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Table S1. MJO use case validation accuracy of the ProtoLNet and its associated base CNN for seven different random
seeds. The random seeds set the training/validation split of the different years as well as the network initialization. The bold
row (random seed 30) is the ProtoLNet shown in the main text.

random seed base CNN ProtoLNet
28 81% 74%
29 60% 75%
30 58% 73%
31 77% 74%
32 82% 75%
33 81% 76%
34 74% 73%
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Fig. S1. Number of samples per MJO phase in training and testing sets.
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Fig. S2. Testing accuracy as a function of MJO phase.
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Fig. S3. Number of learned prototypes (out of 90 total) binned by month of the year of the training
sample from which the prototype was drawn.
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Fig. S4. All prototypes for MJO phase 0, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S5. All prototypes for MJO phase 1, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S6. All prototypes for MJO phase 2, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S7. All prototypes for MJO phase 3, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S8. All prototypes for MJO phase 4, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S9. All prototypes for MJO phase 5, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S10. All prototypes for MJO phase 6, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S11. All prototypes for MJO phase 7, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S12. All prototypes for MJO phase 8, ordered by the average number of points contributed across
correctly classified testing samples. The average number of points and the percent time the prototype
is the winning prototype are printed in the upper-left and upper-right corners of each location scaling
grid, respectively.
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Fig. S13. Testing accuracy comparison for the idealized quadrants use case with a reduced training
size of 1,400 samples. When training the base CNN, random seeds 10-30 (purple) use a dropout
rate of 0.0 on the fully connected layer, random seeds 35-55 (peach) use a dropout rate of 0.2, and
random seeds 60-80 (teal) use a dropout rate of 0.5. Dropout is not used when training the associated
ProtoLNet. In all instances, the ProtoLNet exhibits improved accuracy over the base CNN when
evaluated on 3,000 testing samples.
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