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ABSTRACT: We develop and demonstrate a new interpretable deep learning model specifically

designed for image analysis in earth system science applications. The neural network is designed to

be inherently interpretable, rather than explained via post hocmethods. This is achieved by training

the network to identify parts of training images that act as prototypes for correctly classifying

unseen images. The new network architecture extends the interpretable prototype architecture of a

previous study in computer science to incorporate absolute location. This is useful for earth system

science where images are typically the result of physics-based processes, and the information is

often geo-located. Although the network is constrained to only learn via similarities to a small

number of learned prototypes, it can be trained to exhibit only a minimal reduction in accuracy

compared to non-interpretable architectures. We apply the new model to two earth science use

cases: a synthetic data set that loosely represents atmospheric high- and low-pressure systems, and

atmospheric reanalysis fields to identify the state of tropical convective activity associated with the

Madden-Julian oscillation. In both cases, we demonstrate that considering absolute location greatly

improves testing accuracies. Furthermore, the network architecture identifies specific historical

dates that capture multivariate, prototypical behaviour of tropical climate variability.
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SIGNIFICANCE STATEMENT: Machine learning models are incredibly powerful predictors,22

but are often opaque “black boxes”. The how-and-why themodelmakes its predictions is inscrutable23

—themodel is not interpretable. We introduce a newmachine learningmodel specifically designed24

for image analysis in earth system science applications. The model is designed to be inherently25

interpretable and extends previous work in computer science to incorporate location information.26

This is important because images in earth system science are typically the result of physics-based27

processes, and the information is often map based. We demonstrate its use for two earth science use28

cases and show that the interpretable network exhibits only a small reduction in accuracy compared29

to black box models.30

1. Introduction31

Machine learning has been identified as an innovative, under-explored tool for furthering under-32

standing and simulation of the Earth system (Balmaseda et al. 2020; Irrgang et al. 2021; National33

Academies of Sciences Engineering and Medicine 2020). Artificial neural networks (a type of su-34

pervised machine learning) have emerged as a powerful tool for extracting nonlinear relationships35

amidst noisy data, and thus are particularly suited to this endeavor. However, a major criticism of36

the use of neural network models for scientific applications is that they are “black boxes.” Scientists37

typically want to know why the model reached the decision that it did. The benefit of explaining38

the decision-making process of a model goes beyond that of satisfying curiosity: explanation can39

assist users in (1) determining if the model is getting the right answers for the right reasons (e.g.40

Lapuschkin et al. 2019), (2) controlling and improving the machine learning approach (e.g. Keys41

et al. 2021), and (3) discovering new science (e.g. Toms et al. 2020; Barnes et al. 2020).42

Because researchers are driven by the desire to explain the decision-making process of deep43

learning models, a large variety of post hoc explainability methods have been developed (e.g.44

Buhrmester et al. 2019; Barredo Arrieta et al. 2020; Samek et al. 2021). By post hoc, we mean45

methods in which a deep learning model has already been trained and the user attempts to explain46

the predictions of the black box model after the predictions have been made. Although post hoc47

explainability methods have demonstrated success across many scientific applications (including48

earth system science, e.g. McGovern et al. (2019); Toms et al. (2020); Davenport and Diffenbaugh49

(2021)), they are not without their drawbacks. Post hoc explainability methods do not exactly50
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replicate the computations made by the black box model. Instead, through a set of assumptions and51

simplifications, these methods quantify some reduced version of the model (e.g. Montavon et al.52

2018) and, thus, do not explain the actual decision-making process of the network. Furthermore,53

the explanations are not always reliable (Kindermans et al. 2019). Different explanation methods54

can produce vastly different explanations of the exact same black box model (Mamalakis et al.55

2021). Even if the explanation is reliable, at times the output of the explainability method itself56

requires extensive deciphering by the scientist to understand the result. Rudin (2019) discusses in57

detail many of these potential issues with explainable machine learning methods and suggests that58

we should instead be using machine learning models that are inherently “interpretable”. That is,59

instead of trying to explain black box models, we should be creating models where the decision-60

making process is interpretable by design.61

Chen et al. (2019) present an example of one type of interpretable neural network, the prototypical62

part network (ProtoPNet). The ProtoPNet hinges on training a neural network to identify patches63

of the training images that act as “prototypes” for correctly classifying unseen images. The idea64

for the ProtoPNet stems from the need to define a form of interpretability that works the way a65

scientist might describe their way of thinking. In their specific application, Chen et al. (2019)66

focus on classifying images of birds by their species. A scientist may classify a new bird image67

by comparing it to representative examples of each species (i.e. species prototypes) and choosing68

the prototype that most resembles the image, i.e this looks like that. In this way, the network is69

inherently interpretable in that the actual decision-making process can be linked to specific features70

of the bird in the input image and their similarity to a relatively small number of species-specific71

prototypes that are directly drawn from the training set. For bird species identification, Chen et al.72

(2019) demonstrate that the ProtoPNet learns prototypes that represent distinguishing features such73

as the red head of a red-bellied woodpecker, or the bright blue wing of a Florida jay.74

Images in earth system science are typically the result of physics-based processes, and the75

information is often geo-located. Thus, unlike the ProtoPNet of Chen et al. (2019) which does not76

care where the bird’s wing is in the image, the location of specific earth system features can be77

critical to the final task (although this is certainly not always the case, e.g. identification of cloud78

types from satellite imagery; Rasp et al. (2019)). For example, the mere presence of a low-pressure79

system on a weather map is not enough to know where it will rain. Instead, the location of the low80
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— where it is — is also vital for this task. Similarly, identifying the presence of a strong El Niño81

requires not only warm sea-surface temperatures, but specifically warm sea-surface temperatures82

in the tropical equatorial east Pacific (e.g. Philander 1983). Here, we extend the ProtoPNet of Chen83

et al. (2019) to consider absolute location in the interpretable prototype architecture, which we84

call the ProtoLNet (“Prototypical Location Network”). We demonstrate that considering absolute85

location greatly improves the network accuracy (ProtoLNet rather than ProtoPNet) for two earth86

science use cases. The first use case, the idealized quadrants use case (Section 3), applies the87

ProtoLNet to a synthetic data set that loosely represents high- and low-pressure systems where the88

need for location information is readily apparent. The second use case applies the ProtoLNet to89

over 100 years of atmospheric reanalysis fields to identify the state of tropical convective activity90

associated with theMadden-Julian oscillation (MJO;Madden and Julian 1971, 1972; Zhang 2005).91

The MJO use case (Section 4) provides a real, geophysical example of how the ProtoLNet relies92

on location information to make its predictions and demonstrates how the learned prototypes can93

be viewed as prototypical behaviour of transient climate phenomena.94

2. Network Design & Training95

As discussed in the introduction, the ProtoLNet is largely based on the ProtoPNet of Chen et al.96

(2019). We describe the network architecture below, highlighting where our ProtoLNet diverges97

from the ProtoPNet of Chen et al. (2019). We then describe the training procedure in detail.98

a. ProtoLNet architecture99

The ProtoLNet is designed to classify images by comparing latent patches of the input image100

to prototypical latent patches learned from the training set, all while explicitly considering the101

location within the image of the similar latent patches. Throughout, we use the word “patch”102

to refer to a group of neighboring pixels within the input image, and “latent patch” to refer to a103

latent representation of a patch that is computed via a series of convolutional and pooling layers104

within the convolutional neural network. In this section, we first provide a general overview of105

the ProtoLNet architecture from start to finish, and then go into more detail about each step in106

subsequent paragraphs, ending with the training process.107
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The ProtoLNet architecture (Fig. 1) is very similar to that of the ProtoPNet, and starts with a111

base convolutional neural network (CNN) chosen by the user. As discussed more in Section c, this112

base CNN may be a pre-trained network, or a newly initialized network with randomized weights.113

The CNN is followed by two 1× 1 convolutional layers that act to restructure the dimensions of114

the CNN output to be consistent with the subsequent prototype layer. It is within the prototype115

layer that the interpretable learning is done. The network is trained to learn representative latent116

patches within the training set specific to each class, termed prototypes, which provide evidence for117

the image belonging to a particular class. That is, when the input image has a patch whose latent118

representation looks like that prototype, it is labeled as belonging to the prototype’s associated119

class. This is done by computing the similarity of each prototype to the latent patches of the input120

image. Unique to our ProtoLNet, these similarity scores are scaled by a learned, prototype-specific121

location scaling grid so that similarities to the prototypes are only important for certain locations122

within the input image. The maximum scaled similarity score across the latent patches for each123

prototype is then computed. These scores are connected to the output via a fully connected layer,124

and the weighted scores are summed for each output class to produce a total number of “points”125

for each class. The class with the highest number of points is then identified as the predicted class.126

As will be discussed in detail in Section c, the ProtoLNet learns the convolutional kernels within127

the two 1× 1 convolution layers, the prototypes, the location scaling grid, and the final fully128

connected weights (pink components in Fig. 1). The user must specify the number of prototypes129

specific to each output class. For the use cases presented here, we choose an equal number of130

prototypes for each class, so if there are n classes and p prototypes per class, then there are m = n∗p131

total prototypes. A critical aspect of the architecture is that each prototype is assigned to only one132

class since it is used as evidence that a particular sample belongs its class.133

Each sample is pushed through the extended CNN, which results in an output “quilt” of latent134

patches. To introduce some general notation, the quilt has shape a × b×D, where a × b is the135

new image shape after undergoing pooling in the base CNN, and D corresponds to the number of136

convolutional kernels chosen by the user. Each prototype vector (p) then has shape 1×1×D. To137

simplify our discussion, from here forward we will drop the general notation and instead use the138

specific dimensions (denoted in gray) of the example shown in Fig. 1. That is, a = 2, b = 3, and139

D = 64.140
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For the example in Fig. 1, a latent patch has shape 1× 1× 64, and the quilt of latent patches141

output by the extended CNN has shape 2×3×64. Because the input image has already potentially142

undergone multiple convolutional and pooling layers within the extended CNN, these latent patches143

do not represent a single pixel of the input image, but instead are a latent representation of some144

larger patch within the input image. Similar to the latent patches, each of the m learned prototypes145

are a latent representation of some larger region of the input image. Each prototype has the same146

shape as a latent patch: 1× 1× 64. The similarity score for a prototype p and a latent patch z147

is computed as a function of the distance between these two vectors (i.e. the L2 norm of the148

difference). The greater the distance between, the lower the similarity score. Following Chen et al.149

(2019), we compute150

SimilarityScore = log*
,

‖z−p‖22 +1
‖z−p‖22 + ε

+
-
≈ log

(
1+

1
(distance)2

)
(1)151

where ‖ ‖22 is the squared L2 norm and ε is a small number, there to guard against divide-by-zero152

problems. Applying this similarity metric to a quilt of latent patches results in m 2×3 similarity153

grids, one for each prototype. The values within these grids thus quantify how much that latent154

patch of the input looks like each prototype.155

In the original ProtoPNet, at this point the maximum similarity within each similarity grid is156

computed for each prototype. However, unique to our ProtoLNet — and indeed the novelty of157

this work — is that we scale each prototype’s similarity grid by a location-specific value learned158

by the network. This step rescales the similarities such that similarities in certain locations are159

accentuated and similarities in other locations are muted. To follow this paper’s title, it isn’t enough160

for this latent patch (at any location) to look like that prototype. Instead, this latent patch must look161

like that prototype in only specific locations — there. This results in m location-scaled similarity162

grids, one for each prototype.163

Once again following the architecture of the original ProtoPNet, we apply max pooling to each164

scaled similarity grid to obtain a single score for the maximum similarity (scaled by the location165

scaling) between a prototype and the input image. These scores are then connected to the output166

layer via a fully connected layer with learned weights but zero bias. The choice of zero bias in the167

final fully-connected layer is essential for interpreting the prototypes as providing evidence for a168
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particular class. With a zero bias, the final points contributing to each class are comprised only of169

a sum of location-scaled similarity scores multiplied by a final weight. The final weights layer is170

trained separately from the rest of the network. The layer is trained in such a way as to keep weights171

connecting prototypes with their associated class large, while minimizing the weights connecting172

prototypes with their non-class output units (see Section c). Finally, as is standard with a fully173

connected layer, the output values (weighted scores) contributing to each output unit are summed174

to produce a total number of points for each class. The class with the highest number of points is175

identified as the predicted class.176

In the original ProtoPNet, there was no location scaling. Without this location scaling, the177

network is agnostic to where the input image looks most like each prototype. That is, the only178

thing of import is that the image looks like the prototype somewhere. Returning to the example of179

classifying bird images (as explored in Chen et al. (2019)), a prototype may correspond to a latent180

representation of the red head of a red-bellied woodpecker. The original ProtoPNet does not care181

whether a red head is found in the upper left or the upper right of the input image. Rather, the182

ProtoPNet just considers whether a red head is present at all. For our ProtoLNet presented here,183

the network is designed to take into consideration not only that a red head is found, but also where184

within the image the red head occurs. As we will show, this consideration of location can be highly185

beneficial in geophysical applications.186

b. Choosing the base CNN187

We envision three main approaches to choosing a base CNN. The first takes an existing CNN that188

has been previously trained to perform classification tasks. This CNN may already be performing189

well, but interpretability is desired. The user removes the output layer and fully connected layers of190

their existing CNN and then use the result as their base CNN for the ProtoLNet. In this approach,191

the ProtoLNet is used purely for interpretability of the original CNN.192

The second approach to choosing a base CNN is to, once again, take a pre-trained CNN, remove193

the output and fully connected layers, and then use the result as the base CNN for the ProtoLNet.194

The difference is that now the user allows the weights within the base CNN to be further refined195

during the ProtoLNet training in order to optimize the performance of the ProtoLNet. Allowing196

the base CNN weights to be updated implies that the user is no longer interpreting the same base197
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Fig. 2. The three different stages of training the ProtoLNet.

CNN with which they started. However, if the goal is to create an interpretable network that is198

as accurate as possible, this may be a good approach. Furthermore, for image classification tasks,199

one might choose to use a CNN previously trained on a large dataset, e.g. VGG-19 (Simonyan and200

Zisserman 2014), as done by Chen et al. (2019).201

The third approach to choosing a base CNN applies when no suitable pre-trained base CNN202

exists. In this case, the user must train the interpretable network from scratch. In this instance,203

there are two main choices. A separate base CNN could be trained, stripped of its final output and204

fully connected layers, and then appended to the ProtoLNet (as discussed above). Alternatively,205

one could initialize the base CNN with random initial weights and train it directly within the206

ProtoLNet architecture. We have tried both methods for the use cases explored here and found207

that they produced similar accuracies (although we acknowledge this may not always be the case).208

Here, we present results where we first pre-train a base CNN and then append it to the ProtoLNet,209

in order to provide a base accuracy with which to compare our ProtoLNet results.210

c. ProtoLNet training211

The training of the ProtoLNet is done in triads of stages (Fig. 2), largely following the original212

training approach of Chen et al. (2019). The first stage of training involves learning the prototypes213

by training the 1×1 layers, prototypes, location scaling grid, and the base CNN (if desired by the214

user; see Section b) at the same time. The final weights are frozen during this stage. The second215

stage of training involves replacing each prototype with the nearest latent patch within the training216

samples of the same class. That is, stage 1 allows the network to learn any form of the prototype217

latent patch, and stage 2 replaces this prototype with the most similar training latent patch from218

the same class. In this way, the prototypes always directly correspond to a latent patch in one219
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particular training sample. In the third stage of training, we freeze all elements of the ProtoLNet220

except for the fully connected final weights (pink arrows in Fig. 1), and the network learns them221

alone. These three stages are then cycled through multiple times (for our use cases, up to 5 times)222

for full training of the ProtoLNet.223

Initialization: Prior to stage 1, the two 1× 1 convolutional layers are initialized with random224

values drawn from a truncated normal distribution (He et al. 2015). The prototypes are initialized225

with random values drawn from a uniform distribution between 0.0 and 1.0, and the location scaling226

grid is initialized with ones everywhere (see Appendix B for additional details). The final weights227

(w) that connect a prototype with its assigned class are given an initial value of 1.0, and all other228

final weights are initialized to -0.5. The initialization of the base CNN was already discussed in229

Section b.230

Stage 1: Training is performed via stochastic gradient descent with the Adam optimizer and batch231

size of 32. For the quadrants use case, the learning rate is set to 0.01 for every stage 1 cycle. For the232

MJO use case, the learning rate is also initially set to 0.01 but is reduced by an order of magnitude233

for the third cycle of stage 1 and every cycle thereafter. The network is trained with the standard234

cross-entropy loss added to two additional loss terms: the ClusterCost and SeparationCost. The235

cross-entropy loss penalizes the network for misclassifying the training samples. The ClusterCost236

encourages training images to have at least one latent patch with high similarity to a prototype of237

the same class. The SeparationCost discourages training images from having high similarity to238

prototypes belonging to the incorrect class. Thus, the full stage 1 loss function takes the form239

Loss = CrossEntropy+ β1ClusterCost− β2SeparationCost (2)240

where β1 and β2 are coefficients chosen by the user. Full forms of the ClusterCost and Separa-241

tionCost, along with their coefficient values, are provided in Appendix C. For all use cases, we242

train in stage 1 for 10 epochs before moving to stage 2 of training.243

Stage 2: This stage does not involve any iterative training but instead is direct computation.244

Specifically, the similarity scores are computed between each learned prototype from stage 1 and245

every latent patch of every training image of the same class. The prototype is then replaced by246

the training latent patch with the highest similarity. Note that this replacement process will nearly247

always reduce the accuracy of the network because it replaces the stage 1-optimized prototypes248
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with something from the training set. However, this step is central to the interpretability of the249

ProtoLNet. By cycling through all three training stages multiple times, the network learns to250

perform well using the replaced prototypes from the training set.251

Stage 3: The final weights wk, j connecting prototypes of class k to the output class j are learned252

via convex optimization, since all other layers are frozen. As a reminder, all wk, j for k = j are253

initialized to 1.0, and the rest, wk, j for k , j, are initialized to -0.5. The weights are frozen for254

stages 1 and 2 of training. In stage 3, all other free parameters in the ProtoLNet are frozen, and the255

weights alone are trained to minimize the cross-entropy loss of the final output plus an additional256

L1 regularization term evaluated on the weights wk, j for k , j. This additional loss term provides257

sparsity to the final model, i.e. wk, j ≈ 0 for k , j, which reduces the use of negative reasoning by258

the network (“this does not look like that”). See Singh and Yow (2021) for an exploration of the259

consequences when this sparsity requirement is relaxed. For the idealized quadrants use case, we260

set the regularization parameter to 0.5. For the MJO use case, it is set to 0.1. For all use cases, we261

train in stage 3 for 10 epochs. At that point, we either end training completely (i.e. we have the262

fully trained ProtoLNet), or we cycle through stages 1-3 again.263

3. Use Case: Idealized Quadrants264

As a first demonstration of the ProtoLNet, we construct an idealized synthetic test set to loosely265

represent the horizontal (latitude by longitude) spatial structures of geophysical anomalies. For266

example, the synthetic fields (or images) could represent idealized low- and high-pressure circu-267

lations. The anomaly fields are 100x100 pixels in size and are constructed by first initializing the268

field with random Gaussian noise. We then randomly add an additional anomaly value (uniformly269

distributed between 2 and 15) to the center of one or more of the four quadrants of each square270

field. Finally, we smooth each field with a Gaussian filter with standard deviation of 7 to make271

the fields look more like typical tropospheric pressure anomalies. Example samples are shown in272

Fig. 3.273

The fields in the idealized data set are assigned labels based on the sign of the anomalies in276

each of the four quadrants of the sample (Fig. 3). Specifically, fields with negative anomalies in277

both the second and fourth quadrants are labeled class 0, fields with positive anomalies in both the278

second and third quadrants are labeled class 1, and all other fields are labeled class 2 (Fig. 3a-c).279
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Fig. 3. The top three panels (a-c) show composites of all samples by class label for the idealized quadrants

use case. The bottom three panels (d-f) exhibit one example sample for each class.

274

275

Fig. 4. Prediction setup for the idealized quadrants use case.

Fig. 3d-f show example samples for each class, demonstrating that class 0 only requires negative280

anomalies in the second and fourth quadrants, while any signed anomalies can exist in the other281

two quadrants. A similar idea exists for class 1. As will become clear, this idealized data set was282

designed such that the location of the different anomalies matters.283

The synthetic data set has equally balanced classes by construction, with 3,000 samples for each284

of the three classes (9,000 samples total). This set is then randomly split such that 7,200 samples285

are used for training and 1,800 for testing. Prior to training, the input images are standardized by286

subtracting the mean and dividing by the standard deviation over all training pixels.287
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We task the ProtoLNet with ingesting a single input field and classifying it into one of the288

three classes, as depicted in Fig. 4. The network cannot simply identify the existence of negative289

anomalies (in the case of class 0) or the existence of positive anomalies (in the case of class 1).290

Instead, it must consider the existence of different signed anomalies and their location within the291

input field. To illustrate this point, we trained a ProtoPNet where location is not considered (i.e.292

learning of the location scaling grid is turned off) and — unsurprisingly — the network fails with293

an accuracy of 32%, no better than random chance (i.e. 33%).294

We first train a standard CNN to perform the classification task and act as our base CNN for295

the ProtoLNet. Details of the CNN architecture and training parameters are provided in Appendix296

A. Once the CNN is trained, we remove the final fully connected layer and output layer, and297

append the result to the ProtoLNet to become the base CNN (see Fig. 1). We assign 5 prototypes298

(with D = 128) to each output class, for a total of 15 prototypes. Using more prototypes than299

this yielded prototypes that rarely provided points for any sample. We cycle through the three300

stages of ProtoLNet training (Fig. 2) five times, freezing the base CNN for the first cycle of stage301

1 but allowing it to train for all subsequent cycles of stage 1. Once fully trained, the ProtoLNet302

achieves an accuracy of 96%, a significant improvement over random chance and the ProtoPNet.303

For comparison, the base CNN achieves an accuracy of 98%. The ProtoLNet is not designed to304

outperform all alternative approaches. Instead, it is designed to provide interpretability with a305

minimal loss in accuracy.306

The power of the ProtoLNet is that once trained, its decision-making process can be interpreted311

by the user. Three example predictions are shown in Fig. 5, along with their two “most winning”312

prototypes (i.e. prototypes that gave the most points to the winning class in each example) and313

the associated location scaling grids. To avoid any confusion, we want to clearly state that the314

“prototypes” outlined in colored boxes in Fig. 5i,iii are not the prototypes themselves. The actual315

prototypes are vectors of latent patches of size 1×1×128 and would likely be incomprehensible316

since they capture the output of a series of complex convolutions, poolings, and nonlinear activa-317

tions. Instead, we visualize the group of neighboring pixels of the training field that contribute318

to the prototype latent patch, often termed the “receptive field”. In contrast, the location scaling319

panels in Fig. 5ii,iv display the actual grids used in the prototype layer computation, which is why320
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Fig. 5. Three example predictions by the network for the idealized quadrants use case, along with the two

winning prototypes for each sample and the associated location scaling grid. For each of the three samples, there

are two prototypes shown along with their associated location scaling grids. These are indexed as (i,iii) and

(ii,iv), respectively.

307

308

309

310
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the squares are much larger than the pixels in the input field (i.e. the dimensions have been reduced321

to 25×25).322

Consider Sample 230 (Fig. 5a), which the ProtoLNet correctly labeled as class 0. Prototypes 2323

and 4 contributed the most points to a class 0 prediction, giving 8.8 and 5.2 points, respectively.324

Prototype 2 was drawn from training sample 6 and, more specifically, Prototype 2 represents a325

latent patch from the purple-boxed region of training sample 6 (Fig. 5ai). The location scaling326

grid for Prototype 2 (Fig. 5aii) shows that this prototype is highly relevant only when found in the327

upper-left corner of the field (dark gray and black pixels). Thus, the ProtoLNet identified high328

similarity between Prototype 2 and an upper-left patch of Sample 230. Or in other words, the329

ProtoLNet identified that sample 230 looks like that prototype there.330

Prototype 4 (Fig. 5aiii,iv) also contributed points to the correct prediction of class 0. Note that331

Prototype 4 was also drawn from training sample 6; coincidentally the same sample as Prototype332

2. Looking at Prototypes 2 and 4 together, one can interpret that the network’s decision-making333

strategy is to look for blue anomalies in the upper-left and bottom-right quadrants of the image334

— which is exactly how class 0 is defined. A similar interpretation can be found for sample 78335

(Fig. 5b) with a class label of 1. The network identifies the class 1 sample by looking for positive336

anomalies in the upper-left and bottom-left quadrants.337

The network’s decision-making strategy is particularly interesting for Sample 153 with a label of338

class 2 (Fig. 5c). Prototype 13 corresponds to features associated with a weakly positive anomaly339

in the upper-left or bottom-right quadrants. From this, it appears that the network is ruling out340

a class 0 sample, which exhibits negative anomalies in these quadrants. Similarly, Prototype 14341

corresponds to features associated with a weakly negative anomaly in the upper-left or bottom-left342

quadrants. That is, the network rules out a class 1 field that exhibits strong positive anomalies in343

these two quadrants. Fig. 5cii,iv nicely demonstrates that the location scaling grid can highlight344

multiple locations throughout the field for the same prototype. The interpretability of the ProtoLNet345

prediction thus allows for identification of the patches of the input field that were used to make the346

prediction, i.e. the patches whose latent representation most looks like class-specific prototypes347

learned during training.348
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4. Use Case: MJO Phase Classification349

We next apply the ProtoLNet architecture to earth system reanalysis fields. Specifically, the net-350

work is tasked with ingesting maps of atmospheric fields in the tropics and predicting the current351

phase of theMadden-Julian oscillation (MJO). TheMJO is a large-scale, eastward propagating cou-352

pling between tropical wind and convection that oscillates on subseasonal (30-60 day) timescales353

(Madden and Julian 1971, 1972; Zhang 2005). Canonical MJO events form in the Indian Ocean,354

and propagate east into the western Pacific: the “phase” of the MJO describes roughly where it is355

in this life cycle.356

The task of classifying the current phase of the MJO from maps of the tropics is chosen357

here to demonstrate the utility of our method to a relatively straightforward climate science task.358

Classification ofMJO phase requires the network to identify coherent, multivariate tropical patterns359

on a particular (planetary) spatial scale, and the MJO’s eastward propagation also requires the360

network to take advantage of spatial location in its decision making. Thus, while straightforward361

from a scientific perspective, the task of classifying MJO phase is well-suited as a demonstrative362

use-case for the ProtoLNet methodology. Toms et al. (2021) classified the state of the MJO to363

explore the utility of explainability methods, in contrast to our interpretable method, for earth364

system science applications.365

We define MJO activity and phase using the “Real-time Multivariate MJO index” (RMM;366

Wheeler and Hendon (2004)). RMM is derived through an empirical orthogonal function (EOF)367

analysis of three variables: outgoing longwave radiation (OLR), 200 hPa zonal wind (u200) and368

850 hPa zonal wind (u850). Each variable in RMM is pre-processed by removing the seasonal cycle369

(i.e. the all-time mean and first three harmonics of the annual cycle on each calendar day), and the370

previous 120-day mean of each day (to remove variability associated with longer timescales than371

the MJO). Variables are averaged from 15N-15S, and the leading two modes of the EOF analysis372

are used to define the MJO through two daily time series. Plotted on a 2-dimensional plane, the373

distance of a point from the origin represents the strength of the MJO (often called the RMM374

amplitude), and the phase angle describes the phase of the MJO, or where it is in its life cycle.375

Following Wheeler and Hendon (2004), when the MJO is active (e.g. above a certain amplitude376

threshold) we divide the RMM phase space into octants. Phases 1 and 2, for example, correspond377
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Fig. 6. Prediction setup for the MJO use case.

to active MJO convection in the Indian Ocean. Phases 3 and 4 are associated with activity around378

the Maritime Continent, etc.. If the MJO is not active, we label it as Phase 0.379

Wedefine and track theMJOusing ERA-20C reanalysis data (Poli et al. 2016), a reanalysis dataset380

than spans the entire twentieth century and provides a larger sample size than the observational381

record. From ERA-20C, we use daily OLR, u850, and u200 data fromMay 1, 1900 until December382

31, 2010 to calculate the RMM index. RMM is calculated from the ERA-20C data following the383

methodology inWheeler and Hendon (2004) discussed above, except that the full ERA-20C period384

is used to define the climatology, and the processed data are projected onto the observed EOF385

modes from Wheeler and Hendon (2004) (as opposed to the EOFs from the ERA-20C data). Over386

the period when the observed RMM index overlaps with our ERA-20CRMM index, the two indices387

have a correlation of approximately 0.9 correlation, indicating very good agreement in how the388

RMM index is formed.389

The network input is composed of three channels of 17 latitudes by 105 longitudes of u200,390

u850, and OLR, representing the three geophysical variables that go into the computation of the391

MJO index (see Fig. 6). Thus, a single sample has shape 17×105×3. The labels are set to be the392

phase of the MJO, with phase 0 representing days where the amplitude of the MJO is less than 0.5.393

We choose to train on all available data; thus, the classes are not equally balanced across phases394

(see Supp. Fig. S1), although they are similar.395
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Given that there is memory of the MJO phase from one day to the next, we divide the 1900-2010396

data into training and testing via distinct years. Specifically, the testing data is all calendar days397

within the 22 years of 1902, 1903, 1907, 1912, 1916, 1917, 1918, 1923, 1935, 1937, 1941, 1945,398

1946, 1949, 1953, 1961, 1965, 1976, 1992, 2007, 2008, and 2010; the training years are comprised399

of the remaining 89 years. This results in 32,387 training samples and 8,035 testing samples.400

The three input fields (channels) are converted to anomalies prior to analysis following a similar401

pre-processing as for the RMM computation. That is, the time-mean calendar-day seasonal cycle is402

subtracted from each gridpoint, and the mean of the previous 120 days is removed. Each variables403

is individually normalized by dividing it by its tropics-wide standard deviation. Then, immediately404

prior to training, the inputs are further standardized by the mean and standard deviation across all405

gridpoints and channels of the training set (via flattening the input fields).406

We first train a standard CNN to perform the classification task and act as our base CNN for the407

ProtoLNet. Details of the CNN architecture and training parameters are provided in Appendix A.408

Once the CNN is trained, we remove the final fully connected layer and output layer, and append409

the result to the ProtoLNet to become the base CNN (see Fig. 1). We assign 10 prototypes (with410

D = 64) to each output class, which results in a total of 90 prototypes. Fewer than 90 reduced the411

accuracy, while using more than 90 did not improve the predictions. We cycle through the three412

stages of ProtoLNet training (Fig. 2) five times, freezing the base CNN for the first cycle of stage413

1, but allowing it to train on all subsequent cycles of stage 1. Once fully trained, the ProtoLNet414

achieves a testing accuracy of 73% for classifying the phase of the MJO into one of nine classes415

(random chance is approximately 11%), which is similar to the accuracy found in Toms et al.416

(2021) using a black box neural network. Supp. Fig. S2 shows that the ProtoLNet exhibits testing417

accuracies between approximately 70-80% across phases. A ProtoPNet, which does not consider418

location, never achieves an accuracy above 30%.419

Interestingly, the base CNN upon which our ProtoLNet was trained converged to an accuracy of420

58%, much lower than that of the subsequent ProtoLNet. We believe that the improved accuracy421

of the ProtoLNet may be due to the regularizing nature of the prototype architecture. That422

is, the prototype approach constrains the network to focus on only a few latent features for phase423

identification, allowing it to converge on an appropriate decision-making strategy when the training424

data is limited (see discussion of additional experiments in Section 5). We believe that this may425
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Fig. 7. One example prediction (testing sample 7591) by the ProtoLNet for the MJO use case, along with the

winning prototype (prototype 20) and associated location scaling grid. The three columns denote the three input

fields (i.e. u200, u850, olr). All anomalies are shown in panels (a)-(c) but the shading outside of the prototype

patch is muted in color. The bottom middle panel show the points given to each class by each prototype, with the

sum (i.e. total points) displayed along the top. Colored dots denote prototypes associated with the same class,

and gray dots denote contributions from prototypes of other classes.

432

433

434

435

436

437

be an additional benefit of the prototype approach that is worthy of further investigation. With that426

said, we were able to obtain accuracies of 79% for a base CNN trained on a different training/testing427

split of the data. Thus, it appears the low accuracy of 58%, which we obtained consistently with428

other base CNNs initialized with other random seeds (not shown), is highly dependent on the429

training/testing split. Even so, the ProtoLNet was able to improve upon this accuracy for the430

specific training/testing split explored here.431

An example of the interpretability of the ProtoLNet’s prediction for testing sample 7591 is shown438

in Fig. 7. This sample corresponds to phase 2 of the MJO on October 14, 2008, and the three439

input fields (u200, u850, and olr) are displayed across the top row for that day. All anomalies are440

shown, but the shading outside of the prototype receptive field is muted in color. Note that the441

large-scale, enhanced convection of the western Indian Ocean (Fig. 7c) is a classic indication of a442

phase 2 MJO event, corresponding with a coupled wind response that shows upper-level easterlies443

(Fig. 7a), and lower-level westerlies (Fig. 7b) in the same region.444

The network correctly classifies this sample as phase 2, and we can use the interpretability of445

the ProtoLNet to further explore why. Although multiple prototypes contributed to the winning446

number of points for the classification of sample 7591, it can be insightful to investigate the winning447
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Fig. 8. As in Fig. 7, but for three additional example testing samples (one per column) displaying only one

geophysical field for each.

457

458

prototype (i.e. the prototype that contributes the most points). With multiple channels as input,448

the winning prototype for this sample (Prototype #20) is visualized as three different fields, one449

for each input variable (i.e. u200, u850, olr), as shown in Fig. 7d-f. Prototype 20 is a latent450

patch corresponding to the state of the western Indian Ocean on November 18, 1914. The location451

scaling grid associated with Prototype 20 (Fig. 7g) highlights that similarities to this prototype are452

only heavily weighted when found at these longitudes. Thus, we see that the anomaly fields on453

October 14, 2008, for sample 7591 look a lot like those of Prototype 20, with upper-level easterlies,454

lower-level westerlies and enhanced convection over the western Indian Ocean. This provides455

evidence for why the network classified this sample as MJO phase 2.456

Fig. 8 shows three additional (correctly predicted) testing samples and their winning prototypes,459

displaying only one geophysical field for each prediction to simplify the figure. Sample 2523 on460

November 28, 1918, is classified as phase 1, in part because its upper-level easterlies look like461

those of Prototype 33 from January 2, 1920 over the eastern Pacific (Fig. 8a,d). The lower-level462

westerlies over the Indian Ocean on March 5, 1912, look like those of phase 4 Prototype 49 from463

March 23, 1988 (Fig. 8b,e). Enhanced convection as seen by the OLR field east of the Maritime464

Continent on September 23, 1902 looks like that of phase 6 Prototype 61 (Fig. 8c,f).465

As a summary of the MJO classification results, Fig. 9 displays the most frequently winning468

prototype for each phase of the MJO. A hallmark feature of the MJO is its eastward propagation,469
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Fig. 9. The most frequently winning prototype for correctly classified testing samples by MJO phase. Each

column represents a different input variable; the fourth column displays the associated location scaling.

466

467

and Fig. 9 reveals the eastward progression of the prototypes (and associated location scaling470

grids) starting in phase 2 and continuing to phases 7 and 8. That is, the ProtoLNet, with its471

location-specific focus, has learned representative prototypes that move eastward with the known472

progression of the MJO. Phase 1, however, does not appear to behave this way. Prototype 16 is473

often the most-winning prototype for phase 1, but it is focused over the mid-Pacific rather than474

the western Indian Ocean as one might expect (this is true for most of the Phase 1 prototypes; see475

Supp. Fig. S5). The reason why phase 1 prototypes tend to focus on this region is not clear, but we476

hypothesize the network may be focusing on wind signals in this region associated with a phase 1477

event forming or a previous MJO event decaying. Further investigation is needed.478

Fig. 10 shows a breakdown of how often (i.e. for how many testing samples) each prototype482

was the winning prototype. For example, Prototype 49 from March 23, 1988, is the most-winning483

prototype for phase 4, and it is the winning prototype for 98% of all correctly classified phase 4484

testing samples. This suggests that this prototype is highly indicative of phase 4 MJO events. On485

the other hand, phase 7 has multiple prototypes that frequently earn the title of winning prototype.486
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Fig. 10. The frequency that each prototype is the winning prototype (i.e. contributes the most points to the

predicted class) for each correctly classified testing sample. Each phase has 10 possible prototypes; however,

there are some prototypes that are never a winning prototype. They have frequency of zero.

479

480

481

Fig. 11. Number of learned prototypes for MJO phases 1-8 (excluding phase 0, so out of 80 prototypes total)

binned by month of the year of the training sample from which the prototype was drawn.

489

490

Thus, Prototype 70 (displayed in Fig. 9) should be interpreted as only one possible indicator of487

phase 7.488

All 10 learned prototypes for each phase are provided in the Supp. Fig. S4-S12. Fig. 11 shows the491

breakdown of the monthly distribution for all prototypes for active MJO phases 1-8. The network492

preferentially chooses prototypes fromNovember-March when theMJO is known to bemost active,493

however, prototypes from May and July are also learned, likely to capture the differences in MJO494
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behavior across seasons (Zhang 2005). The monthly seasonality for all prototypes, including those495

for MJO phase 0, are shown in Supp. Fig. S3.496

5. Discussion497

The value of the ProtoLNet design is that interpretation of the network’s decision-making process498

is baked into the architecture itself, rather than performed post-hoc likemost explainableAImethods499

(Buhrmester et al. 2019; Barredo Arrieta et al. 2020; Samek et al. 2021). Although the network500

is constrained to only learn via similarities to a small number of learned prototypes, multiple use501

cases demonstrate that it can be trained to exhibit only a small reduction in accuracy compared to502

non-interpretable architectures (Chen et al. 2019; Singh and Yow 2021). Moreover, for our MJO503

use case, the ProtoLNet actually improved in accuracy over its base CNN. We hypothesize that this504

is because the ProtoLNet greatly reduces the search space possibilities, which allows the network505

to converge on a good prediction strategy given a limited sample size. One might think of this as506

a form of regularization, or instead, a form of physics-guided constraint (e.g. Beucler et al. 2021)507

that forces the network to learn physically realizable evidence for each class. To further explore this508

hypothesis, we trained additional ProtoLNets for the idealized quadrants use case (Section 3), but509

with a much smaller training size (only 1,400 samples for training). In all cases, the ProtoLNets510

obtained higher testing accuracies — sometimes significantly higher — than their respective base511

CNNs (see results in Supp. Fig. S13). This is not to say that the ProtoLNet is categorically more512

accurate than a standard CNN. A more thorough exploration of the hyperparameter space could513

bring the base CNN accuracy up to that of the ProtoLNet. Instead, we just wish to highlight that514

with minimal tuning, the ProtoLNet was able to consistently achieve high accuracies with limited515

training data.516

In addition to being interpretable, the ProtoLNet provides the benefit of learning a small subset517

of prototypical parts from the training set that reflect identifiable features for each output class.518

That is, each prototype is found “in the wild” and, thus, has a direct connection to a sample that519

has occurred. This should be distinguished from more standard architectures that learn complex520

latent representations and features that may never occur in reality. For the case of MJO phase521

classification, this means that the network can learn particular example MJO events that generalize522

across the observational record and reflect identifiable features for each specific MJO phase.523
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Thus, although predicting the current phase of the MJO is routine from a scientific perspective,524

the ProtoLNet allows us to look back and identify specific dates that exhibit prototypical MJO525

phase behaviour, as shown in Fig. 9 and Fig. 11. Furthermore, it is straightforward to extend the526

interpretable ProtoLNet setup of Fig. 6 to ingest current atmospheric fields and predict the MJO527

phase at some lead time into the future.528

As we have used it here, the ProtoLNet design learns localized prototypes from the input that529

provide evidence for a particular output class. This should be distinguished from the standard530

climate approach that composites the input fields over many samples for a single class, and thus531

results in a smooth averaged field (assuming there are enough samples to average out the noise).532

Such a composite field is computed pixel by pixel and as such, does not capture shared gradients or533

higher-level features that can be learned by the convolutional layers of the ProtoLNet. Finally, as534

discussed above, the ProtoLNet identifies prototypical behavior that has been realized in a training535

sample, while the composite field provides a smoothed, idealized picture that will likely never be536

observed.537

The ProtoLNet is based on the ProtoPNet of Chen et al. (2019) which uses positive reasoning,538

i.e. this looks like that, to predict the correct class of an input image. Singh and Yow (2021)539

introduce a variation, the NP-ProtoPNet, which additionally includes negative reasoning, i.e. this540

does not look like that. Their argument is that by allowing negative reasoning, the network is able541

to better rule out incorrect classes and achieve accuracies on-par with the best performing black box542

models. It is straightforward to apply our location-scaling grid to a NP-ProtoPNet, which mainly543

involves relaxing the sparsity requirement of the final weights layer. However, by allowing both544

positive and negative reasoning, interpreting the model’s decision making process may become545

significantly more difficult due to competing negative and positive point contributions to the final546

output classes. Thus, we chose to focus on positive reasoning for this study.547

6. Conclusions548

Driven by the desire to explain the decision-making process of deep learning models, a large549

variety of post hoc explainability methods have been developed (e.g. Buhrmester et al. 2019;550

Barredo Arrieta et al. 2020; Samek et al. 2021). However, these explainability methods come with551

their own challenges (Kindermans et al. 2019; Mamalakis et al. 2021) and recent work by Rudin552
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(2019) and Chen et al. (2019) suggest that instead of trying to explain black box models, we should553

be creating models where the decision-making process is interpretable by design.554

Here, we extend the interpretable ProtoPNet of Chen et al. (2019) to consider absolute location555

in the interpretable prototype architecture, which we term the ProtoLNet. The results of our556

work can be summarized by three main conclusions. (1) Considering absolute location in the557

ProtoLNet architecture greatly improves accuracy for the geophysical use cases explored here. (2)558

The ProtoLNet is interpretable in that it directly provides which prototypes are similar to different559

patches of an input image (i.e. this looks like that), and where these prototypes matter (i.e. there).560

(3) The network is able to learn specific historical dates that serve as multivariate prototypes of the561

different Madden-Julian oscillation phases.562

This work serves as one example of an interpretable deep learning model specifically designed563

for earth system science applications (see also Sonnewald and Lguensat 2021). There is much564

more research to be done on the topic. For example, the incorporation of negative reasoning565

and extension to regression tasks could be beneficial for its use in earth science. Furthermore,566

the interpretation and utility of the learned prototypes themselves, apart from the prediction task,567

leaves much to be explored. Thus, this work should be seen as merely a step in the direction of568

interpretable deep learning for earth science exploration.569
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APPENDIX A580

Base CNN architectures and training581

The base CNN for the idealized quadrants use case (Section 3) has two convolutional layers of 32582

kernels each. Every convolutional layer is followed by an average pooling layer with kernel size583

2×2 and a stride length of 2. The output of the final average pooling layer is flattened, and then584

fed into a final dense layer of 64 units which is fed into the final output layer of 3 units. The final585

output layer contains the softmax activation function which convert the outputs into confidences586

that sum to 1.0. The final dense layer is trained with dropout (Srivastava et al. 2014) at a rate of587

0.4 to reduce overfitting. When the base CNN is appended to the ProtoLNet, the dropout rate is588

set to zero. That is, dropout is only used to reduce overfitting during the pre-training of the base589

CNN. The base CNN is trained with a fixed learning rate of 5e-5 for 12 epochs.590

The base CNN for the MJO use case (Section 4) has three convolutional layers of 16 kernels591

each. Every convolutional layer is followed by an average pooling layer with kernel size 2×2 and592

a stride length of 2. The convolutional layers are trained with dropout at a rate of 0.4 to reduce593

overfitting. The output of the final average pooling layer is flattened, and then fed into a final dense594

layer of 32 units that is fed into the final output layer of 9 units. The final output layer contains595

the softmax activation function which converts the outputs into confidences that sum to 1.0. The596

final dense layer is trained with dropout at a rate of 0.2. When the base CNN is appended to the597

ProtoLNet, the dropout rates are set to zero. That is, dropout is only used to reduce overfitting598
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during the pre-training of the base CNN. The base CNN is trained with a fixed learning rate of599

0.00017548 for 23 epochs.600

APPENDIX B601

Learning location scaling exponents602

The location scaling values must be non-negative. Subsequently, we use a trick from Duerr et al.603

(2020) and learn the exponents of the location scaling, rather than the values themselves. That is,604

if sk denotes the location scaling value for prototype p at latent patch k then605

sk = eγk , (B1)606

where the free parameter γk is learned by the network during training. Thus, at initialization, all607

γk values are initialized to zero so that the location scaling grid (all sk values) is initialized to a608

grid of ones.609

APPENDIX C610

Stage 1 loss function611

The Stage 1 loss function is given by Equation 2. There are three components: the usual CrossEn-612

tropy, plus a ClusterCost, and minus a SeparationCost.613

Consider a set of input samples and associated class labels {(xi, yi) : i = 1,2, . . .,N }. The output614

from the extended CNN given sample xi is a quilt of latent patches zik , where k indexes the latent615

patches. For the architecture shown in Figure 1, k ∈ {1,2, . . .,6} because the quilt is 2×3. Let sk616

denote the current location scaling value associated with latent patch k, and Pyi denote the set of617

all prototypes belonging to class yi. The ClusterCost is given by618

ClusterCost =
1
N

N∑
i=1


min
p∈Pyi

min
k

‖zik −p‖22
sk + ε


(C1)619

where ‖ ‖22 is the squared L2 norm and ε is a small number, there to guard against divide-by-zero620

problems.621
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The ClusterCost encourages training images to have at least one latent patch with high similarity622

to a prototype of the same class. The computation is based on Chen et al. (2019), but incorporates623

the location scaling grid introduced in this paper.624

The SeparationCost discourages training images from having high similarity to prototypes be-625

longing to the incorrect class. The computation is almost identical to that of the ClusterCost. The626

difference is that we minimize over the set of all prototypes that do not belong to class yi.627

SeparationCost =
1
N

N∑
i=1


min
p<Pyi

min
k

‖zik −p‖22
sk + ε


(C2)628

For the idealized quadrants use case, we set the ClusterCost coefficient β1 ≈ 0.17 (see code for629

all digits) and the SeparationCost coefficient β2 = β1/10. For the MJO use case β1 = 0.2 and630

β2 = β1/10. Note the negative sign in front of the SeparationCost term in Equation 2 encourages631

the network to have larger separation (lower similarity) between samples and the prototypes from632

incorrect classes.633
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