak Ridge Leadership Computing Facility (OLCF): The Sum-336

mit Supercomputer, the fifth fastest supercomputer in the world as of November 2022337

(https://www.top500.org/lists/top500/2022/11/), and the Crusher testbed sys-338

tem, which contains identical hardware and similar software as the DOE’s Frontier Ex-339

ascale supercomputer, currently ranked as the fastest supercomputer in the world. These340

systems were chosen both because they represent the prior and current generation of341

leadership-class supercomputers, and because they rely on GPUs from different ven-342

dors and with different programming models. Each compute node of Summit has two343

22-core IBM POWER9 CPUs and six NVIDIA Volta V100 GPUs, which uses NVIDIA’s344

CUDA programming model, while each compute node of Crusher has one 64-core AMD345

EPYC CPU and four AMD MI250X GPUs, which uses AMD’s ROCm programming model.346

We note that each AMD MI250X GPU consists of two Graphics Compute Dies (GCDs),347

each of which can be viewed by the programmer as a separate GPU; for the purposes348

of making consistent comparisons, we will use the term “GPU” in the rest of the paper349

to refer to one GPU on Summit or one GCD on Crusher.350

We performed static-scaling experiments, in which simulations are run across a range351

of problem sizes, using a fixed level of parallelism (in our case, using a single CPU core352

or a single GPU). This is in contrast to the more usual strong-scaling (in which the degree353

of parallelism is varied for a fixed problem size, and the marginal efficiency of each ad-354

ditional parallel resource is measured) or weak-scaling (in which the local problem size355

is fixed and the number of parallel resources is varied) analyses. Strong-scaling or weak-356

scaling analyses do not make sense for ELM-MLCMv1, which, although intended to be357

used in parallel ELM simulations, is essentially a serial code: an independent instance358

of the ELM-MLCMv1 model will be run by each process in a parallel ELM simulation,359

so the parallelism (from the viewpoint of ELM-MLCMv1) is fixed, using only a single360
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CPU or GPU (though the full number of GPU cores will be used by the PETSc solvers361

via one of the PETSc GPU back-ends). The relevant question to be answered is how a362

given compute platform will handle the range of problem sizes that the ELM-MLCMv1363

model will be run with. By running over a wide range of problem sizes, we can answer364

questions such as whether there is a minimum solution time, below which the cost of365

the computation is dominated by GPU latency, or whether there is a problem size where366

suboptimal memory access becomes a dominant factor.367

In this work, the model performance on a single CPU core is compared against one368

GPU. The problem setup used in Section 4.1 is modified such each CAS is shared by 1000369

trees. Static scaling experiments were performed in which the number of CAS is var-370

ied between 1 to 100. The numerical solution of the model uses PETSc’s KSP iterative lin-371

ear solver component and the computational performance of the model in this work ex-372

amines the two major steps of the solution process: (1) The PCSetUp event, in which the373

linear preconditioner data structures are set up and computed (in this case, and incom-374

plete LU factorization with zero fill-in is computed) (2) The KSPSolve event, which oc-375

curs after PCSetUp and involves solution of the linear system by a preconditioned Krylov376

subspace iteration method (GMRES with a restart size of 30 here); this phase includes377

the application of the preconditioner (sparse triangular solve) but not the setup. The sum378

of the time spent in PCSetUp and KSPSolve comprises the total time spent inside PETSc379

solvers in an ELM-MLCMv1 simulation. We consider the time spent in PETSc solvers380

only for two reasons: First, we wish to evaluate how the model can be sped up by mak-381

ing use of GPU accelerators, and the PETSc solve is the most suitable part of the com-382

putation for GPU acceleration. Second, the time in the solvers represents fifty percent383

or more of the total time spent in the benchmark (when GPU acceleration is not used),384

and would represent an even larger fraction when ELM-MLCMv1 is deployed in an ELM385

simulation. In the benchmark code, the linear system is assembled and solved only once,386

but as part of an ELM simulation, much of the costly initial setup will be amortized across387

multiple solves; though the entries of the linear system matrix will be recomputed, the388

nonzero structure of the matrix will stay the same and the allocated data structures can389

be re-used.390

The computational performance of the model was quantitatively evaluated using391

(1) speedup, and (2) work-time spectrum plots (Chang, Nakshatrala, et al., 2018; Chang,392

Fabien, et al., 2018). Speedup, a commonly employed metric in parallel computing, is393
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computed here as the ratio of the execution time (as measured for a given PETSc event)394

for the CPU-only case to that of the GPU-enabled run. Speedup up gives a simple mea-395

sure of how much faster the computation is when the GPU is employed. The work-time396

spectrum plot presents a less common but very informative view of model’s computa-397

tional performance by comparing the computation throughput (total degrees of freedom398

in the problem divided by the execution time) against the execution time. (Note that the399

quantity being controlled–the problem size—does not appear on any axis, but it increases400

from left to right for each curve.) The advantage of this view is that the latency and asymp-401

totic throughput can be read directly from the plot: the former is represented simply by402

the smallest time that a given curve passes through, and the latter by the maximum through-403

put at the top of the curve. When a static scaling experiment runs over a wide enough404

range of problem sizes, performance curves on a work-time spectrum plot generally fol-405

low three regimes that proceed from left to right as: (1) regime with a positive slope where406

execution is close to the strong-scaling limit because the problem size is too small to al-407

low full use of all of the parallel resources, (2) regime where slope levels off to a hori-408

zontal line that indicates a region of optimal scaling in which there is sufficient work for409

full utilization of all resources, and (3) regime of a negative slope where parallel efficiency410

drops due to memory subsystem effects or other causes.411

5 Results412

5.1 Model verification413

The ELM-MLCMv1 model is able to accurately match the spatio-temporal results414

from the CLM-ml v1 simulation. The two models show excellent agreement for vertically-415

averaged time series of air temperature, water vapor, and net radiation for shaded and416

sunlit leaves for Medlyn SCM (Figure 4). The relative error in the time series of verti-417

cal profile for the aforementioned variables for Medlyn SCM is O(10−9). The relative er-418

ror between the two models for SCMs other than Bonan14 is similarly very small (Ta-419

ble 3). While the ELM-MLCMv1 is not validated against observations in this study, these420

results provide a high degree of confidence in the implementation of the ML model as421

it can accurately reproduce results of CLM-ml v1 that has been validated against obser-422

vational datasets (G. B. Bonan et al., 2018).423
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5.2 Model validation424

The calibrated ELM-MLCMv1 for each SCM is able to accurately simulate the monthly-425

averaged diurnal cycle of sensible and latent heat flux (Figure 5) with low bias and RMSE,426

and high R2, KGE, and NSE (Table 4). The bias of the three SCMs that include PHD (i.e.,427

WUE, Bonan14, and Manzoni11) is smaller than the bias of the two SCMs that do not428

include PHD (i.e., Medlyn and BB). However, all other evaluation metrics are compa-429

rable across the five SCMs. The model performance of all SCMs is lower at the hourly430

scale than compared to the monthly-averaged diurnal cycle (see metrics in parentheses431

in Table 4), though the KGE and NSE still remain larger than 0.69 and 0.77, respectively.432

The simulated monthly-averaged vertical profiles of leaf water potential, ψlea f , air433

temperature, Tair, and air vapor pressure, qair, show vertical variation within the canopy434

(Figure 6). The differences in the simulated variables across SCMs is small (as indicated435

by the cyan shading) and only limited to below the canopy height (as indicated by the436

dashed line). Given the strong agreement among SCMs, we only present temporally-437

varying, vertically-explicit profiles of variables simulated by ELM-MLCMv1 for the Med-438

lyn SCM (Figure 7). The top of the canopy has largest net assimilation, Anet (Figure 7a)439

with corresponding lower intercellular CO2 (Figure 7b) and high stomatal conductance440

(Figure 7c). The canopy buffers the variation of temperature by lowering the maximum441

leaf temperature of the lower canopy as compared to canopy top during mid-day and442

vice-versa during the night (Figure 7d). The higher Anet at the top of the canopy results443

in higher water loss through transpiration, which results in lowers ψlea f (Figure 7e). The444

vertical profile of Tair shows similar spatio-temporal pattern as that of Tlea f with the up-445

per canopy buffering temperature extrema in the lower canopy (Figure 7f). The verti-446

cal gradient in qair is only observed during the day with higher values at the top of canopy447

(Figure 7g).448

5.3 Impact of climatic factors on canopy processes449

All five SCMs agree on the direction of the simulated changes (i.e., an increase or450

a decrease) in the three vertically-averaged canopy processes (i.e., Anet, Tlea f , and ψlea f )451

due to the changes in the three climatic factors (i.e. ∆Tair, ∆CO2, and ∆SM) (Figure 8).452

The changes in a climate factors impacted canopy processes differently. For example,453

an increase in CO2 resulted in higher Anet, but Tlea f and ψlea f remained unchanged (Fig-454
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ure 8b,e,h). Only the changes in Tair impacts two canopy processes (i.e., Anet and Tlea f ),455

and only Anet is impacted by two climatic factors (i.e., Tair and ∆CO2). The spatio-temporal456

differences of the simulated changes in the canopy processes are studied next for the four457

cases (Figure 8a,b,d,i) that showed a noticeable change due to the changes in climatic458

factors (Figure 9). An increase in Tair (or a decrease in CO2) leads to a decrease (or an in-459

crease) in Anet for all canopy layers (Figure 9a,b). The change in Anet is largest at the top460

of the canopy and has a well-defined diurnal pattern with higher values during mid-461

day. The changes in Tlea f due to ∆Tair vary spatially and temporally (Figure 9c). During462

nighttime, mid-canopy has lower ∆Tlea f compared to the top and the bottom of the canopy,463

and vice-versa during daytime. The ψlea f decreased due to ∆SM throughout the canopy464

with the largest changes at the top of the canopy and during late afternoon (Figure 9d).465

5.4 Computational performance466

The speedup plots for both the Summit and Crusher machines follow the expected467

trends, with speedup generally increasing as the problem size grows to be large enough468

to allow full utilization of the large number of GPU compute elements present (Figure469

10). The speedup is most pronounced for the PCSetUp event, which involves a large amount470

of work that can saturate the GPU, whereas the KSPSolve event—which involves com-471

paratively much less work and cannot keep the GPU as busy—displays much more mod-472

est speedup. On Summit, the speedup increases consistently with problem size, whereas473

on Crusher the speedup levels off somewhat before the maximum problem size is reached.474

At larger problem sizes, the speedups on Summit are consistently higher than those on475

Crusher, but the execution on Crusher is actually always faster (Figure 11)as the speedups476

in each plot are measured relative to the performance of that machine’s CPU.477

The work-time spectrum plots for the CPU-only runs are close to horizontal (dashed478

lines in Figure 11), indicating that, for this range of problem sizes, the CPU resources479

are saturated and no memory effects come into play. For the GPU-enabled runs (solid480

lines in Figure 11), we see that the PCSetUp phase reaches the optimal scaling regime on481

Crusher, and is perhaps approaching it on Summit. The KSPSolve phase contains less482

work and is expected to require a larger problem size to reach the optimal scaling regime.483

We observe that on Crusher KSPSolve appears to be approaching the optimal scaling484

phase at the largest problem sizes, whereas on Summit the KSPSolve seems to still be485

near the strong-scaling limit. On both machines, the GPU performance beats the CPU486
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performance in all cases except for the KSPSolve with the smallest problem size (a sin-487

gle CAS); for this case, the amount of work done in the KSPSolve is too small to mask488

high kernel launch latencies for the GPUs, but because this does not hold for the PCSetUp,489

the total time spent in the PETSc solvers is still lower for the GPU. As expected, because490

the CPUs and GPUs in Summit are several years older than in Crusher, the Crusher GPU491

and GPU performance consistently beats that of its counterparts on Summit.492

6 Caveats and Future work493

This study is a first step to including the representation of vertical canopy struc-494

ture within ELM and we now briefly discuss possible future developments in the new495

model required for implementation in the ELM big-leaf scheme. First, the prescribed time-496

series of soil moisture, surface temperature, and surface albedo as a boundary condi-497

tion should instead use ELM’s prognostic soil hydrology and soil temperature models.498

Second, the evaporation of canopy intercepted water needs to be accounted for in the499

energy balance within the CAS. Third, the radiation sub-model could be extended to sim-500

ulate solar-induced induced chlorophyll fluorescence, which has emerged as a proxy501

for terrestrial photosynthesis and can be observed from satellites (Li et al., 2022). Fourth,502

a more realistic vertical structure of sunlit and shaded leaves should be included in which503

leaves at each canopy level are not directly connected to the soil via individual xylems504

but are connected to a single xylem (Mirfenderesgi et al., 2016). Fifth, multi-year and multi-505

site simulations need to be performed to evaluate the performance of the model against506

observations. Sixth, a computational performance analysis of the model should be per-507

formed for a global ELM simulation. These additional model developments will signif-508

icantly improve ELM’s capability to resolve micro-climate due to vertical canopy struc-509

ture and enable support for upcoming heterogeneous high-performance architectures.510

7 Summary511

In this study, we developed a standalone ELM-MLCMv1 that resolves the micro-512

climate created by the vertical structure of the vegetation canopies. The new model in-513

cludes sub-models for shortwave and longwave radiation, stomatal conductance, tur-514

bulence scheme for modeling flow within the vegetation canopy, and transport of heat515

and water vapor within CAS. ELM-MLCMv1 uses PETSc to provide a numerically ro-516

bust solution of discretized equations and includes support for heterogeneous comput-517
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ing architectures. The numerical implementation of ELM-MLCMv1 was verified by com-518

paring results against CLM-ml v1, an existing MLC model, for a month-long simula-519

tion using data from the Ameriflux US-UMB site.520

We found that simulations using SCMs of various degrees of complexity are each521

able to accurately simulate observed sensible and latent heat fluxes upon model calibra-522

tion. A set of idealized climate change simulations showed that all SCMs predict a con-523

sistent change in the canopy processes due to changes in environmental factors (i.e., air524

temperature, atmospheric CO2, and soil moisture). The differences in the canopy pro-525

cesses including net assimilation, leaf temperature, and leaf water potential vary ver-526

tically within the canopy in response to changes in environmental factors. While net as-527

similation was impacted by the changes in both air temperature and atmospheric CO2;528

however, leaf temperature and leaf water potential were only impacted by changes in529

air temperature and soil moisture, respectively. The use of PETSc enabled the same ELM-530

MLCMv1 source code to run on CPUs and GPUs without requiring any code modifi-531

cations, as well as includes support of GPUs from multiple vendors (i.e., NVIDIA and532

AMD). Static scaling experiments for an idealized problem showed ELM-MLCMv1 achieved533

a speedup of 25-50 times on a GPU relative to a CPU. This work provides the first nec-534

essary model development to include the representation of vertical canopies in ELM and535

additionally includes the support for heterogeneous computing architectures.536

8 Availability Statement537

The ELM-MLCMv1 is publicly available at https://zenodo.org/record/7809207538

and scripts to perform simulations presented in this study are available at539

https://github.com/MPP-LSM/mlcm-simulation.540
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(a) Multi-layer canopy
with sunlit and shaded

leaves 

(e) Multi-layer canopy space model

(c) Stomatal conductance 
model

wind

(d) Roughness sublayer model

(b) Radiation model

Figure 1. Schematic representation of ELM-MLCMv1 that includes (a) leaves at multiple layers

that are sunlit (light green) and shaded, (b) vertically-resolved models for shortwave and longwave

radiation that combine sunlit and shaded leaves into a single leaf (brown) at each canopy level, (c)

model for stomatal conductance of sunlit and shaded leaves, (d) roughness sublayer parameteriza-

tion of turbulent flow within and above vegetation canopy, and (e) model for the transport of heat

and water vapor through the canopy air space.
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(a) Multiple vegetation canopies interacting with a 
single canopy air space

!air

qair

T1,sun

T2,sun

T1,shd

T2,shd

A x b
(b) Discretized linear system (Ax=b) solved using PETSc

Figure 2. (a) Schematic representation of two vegetation canopies that are interacting with a sin-

gle canopy air space (CAS). The model configuration comprises of four governing equations and

comprises of six unknown variables that include CAS temperature (θair), CAS water vapor (qair),

sunlit leaf temperatures (T1,sun and T2,sun corresponding to two trees), and shaded leaf temperatures

(T1,shd and T2,shd corresponding to two trees). (b) The discretized linear system is flexibly assembled

using PETSc’s DMComposite and solved using PETSc’s KSP solver.
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Figure 3. The vertical profile of LAI (shaded region in green) along with LAI profiles of shaded

leaves at 8:00 am (in blue) and 12:00 pm (in red).
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Figure 4. Time series of the vertical profile of relative error for Medlyn SCM with respect to CLM-

ml v1 for (a) air temperature, (b) water vapor, (c) net radiation for sunlit leaf, and (d) net radiation

for shaded leaf. simulated net radiation, Rnet, The results are for the Bonan14 SCM.
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Figure 5. Simulated monthly average diurnal cycle of (a) sensible heat flux, H, (b) latent flux, LH,

and (c) air temperature, Tair, for five SCMs. The observations are shown in circle symbols.
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Figure 6. Simulated monthly average vertical profile of (a) leaf water potential, ψlea f , (b) air tem-

perature, Tair, and (c) air vapor pressure, qair. The black line indicates the average of five SCMs,

while the shading denotes the standard deviation among five SCMs.
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Figure 7. Simulated vertical profile of average diurnal cycle of (a) net assimilation, Anet, (b) inter-

cellular CO2, ci, (c) stomatal conductance, gs, (d) leaf temperature, Tlea f , (e) leaf water potential, ψlea f ,

(f) air temperature, Tair, and (g) water vapor, qair, for the Medlyn SCM.
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Figure 8. Monthly-average net assimilation, Anet, due to changes in three environmental vari-

ables: (a) increase in temperature, ∆Tair, (b) increase in CO2, ∆CO2 , and (c) decrease in soil mois-

ture, ∆SM. Impact of the changes in the same three environmental variables on (d-f) monthly

average leaf temperature, Tlea f , and (g-j) monthly average leaf water potential ψlea f . The results are

presented for five different SCMs.
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value. for the control case using the Medlyn SCM.
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Figure 10. Speedup of the PETSc solvers as a function of problem size (determined by number

of CAS) when running on one GPU vs. one CPU on a node of the OLCF Summit (left) and Crusher

(right machines), broken down into time spent in PCSetUp, KSPSolve, and the combination thereof.

–28–



manuscript submitted to Journal of Advances in Modeling Earth Systems

105

106

107

108

109

D
O

F
s/

se
c

(a) OLCF Crusher

GPU: PCSetUp
GPU: KSPSolve
GPU: PCSetUp + KSPSolve
CPU: PCSetUp
CPU: KSPSolve
CPU: PCSetUp + KSPSolve

10-2 10-1 100 101 102

Time to solution [sec]

105

106

107

108

109

D
O

F
s/

se
c

(b) OLCF Summit

GPU: PCSetUp
GPU: KSPSolve
GPU: PCSetUp + KSPSolve
CPU: PCSetUp
CPU: KSPSolve
CPU: PCSetUp + KSPSolve

Figure 11. A work-time spectrum view of the performance of PETSc solvers for our computa-

tional performance benchmark runs on the OLCF Summit and Crusher computers. The plot depicts

the performance measurements for all of the different runs, though the quantity being controlled

(the problem size, i.e., the number of CAS) is not plotted on any axis. This view has the advantage

of allowing both latency and asymptotic throughput to be read directly from the plot.
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Table 1. Description of SCMs supported in ELM-MLCMv1.

Name Description Reference

BB Semi-empirical approach without accounting for PHD Ball et al. (1987)

Medlyn Semi-empirical approach without accounting for PHD Medlyn et al. (2011)

WUE Optimization theory without accounting for PHD Buckley et al. (2017)

Bonan14 Co-optimization of two constraints including a PHD constraint G. Bonan et al. (2014)

Manzoni11 WUE-based approach with down regulation based on PHD Manzoni et al. (2011)
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Table 2. Simulation configurations for studying the impact on canopy processes from three envi-

ronmental variables that include air temperature, atmospheric CO2, and soil moisture.

Name Air temperature Atmospheric CO2 Soil moisture

1 Control Default 367ppm Default

2 2K Default + 2K 367ppm Default

3 5K Default + 5K 367ppm Default

4 467ppm Default 467ppm Default

5 567ppm Default 567ppm Default

6 sm85 Default 367ppm 0.85 × Default

7 sm70 Default 367ppm 0.70 × Default
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Table 3. Mean relative error between CLM-ml v1 and ML for net radiation of sunlit (Rnℓsun) and

shaded (Rnℓsha) leaves, stomatal conductance of sunlit (gsℓsun) and shaded (gsℓsha) leaves, air temper-

ature (Ta), and water vapor (qa).

SCM ∆Rnℓsun/RnML
ℓsun ∆Rnℓsha/RnML

ℓsha ∆gsℓsun/gsML
ℓsun ∆gsℓsha/gsML

ℓsha ∆Ta/TML
a ∆qa/qML

a

BB +3.06e-09 +6.96e-09 +7.69e-06 -4.12e-09 -1.17e-11 +3.47e-10

Medlyn +1.25e-07 -1.69e-05 +1.35e-07 +2.85e-07 -3.30e-10 +2.83e-09

Bonan14 +1.73e-06 +1.65e-06 +1.38e-07 +7.90e-08 -9.31e-11 -7.78e-09
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Table 4. Evaluation metrics for the control simulation for five SCMs. The metrics in the top row

are for simulated monthly-averaged diurnal cycle of sensible and latent heat flux, while the metrics

in the bottom row within parentheses are for simulated hourly heat fluxes.

SCM
Sensible heat flux Latent heat flux

Bias RMSE R2 KGE NSE Bias RMSE R2 KGE NSE

Medlyn
-7.3 13.5 0.99 0.80 0.97 6.8 16.2 0.99 0.92 0.97

( -9.1) ( 49.3) (0.87) (0.73) (0.75) ( 9.2) ( 53.3) (0.89) (0.85) (0.78)

BB
-10.3 18.0 0.98 0.73 0.94 10.4 16.4 0.99 0.88 0.97

( -11.5) ( 47.9) (0.89) (0.69) (0.77) ( 12.1) ( 51.3) (0.90) (0.83) (0.80)

WUE
-2.3 14.0 0.99 0.88 0.96 1.3 13.2 0.99 0.97 0.98

( -3.8) ( 47.3) (0.88) (0.85) (0.77) ( 3.3) ( 50.6) (0.90) (0.86) (0.80)

Bonan14
-2.3 14.0 0.99 0.88 0.96 1.3 13.2 0.99 0.97 0.98

( -3.8) ( 47.3) (0.88) (0.85) (0.77) ( 3.3) ( 50.6) (0.90) (0.86) (0.80)
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