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Abstract 16 
 17 

Mathematical formulation of the diffusion phenomenon might be described through a 18 

differential equation, which takes into account complementary and different effects with 19 

respect to the physical processes simulated with the support of the Fick´s equation, 20 

which is usually adopted to represent the diffusion process. In particular, diffusion 21 

applied to spatio-temporal retention problems with bimodal mass transmission are 22 

highlighted. To better understand this physical phenomenon, the proper use of the 23 

analytical Green function (GF) or the steady-state fundamental solution was 24 

investigated. In this case, we use the Boundary Element Method formulation is 25 

presented for the solution of the anomalous diffusion equation for one-dimensional 26 

problems. The formulation employs the steady-state fundamental solution. Besides the 27 

basic integral equation, another one is required, due to the fourth-order differential 28 

operator in the differential equation of the problem. The domain discretization employs 29 

linear cells. The first order time derivative is approximated by a backward finite 30 

difference scheme. Two examples are presented. Numerical results are compared with 31 

analytical solutions, showing good agreement between them. 32 

 33 

 34 
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 37 

1. Introduction 38 

 39 
 40 

 The main motivation towards the solution of the problem of diffusion with 41 

retention, as reported by Jiang (2017), was the analysis of population dynamics and its 42 

impact on ecological systems (Simas, 2012). In order to make the concepts clearer, one 43 
could think of a given population marching to occupy a certain territory.  44 

If such invasion progresses along an aisle, just in one direction, the process is 45 

equivalent to the propagation of a wave front. However, if the invading population finds 46 

a weak breaking point in the middle of the native population, the invasion could be 47 

modelled like a diffusion process. This is the case also of tumors spreading into a living 48 

organism. The main difference in the analytical expression for the wave propagation in 49 



contrast to the diffusion problem appears if retention modelling intends to take into 50 

account the colonizers moving slowly to settle down on the new territory.  51 

On the other hand, several mathematical formulations have been proposed to 52 

study different processes of mass transport considering time delay phenomena retention 53 

effects (D‘Angelo et al., 2003; Deleersnijder et al., 2006; Huang &. Madey, 1982; 54 

Kindler et al., 2010; Ferreira et al., 2010; Jianhong & Xingfu, 2001). Diffusion 55 

phenomena in fractal media also has been receiving attention, as can be seen in 56 

Mainardi (1996) and Scherer et al. (2008).  57 

New physical approaches have been adopted to represent the transport of 58 

contaminants in groundwater, as shown in LaBolle et al. (2006). They adopted 59 

fractional diffusion equation to represent small isotopic effects on aqueous diffusion 60 

coefficients. The authors showed that diffusion can result in similar degrees of depletion 61 

and enrichment of isotopically heavy solutes during transport in heterogeneous systems 62 

with significant diffusion rate implying limited mass transfer between fast and slow-63 

flow zones. Other works showed that the diffusion process can dominate transport 64 

within low-permeability materials, e.g., silts, clays, and rock, wherein the movement of 65 

groundwater is relatively slow see  LaBolle et al. (2006); Maloszewski & Zuber (1990) 66 

(1991); Zhang et al., (2007); Haggerty et al., (2004).   67 
The anomalous diffusion equation, which is sometimes referred to as the so-68 

called fourth order diffusion equation was presented previously by Bevilacqua et al. 69 

(2011), (2012) and Bevilacqua et al. 2013.  70 

In this work, the Domain Boundary Element Method (D-BEM) is explored to 71 

model that anomalous diffusion process taking into consideration that we were also able 72 

to originally develop the Green analytical solutions for the fourth order diffusion 73 

equation (see Saito, 2018; Saito et al., 2019). Such combination of approaches proves to 74 

establish a new conceptual reference in this area.  75 

In fact, under the knowledge of the authors, this paradigmatic step, as we believe 76 

to be, is the first attempt ever made to solve the problem by means of the BEM 77 

implemented based on our original derived analytical solutions. In this paper, we 78 

address 1-D problems for showing the successful results achieved.  79 

Given this framework, it can be said that, once a fundamental solution 80 

corresponding to the steady state problem was obtained, a D-BEM type formulation was 81 

then developed. As it is well-known, such kind of formulations present a domain 82 

integral whose integrand is, for the problem at hand, the fundamental solution 83 

multiplied by the first order time derivative of the variable of interest, or variable of the 84 

problem e.g., Carrer et al. 2009. 85 

 As the problem presents two natural boundary conditions, which are made upof 86 

the derivatives of order two and three of the problem variable, and two essential 87 

boundary conditions, namely the problem variable and its first order derivative, the 88 

basic BEM integral equation alone is not sufficient for providing the solution of the 89 

problem. In this way, similarly to what has been done to the problem of flexural 90 

analysis of beams (see Scuciato, et al., 2016), another BEM equation turns to be 91 

necessary. Such equation is that related to the first order derivative of the problem 92 

variable, and it is obtained by taking the derivative of the basic BEM equation with 93 

respect to the source point coordinate. Thus, a set of two integral equations is obtained 94 

and the problem can be solved appropriately. The domain integrals that remain in the 95 

system of equations are computed through domain discretization. Such a discretization 96 

employs linear cells, over which the first order time derivative of the variable of interest 97 

is assumed to vary linearly. The time-marching, by its turn, is carried out by simply 98 

employing a backward finite-difference scheme (see Smith, 1985). 99 



One can assume that the domain of the problem is within the interval [0,L]. 100 

Consequently, its boundary is represented by the nodes at x = 0 and at x = L. Two 101 

examples are presented in this work, in which DBEM results are compared to available 102 

analytical solutions, showing an excellent accuracy and adherence. 103 

 104 

 105 

2. The Anomalous Diffusion Equation 106 

 107 
 The anomalous diffusion equation, as presented by Bevilacqua et al. (2011), 108 

(2012) and Bevilacqua et al. 2013, reads: 109 

 110 

𝛽𝐷
𝜕ଶ𝑣ሺ𝑥, 𝑡ሻ

𝜕𝑥ଶ െ ሺ1 െ 𝛽ሻ𝛽𝑅
𝜕ସ𝑣ሺ𝑥, 𝑡ሻ

𝜕𝑥ସ ൌ
𝜕𝑣ሺ𝑥, 𝑡ሻ

𝜕𝑡
(1) 

 111 

 112 

 Equation (1) was obtained by considering a bi-modal flux distribution for the 113 

diffusion process associated with two energy states. The parameter 𝛽 indicates the 114 

fraction of the particles in the main energy state, and the parameter R controls the effect 115 

of the secondary flux. Complementarily, D is the usual diffusion coefficient. The fourth 116 

order term with negative sign introduces the effect of retention. When, in Equation (1), 117 

𝛽 equals 1, one obtains the classical diffusion equation for isotropic media. It should be 118 

noticed that similar equations could be obtained by introducing non-linear effects on the 119 

Fick’s law see Simas (2012) and D‘Angelo et al. (2003). 120 

 121 

 The boundary conditions, at x = 0 or at x = L, are: 122 

 123 

i) Dirichlet type 124 

 125 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑣ሺ𝑥, 𝑡ሻ (2) 
𝜕𝑣ሺ𝑥, 𝑡ሻ

𝜕𝑥
ൌ 𝑣′ሺ𝑥, 𝑡ሻ

(3) 

  126 

 127 

 128 

 129 

 130 

ii) Neumann type 131 

 132 

𝜕ଶ𝑣ሺ𝑥, 𝑡ሻ
𝜕𝑥ଶ ൌ 𝑣′′ሺ𝑥, 𝑡ሻ

 

(4) 

𝜕ଷ𝑣ሺ𝑥, 𝑡ሻ
𝜕𝑥ଷ ൌ 𝑣′′′ሺ𝑥, 𝑡ሻ

 

(5) 

The initial condition for the interval 0 ≤ x ≤ L  is: 133 

 
𝑣ሺ𝑥, 0ሻ ൌ 𝑣଴

 
(6) 

 134 

 135 

 136 



3. BEM formulation 137 

 138 

 A residual statement (see Smith, 1985 and Brebbia et al., 1984), can be applied 139 

to Equation (1), with the fundamental solution of the steady-state problem playing the 140 

role of the weighting function. The following equation arises: 141 

 142 

 143 

𝑣ሺ𝜀ሻ ൌ െඥሺ1 െ 𝛽ሻ𝑅𝛽ൣ𝑣∗ሺ𝑥|𝜀ሻ𝑣ᇱᇱᇱሺ𝑥ሻ൧
௫ୀ଴

௫ୀ௅

൅ ඥሺ1 െ 𝛽ሻ𝑅𝛽 ቈ
𝜕 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥
𝑣ᇱᇱሺ𝑥ሻ቉

௫ୀ଴

௫ୀ௅

െ ቈሺඥሺ1 െ 𝛽ሻ𝑅𝛽 
𝜕ଶ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥ଶ െ 𝛽𝐷𝑣∗ሺ𝑥|𝜀ሻ𝑣ᇱሺ𝑥ሻ቉
௫ୀ଴

௫ୀ௅

൅ ቈሺඥሺ1 െ 𝛽ሻ𝑅𝛽 
𝜕ଷ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥ଷ െ 𝛽𝐷
𝜕 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥
ሻ𝑣ሺ𝑥ሻ቉

௫ୀ଴

௫ୀ௅

െ න 𝑣ሶሺ𝑥, 𝑡ሻ 𝑣∗ሺ𝑥|𝜀ሻ𝑑𝑥
ఌ

଴
െ න 𝑣ሶሺ𝑥, 𝑡ሻ 𝑣∗ሺ𝑥|𝜀ሻ𝑑𝑥

௅

ఌ
 

 
 

(7) 

  144 

  145 

The fundamental solution of the steady-state problem,  𝑣∗ =  𝑣∗ሺ𝑥|𝜀ሻ, is the 146 
solution of Equation (14) (see Saito, 2018 & Saito et al., 2019) that can be written as 147 

 148 

 149 

 

 𝑣∗ሺ𝑥|𝜀ሻ ൌ

⎣
⎢
⎢
⎢
⎡ඥሺ1 െ 𝛽ሻ𝑅𝛽 ቆ𝑠𝑖𝑛ℎ ቈට 𝛽𝐷

ሺ1 െ 𝛽ሻ𝑅𝛽 𝑟቉ቇ ൅ ඥ𝛽𝐷 𝑟

2ሺ𝛽𝐷ሻ
ଷ
ଶ

⎦
⎥
⎥
⎥
⎤

 

 
 

(8) 

where  𝑟 ൌ |𝑥 െ 𝜀| is the distance between field, x, and source, 𝜀, points. As previously 150 

mentioned in the introductory section of this work, Equation (15) alone is not sufficient 151 

to provide the solution of the problem. Another equation becomes necessary. This 152 

equation is obtained by taking the derivative of Equation (15) with respect to the source 153 

point coordinate, and reads: 154 

 155 

 156 



𝜕𝑣ሺ𝑥|𝜀ሻ

𝜕𝜀
ൌ െඥሺ1 െ 𝛽ሻ𝑅𝛽 ቈ

𝜕𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀
𝑣ᇱᇱᇱሺ𝑥ሻ቉

௫ୀ଴

௫ୀ௅

൅ ඥሺ1 െ 𝛽ሻ𝑅𝛽 ቈ
𝜕ଶ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀𝜕𝑥
𝑣ᇱᇱሺ𝑥ሻ቉

௫ୀ଴

௫ୀ௅

െ ቈሺඥሺ1 െ 𝛽ሻ𝑅𝛽 
𝜕ଷ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀𝜕𝑥ଶ െ 𝛽𝐷
𝜕𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀
ሻ𝑣ᇱሺ𝑥ሻ቉

௫ୀ଴

௫ୀ௅

൅ ቈሺඥሺ1 െ 𝛽ሻ𝑅𝛽 
𝜕ସ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀𝜕𝑥ଷ െ 𝛽𝐷
𝜕ଶ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥𝜕𝜀
ሻ𝑣ሺ𝑥ሻ቉

௫ୀ଴

௫ୀ௅

െ න 𝑣ሶሺ𝑥, 𝑡ሻ
𝜕𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀

ఌ

଴
𝑑𝑥 െ න 𝑣ሶሺ𝑥, 𝑡ሻ

𝜕𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀

௅

ఌ
𝑑𝑥 

 
 
 
 

(9) 

 157 

 158 

From Equation (8), the derivatives that appear in Equations (7) and (9) are 159 

computed. One has, in a simplified notation, from Equation (7), the following: 160 

 161 

𝜕𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥
ൌ

െ1
2𝛽𝐷

ቌ𝑐𝑜𝑠ℎඨ
𝛽𝐷

ሺ1 െ 𝛽ሻ𝑅𝛽
𝑟 ൅ 1ቍ

𝜕𝑟
𝜕𝑥

 
 
(10) 

𝜕2 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥2 ൌ
െ1

2ට𝛽2𝐷ሺ1 െ 𝛽ሻ𝑅
ቌ𝑠𝑖𝑛ℎඨ

𝛽𝐷
ሺ1 െ 𝛽ሻ𝑅𝛽

𝑟ቍ ቆ
𝜕𝑟
𝜕𝑥

ቇ
2

 
 
(11) 

𝜕3 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥3 ൌ
െ1

2ඥሺ1 െ 𝛽ሻ𝑅𝛽
ቌ𝑐𝑜𝑠ℎඨ

𝛽𝐷
ሺ1 െ 𝛽ሻ𝑅𝛽

𝑟ቍ ቆ
𝜕𝑟
𝜕𝑥

ቇ
3

 
(12) 

 162 

 163 

And from equation (9), one has: 164 

 165 

𝜕𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀
ൌ

െ1
2𝛽𝐷

ቌ𝑐𝑜𝑠ℎඨ
𝛽𝐷

ሺ1 െ 𝛽ሻ𝑅𝛽
𝑟 ൅ 1ቍ

𝜕𝑟
𝜕𝜀

 
 
(13) 

𝜕ଶ 𝑣∗ሺ𝑥|𝜀ሻ
𝜕𝜀𝜕𝑥

ൌ
െ1

2ඥ𝛽ଶ𝐷ሺ1 െ 𝛽ሻ𝑅
ቌ𝑠𝑖𝑛ℎඨ

𝛽𝐷
ሺ1 െ 𝛽ሻ𝑅𝛽

𝑟ቍ
𝜕𝑟
𝜕𝑥

𝜕𝑟
𝜕𝜀

 
 
(14) 

𝜕ଷ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀𝜕𝑥ଶ ൌ
െ1

2ඥ𝛽ሺ1 െ 𝛽ሻ𝑅
ቌ𝑐𝑜𝑠ℎඨ

𝛽𝐷
ሺ1 െ 𝛽ሻ𝑅𝛽

𝑟ቍ ൬
𝜕𝑟
𝜕𝑥

൰
ଶ 𝜕𝑟

𝜕𝜀
 

 
(15) 

𝜕ସ 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀𝜕𝑥ଷ ൌ
െඥ𝛽𝐷

2ሺ𝛽ሺ1 െ 𝛽ሻ𝑅ሻ
ଷ
ଶ

ቌ𝑠𝑖𝑛ℎඨ
𝛽𝐷

ሺ1 െ 𝛽ሻ𝑅𝛽
𝑟ቍ ൬

𝜕𝑟
𝜕𝑥

൰
ଷ 𝜕𝑟

𝜕𝜀
 

 
(16) 

 166 

The domain discretization is necessary due to the domain integrals indicated in 167 

Equations (7) and (9). In this work, linear cells were adopted, i.e. 𝑣ሶሺ𝑥, 𝑡ሻ varies linearly 168 

inside each cell. Analytical integration is easily carried out. For this reason, further 169 

details are omitted here. Finally, the last required approximation is related to 𝑣ሶሺ𝑥, 𝑡ሻ. 170 



The time derivative is approximated by adopting a backward finite difference. For a 171 

given time, say 𝑡௡ାଵ ൌ ሺ𝑛 ൅ 1ሻ∆𝑡, where ∆𝑡 is the time-step, one has: 172 

 173 

𝑣ሶሺ𝑥, 𝑡௡ାଵሻ ൌ 𝑣ሶ௡ାଵ ൌ
𝑣௡ାଵ െ 𝑣௡

∆𝑡
 

  𝑛 ൌ 0, 1, 2, 3 …  

(17) 

 174 

 To solve the problem, Equations (7) and (9) are written, or particularized, for 175 

𝜀 ൌ 0 and for 𝜀 ൌ 𝐿, and the domain integrals are computed. The next step is to replace, 176 

in Equation (7), the derivatives given in Equations (10), (11) and (12). By doing some 177 

algebraic manipulations, we obtain the following expression: 178 

 179 

𝑣ሺ𝜀, 𝑡ሻ ൅ න  𝑣∗ሺ𝑥|𝜀ሻ𝑣ሶ
௅

଴
ሺ𝑥, 𝑡ሻ𝑑𝜀

ൌ

⎣
⎢
⎢
⎢
⎡ሺ1 െ 𝛽ሻ𝑅𝛽 ቆඥሺ1 െ 𝛽ሻ𝑅𝛽 𝑠𝑖𝑛ℎ ൤ට

𝐷 
ሺ1 െ 𝛽ሻ𝑅 ሺ𝐿 െ 𝑥ᇱሻ൨ ቇ ൅ ඥ𝛽𝐷ሺ𝐿 െ 𝑥ᇱሻ

2ሺ𝛽𝐷ሻ
ଷ
ଶ

⎦
⎥
⎥
⎥
⎤

𝑣ᇱᇱᇱሺ𝐿, 𝑡ሻ

െ

⎣
⎢
⎢
⎢
⎡ሺ1 െ 𝛽ሻ𝑅𝛽 ቆඥሺ1 െ 𝛽ሻ𝑅𝛽𝑠𝑖𝑛ℎ ൤ට

𝐷 
ሺ1 െ 𝛽ሻ𝑅  ሺ𝑥ᇱ െ 0ሻ൨ ቇ ൅ ඥ𝛽𝐷ሺ𝑥ᇱ െ 0ሻ

2ሺ𝛽𝐷ሻ
ଷ
ଶ

⎦
⎥
⎥
⎥
⎤

𝑣ᇱᇱᇱሺ0, 𝑡ሻ

െ ቎
ሺ1 െ 𝛽ሻ𝑅

2𝐷
ቌ𝑐𝑜𝑠ℎඨ

𝐷 
ሺ1 െ 𝛽ሻ𝑅

ሺ𝐿 െ 𝑥′ሻ ൅ 1ቍ቏ 𝑣ᇱᇱሺ𝐿, 𝑡ሻ

െ ቎
ሺ1 െ 𝛽ሻ𝑅

2𝐷
ቌ𝑐𝑜𝑠ℎඨ

𝐷 
ሺ1 െ 𝛽ሻ𝑅

ሺ𝑥′ െ 0ሻ ൅ 1ቍ቏ 𝑣ᇱᇱሺ0, 𝑡ሻ

൅ ቎
ሺ1 െ 𝛽ሻ𝑅𝛽

2ඥሺ1 െ 𝛽ሻ𝑅𝛽ଶ𝐷
𝑠𝑖𝑛ℎ ቎ඨ

𝐷 
ሺ1 െ 𝛽ሻ𝑅

 ሺ𝐿 െ 𝑥ᇱሻ቏  ൅
𝛽𝐷

2ሺ𝛽𝐷ሻ
ଷ
ଶ

቎ඨ
𝐷 

ሺ1 െ 𝛽ሻ𝑅
 ሺ𝐿 െ 𝑥ᇱሻ቏

൅ ඥ𝛽𝐷 ሺ𝐿 െ 𝑥ᇱሻ ቏ 𝑣ᇱሺ𝐿, 𝑡ሻ

െ ቎
ሺ1 െ 𝛽ሻ𝑅𝛽

2ඥሺ1 െ 𝛽ሻ𝑅𝛽ଶ𝐷
𝑠𝑖𝑛ℎ  ቎ඨ

𝐷 
ሺ1 െ 𝛽ሻ𝑅

 ሺ𝐿 െ 𝑥ᇱሻ቏  ൅
𝛽𝐷

2ሺ𝛽𝐷ሻ
ଷ
ଶ

቎ඨ
𝐷 

ሺ1 െ 𝛽ሻ𝑅
  ሺ𝑥ᇱ െ 0ሻ቏

൅ ඥ𝛽𝐷 ሺ𝑥ᇱ െ 0ሻ ቏ 𝑣ᇱሺ0, 𝑡ሻ

െ ቎
1
2

𝑐𝑜𝑠ℎඨ
𝐷 

ሺ1 െ 𝛽ሻ𝑅
ሺ𝐿 െ 𝑥ᇱሻ ൅

1
2

ቌ𝑐𝑜𝑠ℎඨ
𝐷 

ሺ1 െ 𝛽ሻ𝑅
ሺ𝐿 െ 𝑥ᇱሻ ൅ 1ቍ ቏ 𝑣ሺ𝐿, 𝑡ሻ

െ ቎
ሺെ1ሻ

2
𝑐𝑜𝑠ℎඨ

𝐷 
ሺ1 െ 𝛽ሻ𝑅

ሺ𝑥ᇱ െ 0ሻ ൅
1
2

ቌ𝑐𝑜𝑠ℎඨ
𝐷

ሺ1 െ 𝛽ሻ𝑅
ሺ𝑥ᇱ െ 0ሻ ൅ 1ቍ ቏ 𝑣ሺ0, 𝑡ሻ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(18)       

 180 

we replace the value of 𝜀 by 𝐿 181 
  

 
 
 



𝑣ሺ𝐿, 𝑡ሻ ൅ න  𝑣∗ሺ𝑥|𝜀ሻ𝑣ሶ
௅

଴
ሺ𝑥, 𝑡ሻ𝑑𝜀

ൌ െ

⎣
⎢
⎢
⎢
⎡𝛽ሺ1 െ 𝛽ሻ𝑅 ቆඥ𝛽ሺ1 െ 𝛽ሻ𝑅 𝑠𝑖𝑛ℎ  ൤ට

𝐷 
ሺ1 െ 𝛽ሻ𝑅  𝐿൨ ቇ ൅ 𝛽ሺ1 െ 𝛽ሻ𝑅ඥ𝛽𝐷𝐿

2ሺ𝛽𝐷ሻ
ଷ
ଶ

⎦
⎥
⎥
⎥
⎤

𝑣ᇱᇱᇱሺ0, 𝑡ሻ

െ
ሺ1 െ 𝛽ሻ𝑅

2𝐷
𝑣ᇱᇱሺ𝐿, 𝑡ሻ െ ቎

ሺ1 െ 𝛽ሻ𝑅
2𝐷

ቌ𝑐𝑜𝑠ℎඨ
𝐷 

ሺ1 െ 𝛽ሻ𝑅
 𝐿 ൅ 1ቍ቏ 𝑣ᇱᇱሺ0, 𝑡ሻ ൅

1
2

𝐿𝑣ᇱሺ0, 𝑡ሻ

൅
1
2

𝑣ሺ𝐿, 𝑡ሻ ൅
1
2

𝑣ሺ0, 𝑡ሻ 

 
 
And  𝜀 ൌ 𝐿  
 

 
 
 
 
 
 
(19) 
 
 
 

𝑣ሺ0, 𝑡ሻ ൅ න  𝑣∗ሺ𝑥|𝜀ሻ𝑣ሶ ሺ𝑥, 𝑡ሻ
௅

଴
𝑑x

ൌ

⎣
⎢
⎢
⎢
⎡𝛽ሺ1 െ 𝛽ሻ𝑅 ቆඥ𝛽ሺ1 െ 𝛽ሻ𝑅 𝑠𝑖𝑛ℎ  ൤ට

𝐷 
ሺ1 െ 𝛽ሻ𝑅  𝐿൨ ቇ ൅ 𝛽ሺ1 െ 𝛽ሻ𝑅√𝐵𝐿

2ሺ𝛽𝐷ሻ
ଷ
ଶ

⎦
⎥
⎥
⎥
⎤

 𝑣ᇱᇱᇱሺ𝐿, 𝑡ሻ

െ ቎
ሺ1 െ 𝛽ሻ𝑅

2𝐷
ቌ𝑐𝑜𝑠ℎඨ

𝐷 
ሺ1 െ 𝛽ሻ𝑅

 𝐿 ൅ 1ቍ቏ 𝑣ᇱᇱሺ𝐿, 𝑡ሻ െ
ሺ1 െ 𝛽ሻ𝑅

𝐷
𝑣′′ሺ0, 𝑡ሻ െ

1
2

𝐿𝑣ᇱሺ𝐿, 𝑡ሻ

൅
1
2

𝑣ሺ𝐿, 𝑡ሻ ൅
1
2

𝑣ሺ0, 𝑡ሻ 

 
 
 
 
(20) 
 

 182 

And now, we replace in Equation (17) the derivatives given in Equations (21), 183 

(22), (23) and (24) obtaining: 184 

 185 

𝑣′ሺ𝐿, 𝑡ሻ ൅ න
𝜕 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝜀
𝑣ሶ ሺ𝑥, 𝑡ሻ𝑑x

𝐿

0

ൌ
ሺ1 െ 𝛽ሻ𝑅

𝐷
𝑣′′′ሺ𝐿, 𝑡ሻ െ ቎

ሺ1 െ 𝛽ሻ𝑅

2𝐷
ቌ𝑐𝑜𝑠ℎඨ

ሺ1 െ 𝛽ሻ𝑅

𝐷
 𝐿 ൅ 1ቍ቏ 𝑣′′′ሺ0, 𝑡ሻ

െ
1

2
ඨ

ሺ1 െ 𝛽ሻ𝑅

𝐷
𝑠𝑖𝑛ℎ  ቎ඨ

ሺ1 െ 𝛽ሻ𝑅

𝐷
 𝐿቏ 𝑣′′ሺ0, 𝑡ሻ  ൅

1

2
𝑣′ሺ𝐿, 𝑡ሻ ൅

1

2
𝑣′ሺ0, 𝑡ሻ 

 

 
 
 
 (21)  
 
 



𝑣′ሺ0, 𝑡ሻ ൅ න
𝜕 𝑣∗ሺ𝑥|𝜀ሻ

𝜕𝑥′
𝑣ሶ ሺ𝑥, 𝑡ሻ𝑑x

𝐿

0

ൌ ቎െ
ሺ1 െ 𝛽ሻ𝑅

2𝐷
ቌ𝑐𝑜𝑠ℎඨ

ሺ1 െ 𝛽ሻ𝑅

𝐷
 𝐿 ൅ 1ቍ቏ 𝑣′′′ሺ𝐿, 𝑡ሻ

െ
ሺ1 െ 𝛽ሻ𝑅

𝐷
𝑣′′′ሺ0, 𝑡ሻ ൅

1

2
ඨ

ሺ1 െ 𝛽ሻ𝑅

𝐷
𝑠𝑖𝑛ℎ  ቎ඨ

ሺ1 െ 𝛽ሻ𝑅

𝐷
 𝐿቏ 𝑣′′ሺ𝐿, 𝑡ሻ  

൅
1

2
𝑣′ሺ𝐿, 𝑡ሻ ൅

1

2
𝑣′ሺ0, 𝑡ሻ

 
 
  (22) 

 186 

 187 

In the absence of studies concerning the choice of the time-step length, it was 188 

chosen empirically. For some recommendations concerning its choice, the reader is 189 

referred to Carrer et al. (2009). In matrix form, the system of algebraic equations (19, 190 

20, 21 and 22) can be written as:  191 

 192 
 
 
 

቎
ሺ∆𝑡𝐇௕௕ ൅ 𝐖௕௕ሻ െ∆𝑡𝒗௕௕ ሺ0 ൅ 𝐖௕ௗሻ

ሺ0 ൅ 𝐖ഥ ௕௕ሻ ∆𝑡𝒗௕௕ ሺ0 ൅ 𝐖ഥ ௕ௗሻ
ሺെ∆𝑡𝐇ௗ௕ ൅ 𝐖ௗ௕ሻ െ∆𝑡𝒗ௗ௕ ሺ∆𝑡𝐼 ൅ 𝐖ௗௗሻ

቏ ൞

𝑣
௡ାଵ
௕

𝑣′௡ାଵ
௕

𝑣
௡ାଵ
ௗ

ൢ

ൌ ൥
∆𝑡𝐆௕௕ ∆𝑡𝑩௕௕

∆𝑡𝐆ഥ௕௕ ∆𝑡𝐁ഥ௕௕

∆𝑡𝐆ௗ௕ ∆𝑡𝐁ௗ௕
൩ ቊ

𝑣′′′௡ାଵ
௕

𝑣௡ାଵ
ᇱᇱ௕ ቋ െ ൥

𝐃௕௕ 0 𝐖௕ௗ

𝐃ഥ ௕௕ 0 𝐖ഥ ௕ௗ

𝐃ௗ௕ 0 𝐖ௗௗ
൩ ቐ

5𝑣
௡
௕

0
𝑣

௡
ௗ

ቑ 

 
 
 
 
 
 
 
 
 
 
(23) 

 193 
 194 

The superscripts b and d, concerning the vectors in Equation (23), correspond to 195 

the boundary nodes and to the domain internal points, respectively. Then, vectors 𝑣௡ାଵ
௕ , 196 

𝑣ᇱ
௡ାଵ
௕ , 𝑣௡ାଵ

ᇱᇱ௕
 and 𝑣′௡ାଵ

ᇱᇱ௕ have dimension (2x1), whereas vector 𝑣௡ାଵ
ௗ

 has dimension (𝑛௜), 197 

with 𝑛௜  being the number of internal points. Note that the number of cells is equal to 198 

(𝑛௜ ൅ 1). The identity matrix 𝐼 is related to the internal points. In the sub-matrices, the 199 
first superscript corresponds to the position of the source point and the second to the 200 

position of the field point. Concisely, Equation (23) can be written as presented in Saito 201 

[2018]: 202 

 203 

𝐻ന  𝑑𝑛൅1 ൌ 𝐺ന 𝑛𝑛൅1 ൅ 𝑊ധധധ 𝑢𝑛 
  

       (24) 

In Equation (32), the vector 𝑑௡ାଵ contains the values of 𝑣 and 𝑣ᇱ, related to the 204 

essential boundary conditions, and the vector 𝑛௡ାଵ contains the values of 𝑣ᇱᇱ and 𝑣ᇱᇱᇱ, 205 

related to the natural boundary conditions. Matrices 𝐻നand 𝐺ന come from the expressions 206 

(9) – (7) and matrix 𝑊ധധധcomes from the domain integrations (see Saito, 2018).  207 

 208 

 209 

 210 

 211 



 212 

4. Numerical results DBEM 213 
 214 

In the examples presented in this section, the following parameters were 215 

adopted: 216 

 217 

𝐷 ൌ  1 
𝑅 ൌ  0.05  
𝑅 ൌ  0.5 
𝛽 ൌ  1 
 218 

All the analyses were carried out with the domain discretized into 16 cells. The 219 

time-step length was: 220 

 221 

𝛥𝑡 ൌ  0.05𝑠 
 222 

 223 

4.1 Domain under initial condition: cosine distribution – Example 1 224 
 225 

 226 

This example consists of a domain of unity length, with all the boundary 227 

conditions null and with an initial condition field given by: 228 

 229 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑣଴𝑐𝑜𝑠 ቀ
𝜋
2

𝑥ቁ

 

(25) 

The analytical solution to this problem is given by (see Bevilacqua et al., 2011) 230 

as 231 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑣଴𝑒𝑥𝑝 ൬
𝜋
4

ଶ
𝐷𝜌𝑡൰ 𝑐𝑜𝑠 𝑐𝑜𝑠 ቀ

𝜋𝑥
2

ቁ
(26) 

with 232 

𝜌 ൌ െ𝛽 ൭1 ൅
𝜋ଶ

4
𝑅
𝐷

ሺ1 െ 𝛽ሻ൱

 

 
(27) 

Figure 1 depicts the results at various values of t for the first analysis, carried out 233 

with 𝑅 ൌ 0.05, whereas Figure 2 depicts the results for the second analysis, for which 234 

𝑅 ൌ 0.5.  235 

 236 



 237 
Figure 1. Example 1: results at different instants of time for 𝑅 ൌ 0.05. 238 

 239 

 240 
 241 

Figure 2. Example 1: results at different instants of time for 𝑅 ൌ 0.5. 242 

 243 
Figure 3. Example 1: results for 𝑣ሺ0.5, 𝑡ሻ. 244 



Note that the ratio  𝜌 ൌ 𝜌ሺ𝑟, 𝛽ሻ, defined by Equation (27), controls the rate of 245 

change of the variable of interest. When 𝛽 ൌ 1, the problem is reduced to the classical 246 

diffusion problem. Figure 3 depicts the results of the first and second analyses for 247 

𝑣ሺ0.5, 𝑡ሻ. In all Figures, a good agreement is observed between the analytical solution 248 

and the DBEM results. 249 

 250 

 251 

4.2 Domain under initial condition: hyperbolic cosine distribution – Example 2 252 
 253 

 254 

In this example, a domain of unity length was considered again. The boundary 255 

conditions are: 256 

 257 

𝑣′ሺ0, 𝑡ሻ ൌ 0 
 

(28) 

𝑣ᇱᇱሺ0, 𝑡ሻ ൌ 0 
 

(29) 

𝑣′ᇱሺ1, 𝑡ሻ ൌ
1

𝑎ଶ 𝑣ሺ1, 𝑡ሻ 

 

(30) 

𝑣′ᇱᇱሺ1, 𝑡ሻ ൌ
1

𝑎ଶ 𝑣ᇱሺ1, 𝑡ሻ 

 

(31) 

 258 

Note that the last two boundary conditions, at 𝑥 ൌ 1, are coupled. The initial 259 

condition field is given by: 260 

 261 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑣଴𝑐𝑜𝑠ℎ ቀ
𝑥
𝑎

ቁ  
(32) 

 262 

The analytical solution reads 263 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑣଴𝑒𝑥𝑝 ൬
𝐷𝜌
𝑎ଶ 𝑡൰ 𝑐𝑜𝑠ℎ ቀ

𝑥
𝑎

ቁ 

 

 
(33) 

with 264 

𝜌 ൌ 𝛽 ൬1 െ
𝑅

𝑎ଶ𝐷
ሺ1 െ 𝛽ሻ൰

 
 

(34) 

Two values were adopted for the parameter 𝑞 ൌ 2 and 𝑞 ൌ 4.  265 

 266 



 267 
Figure 4. Example 2: results at different instants of time for 𝑎 ൌ 2 and 𝑎 ൌ 4, with 268 

𝑅 ൌ 0.05. 269 

 270 

 271 
Figure 5. Example 2: results for 𝑣ሺ0.5, 𝑡ሻ for 𝑎 ൌ 2 and 𝑎 ൌ 4 with R = 0.05. 272 

 273 
Figure 6. Example 2: results at different instants of time for 𝑎 ൌ 2 and 𝑎 ൌ 4, with R = 274 

0.5. 275 



 276 
Figure 7. Example 2: results for 𝑣ሺ0.5, 𝑡ሻ for 𝑎 ൌ 2 and 𝑎 ൌ 4, with 𝑅 ൌ 0.5. 277 

 278 

 279 

 280 

Figures 4 and 5 depict results obtained with 𝑅 ൌ 0.05, whereas Figures 6 and 7 281 

depict results obtained with 𝑅 ൌ 0.5. One can observe that for bigger values of the 282 

parameter 𝑞 correspond smaller rates of increase of 𝑣, and that the parameter 𝑅 does not 283 

have the influence it has had in the first example. Again, good agreement is observed 284 

between analytical and DBEM results.  285 

 286 

 287 

 288 

Conclusions 289 

 290 

 291 

This work is concerned with the solution of the anomalous diffusion equation, in 292 

one-dimension (1-D), by employing the DBEM. Although one-dimensional problems 293 

present a limited range of applications, their solutions always give the researcher 294 

experience for facing more complex problems in two and three dimensions. For the 295 

problem treated here, a fundamental solution, associated to the steady state problem, 296 

was found and a successful D-BEM formulation was developed. The results generated 297 

by the formulation are accurate and present good agreement with analytical solutions. 298 

Naturally, this is the first step towards the development of new DBEM formulations. 299 

The search for a time-dependent fundamental solution, at this time, seems to be very 300 

challenging, as well as the development of formulations for bi- and three-dimensional 301 
problems. Another problem that should deserve attention is the one to deal with 302 

anisotropic materials. 303 

 304 
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Figure 1. Example 1: results at different instants of time for R=0.05.





Figure 2. Example 1: results at different instants of time for R=0.5.





Figure 3. Example 1: results for v(0.5,t).





Figure 4. Example 2: results at different instants of time for a=2 and a=4, with R=0.05.





Figure 5. Example 2: results for v(0.5,t) for a=2 and a=4 with R = 0.05.





Figure 6. Example 2: results at different instants of time for a=2 and a=4, with R = 0.5.





Figure 7. Example 2: results for v(0.5,t) for a=2 and a=4, with R=0.5.
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