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Key Points: 

• Summer lake color phenology can be generalized into five distinct seasonal patterns of 10 
greening and blueing events 

• Since the mid-1990s, the number of lakes with color patterns corresponding to eutrophic 12 
waterbodies has been increasing 

• We observe these patterns using a new U.S. lake remote sensing dataset that contains 14 
over 22 million lake observations   
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Abstract 16 

Lakes are often defined by seasonal cycles. The seasonal timing, or phenology, of many lake 
processes, such as primary productivity, are changing in response to human activities. However, 18 
long-term records exist for few lakes, and extrapolating patterns observed in these lakes to entire 
landscapes is exceedingly difficult using the limited number of in situ observations that are 20 
available. Limited landscape level observations means we do not know how common shifts in 
lake phenology are at macroscales. Here, we use a new remote sensing dataset, LimnoSat-US, to 22 
analyze U.S. summer lake color phenology between 1984 and 2020 across more than 26,000 
lakes. Our results show that summer lake color seasonality can be generalized into five distinct 24 
phenology groups that follow well-known patterns of phytoplankton succession. The frequency 
with which lakes transition from one phenology group to another is tied to lake and landscape 26 
level characteristics. Lakes with high discharge and low variation in their seasonal extent are 
generally more stable while lakes in areas with high interannual variations in climate and 28 
catchment population density show less stability. Our research reveals previously unexamined 
spatiotemporal patterns in lake seasonality and demonstrates the utility of LimnoSat-US, which, 30 
with over 22 million remote sensing observations of lakes, creates novel opportunities to 
systematically examine changing lotic ecosystems at a national scale.  32 

Plain Language Summary 

Lakes naturally have seasonal cycles that result in yearly peaks in algal growth. The size and 34 
timing of these peak periods depends on the amount of nutrients available and the timing of key 
events such as freezing and thawing.  Bluer lakes with little algae typically have one peak in the 36 
spring, while greener, high algae lakes can have multiple peaks or longer duration peaks that 
span the summer months. As such, color is a useful tool for measuring the characteristics of lake 38 
ecosystems. Here, we look at how these seasonal cycles changed in over 26,000 lakes across the 
United States between 1984 and 2020. We find that while some lakes are getting bluer, 40 
particularly in the Pacific Northwest, there has also been an increase in the number of lakes that 
show seasonal cycles associated with high algae waterbodies. Lakes at high elevations and in 42 
catchments with large year-to-year fluctuations in temperature and population density are most 
prone to changes in seasonal cycles over time.  44 

 

1 Introduction 46 

Lakes are critical freshwater resources that are highly sensitive to stressors such as climate 
change (Woolway et al., 2020) and altered land use (Martinuzzi et al., 2014). Globally, these 48 
stressors are shortening the duration of ice cover (Sharma et al., 2019), increasing rates of lake 
carbon burial (Heathcote & Downing, 2012), increasing evaporative water loss (Wang et al., 50 
2018), warming surface waters (O’Reilly et al., 2015), and changing mixing regimes (Maberly et 
al., 2020; Woolway & Merchant, 2019), all of which influence lake productivity and ecological 52 
state. These changes manifest themselves in the seasonality of lake processes. Just like a 
deciduous forest that comes to life in the spring, inland water bodies are characterized by a 54 
predictable seasonal succession of biological processes (Sommer et al., 2012). In the spring, 
many lakes experience a diatom bloom, followed by a ‘clear-water’ phase where zooplankton 56 
rapidly devour the newly plentiful phytoplankton (Matsuzaki et al., 2020). Summer algal 
biomass is constrained by nutrient availability, with nutrient-rich eutrophic lakes experiencing 58 
near-constant summer phytoplankton blooms, and nutrient-poor oligotrophic lakes experiencing 
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relatively clear waters (Sommer et al., 1986). The difference between these states is visible to the 60 
naked eye, as the predominant color of a lake lies along a spectrum of blue (oligotrophic) to 
green (eutrophic); or as dissolved carbon concentrations increase, brown (dystrophic) (Webster 62 
et al., 2008).  

The color of a lake reveals a lot about lake productivity and ecological state. A green lake will 64 
have a greater abundance of phytoplankton and a higher rate of carbon burial than a blue lake 
(Heathcote & Downing, 2012). Browning or greening of oligotrophic lakes may result in oxygen 66 
depletion and anoxic conditions (Knoll et al., 2018; Müller et al., 2012), which impacts nutrient 
cycling. Shifts in the magnitude and timing of annual color changes are indicators of short-term 68 
external (weather, nutrient, and carbon loading) and internal (biology) factors and/or long-term 
climate, watershed, and food web changes. These changes are not confined to single lakes, with 70 
landscape-level drivers impacting the color regimes of entire regions. For instance, shortened ice 
cover durations (Sharma et al., 2019) are shifting the spring-phytoplankton bloom earlier 72 
(Winder & Schindler, 2004), increases in dissolved organic carbon are browning lakes (Monteith 
et al., 2007; Roulet & Moore, 2006), and invasive zebra mussels are increasing water clarity 74 
(Binding et al., 2007), all at regional scales. 

For a single lake, observing the annual pattern of lake color provides insight into the local 76 
ecosystem. At larger scales, simultaneously observing the annual patterns of many lakes provides 
evidence of the impacts of climate and land-use change and is critical in understanding the role 78 
of inland waters in carbon production and sequestration. Remote sensing enables this macroscale 
freshwater analysis because it captures a wide range of hydrologic conditions (e.g. Allen et al., 80 
2020) with regular sampling intervals and global coverage. The Landsat series of satellites 
specifically provides over three decades of observations and can be used to accurately estimate 82 
water quality parameters such as chl-a and algal blooms (Cao et al., 2020; Dekker & Peters, 
1993; Ho et al., 2019), colored dissolved organic matter (CDOM) (Griffin et al., 2018; Olmanson 84 
et al., 2020), suspended sediments (Dekker et al., 2001; Ritchie & Cooper, 1988), water clarity 
(McCullough et al., 2013; Olmanson et al., 2008), and primary productivity (Kuhn et al., 2020). 86 
To infer water quality, these studies build models based on relationships between optically active 
constituent concentrations and their impact on water surface reflectance. These efforts are 88 
becoming increasingly accessible due to emerging datasets that match satellite observations with 
field measurements of water quality parameters for model training and development (Dethier et 90 
al., 2020; Ross et al., 2019; Spyrakos et al., 2020), as well as online processing and data storage 
platforms such as Google Earth Engine (Gorelick et al., 2017). 92 

Here, we present a 36 year analysis of U.S. lake color phenology using LimnoSat-US, a new 
analysis-ready remote sensing dataset for inland waters. LimnoSat-US contains all cloud-free 94 
Landsat observations of U.S. lakes larger than 0.1 km2 between 1984-2020. As either a stand-
alone resource, or when combined with existing datasets such as AquaSat (Ross et al., 2019) and 96 
RiverSR (Gardner et al., 2020), LimnoSat-US provides opportunities for novel analyses of 
remotely sensed, macroscale patterns in U.S. freshwater resources. Through this initial 98 
application of LimnoSat-US, we attempt to identify the dominant phenology patterns in U.S. 
lakes, how those patterns have changed over time, and what lake and landscape level 100 
characteristics control the stability of a given lake's seasonal cycle. 

2 Materials and Methods 102 

 2.1 Database Development 
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We constructed the LimnoSat-US database (Topp et al., 2020) by extracting USGS Tier 1 104 
Landsat Surface Reflectance (T1-SR) (Rs) values over 56,792 lakes (HydroLAKES, Messager et 
al., 2016)  across >328,000 scenes from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced 106 
Thematic Mapper (ETM+), and Landsat 8 Optical Land Imager (OLI) sensors dating back to 
1984.  These observations include lakes throughout the conterminous United States and those 108 
directly adjacent to its border. While these surface reflectance products were originally 
developed for terrestrial applications, a growing body of research shows that they can be used to 110 
accurately estimate inland water quality parameters and perform on par with water-specific 
atmospheric correction algorithms (Griffin et al., 2018; C. Kuhn et al., 2019; Olmanson et al., 112 
2020). Within the T1-SR catalogues, Landsat 5 and Landsat 7 imagery are atmospherically 
corrected using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 114 
(Masek et al., 2006) while Landsat 8 images are corrected using the Landsat Surface Reflectance 
Code (LaSRC) (Dwyer et al., 2018; Vermote et al., 2016). We extracted reflectance values using 116 
an optimized workflow within Google Earth Engine (Gorelick et al., 2017) comprised of three 
key steps: 1) the calculation of the ‘deepest’ point (Chebyshev Center, Shen et al., 2015) for each 118 
lake within HydroLAKES; 2) water masking and extracting summary optical properties 
surrounding each deepest point; and 3) standardization of reflectance values across sensors 120 
(Figure S1). 

Previous studies have used the centroids of lake polygons as representative locations for deep-122 
water lake conditions (e.g. Soranno et al., 2017). However, there is no guarantee that the location 
of the centroid lies within the area defined by the polygon, nor that the centroid is necessarily the 124 
furthest point from the lake shore (Figure S2). Pulling satellite reflectance values from centroids 
that fall within shallow littoral waters increases the likelihood of influence from the bed and 126 
nearshore land pixels (Volpe et al., 2011). To remedy this problem, we instead used the 
Chebyshev Center, or “deepest point”, of a lake polygon. The Chebyshev Center is defined as the 128 
center of the largest circle that can fit entirely within a given polygon’s boundary (Shen et al., 
2015). We estimated the deepest point for each lake in Google Earth Engine (Gorelick et al., 130 
2017) by identifying the location of the pixel that is furthest away from the lake shoreline (Yang, 
2020) 132 

Pixels within 120 meters of the deepest point were classified using the USGS Dynamic Surface 
Water Extent algorithm (DSWE) (Jones, 2015, 2019) and the USGS Landsat Tier 1 Surface 134 
Reflectance pixelQA band as derived by the CFMask cloud detection algorithm (Zhu et al., 
2015). Observations were removed if any clouds, cloud shadow, snow, or ice were detected 136 
within the 120 meter buffer around the deepest point. Median values for all bands were 
subsequently calculated from high confidence water pixels as defined by DSWE (observations 138 
with less than 9 pixels of high confidence water were removed). While conservative, we assume 
the process of taking the median of only high confidence water pixels within 120 meters of the 140 
deepest point limits the impacts of adjacency effects, bottom reflectance, and possible noise due 
to wind-induced sun glint and surface or benthic macrophytes that may be prevalent in shallower 142 
waters. Final values are based solely on high confidence water pixels, but total counts of high 
confidence water pixels and partial surface water (vegetated) pixels were calculated in order to 144 
provide an indication of potential mixed pixels and/or noise in the final reflectance values. To 
address sensor variation and differences in atmospheric correction procedures, bands for each 146 
sensor were standardized following Gardner et al. (2020). Specifically, reflectance values were 
filtered to coincident time periods (1999-2011 for Landsat 5 and 7; 2012-2020 for Landsat 7 and 148 
8) and Landsat 5 and 8 were standardized to Landsat 7 values through a second order polynomial 
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regression of the 1-99th percentile values of each sensor (Figure S3). Similar efforts focused on 150 
terrestrial applications have shown that statistical sensor correction can effectively improve 
multi-sensor continuity (Roy et al., 2016). 152 

This process was optimized by iterating over Landsat WRS tiles and applying all necessary 
calculations in a single pass over each image/lake center. This approach dramatically speeds up 154 
computation on the Earth Engine servers by reducing the number of distinct image stacks 
generated and reducing the number of passes necessary to extract summary metrics from each 156 
lake within a given image. These performance operations become increasingly important as the 
size of analysis increases. While it varies with Earth Engine traffic, the optimized pipeline 158 
presented here decreases computation time for the >328,000 images in the analysis from 
approximately 30 days to 5 days for the contiguous U.S. when compared to pipelines using 160 
multiple passes and/or iterating by lake rather than WRS tile. 

 2.2 Estimating Lake Color 162 

Water color, as perceived by the human eye, is an intuitive measure of lake water properties. 
Color can be directly measured by any optical imager with bands in the visible spectrum and 164 
does not require knowledge of the inherent optical properties of water (Giardino et al., 2019; 
Woerd & Wernand, 2015). We quantified lake color as the dominant wavelength (𝛌d) within the 166 
human visible spectrum by transforming surface reflectance into the chromaticity colorspace 
following Wang et al. (2015). Tristimulus values (X,Y,Z, Equation 1) were calculated from 168 
surface reflectance values (red, green, blue) and then converted into chromaticity coordinates (x, 
y, z, Equation 2).  170 

𝑋 = 2.7689𝑅	 + 	1.7517𝐺	 + 	1.1302𝐵 

𝑌 = 1.0000𝑅	 + 	4.5907𝐺	 + 	0.0601𝐵	 172 

𝑍 = 0.0565𝐺	 + 	5.5943𝐵  
          (Equation 1)   174 
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Using these coordinates, the hue angle is calculated (Equation 3) and converted into 𝛌d using the 178 
International Commission on Illumination (CIE) look-up tables. 
 180 
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          (Equation 3) 182 

In addition to dominant wavelength, which has known non-linearities in its distribution, we also 
calculated lake color within the Forel-Ule Color Index (FUI) space (Wang et al., 2015). The FUI 184 
is a discrete set of 21 colors that were developed specifically to identify water-color typologies 
(Barysheva, 1987). FUI values can be accurately calculated from multispectral imagery (Van der 186 
Woerd & Wernand, 2018; Wang et al., 2020) using either dominant wavelength or hue angle. 
Here, we use FUI values to more precisely show how we perceive various dominant 188 
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wavelengths, the water-color typologies different wavelengths are associated with, and to assist 
in the visualization of color distributions.  190 

 2.2 Seasonal lake color phenology 
The development of the LimnoSat-US database provides novel opportunities for examining 192 
macrosystem patterns in U.S. lake dynamics. Clustering analysis is one common approach for 
extracting patterns from time series datasets that have no a priori assumptions about group 194 
membership (Warren Liao, 2005) with successful applications in fields such as hydrology 
(Brunner et al., 2020; Savoy et al., 2019), ecology (Xue et al., 2014; Zhang & Hepner, 2017), 196 
and biogeochemistry (Byrnes et al., 2020). The overall goal of clustering analysis is to partition 
group membership based on within-group similarity and between-group dissimilarity. Here, we 198 
apply clustering analysis to time series of lake color to better understand the drivers of variation 
in lake seasonality over the past 36 years. 200 

Lake color observations generated from the LimnoSat-US database were filtered to those 
between May and October to remove missing data caused by snow and ice. Observations were 202 
broken into 6 distinct periods - (1984, 1990], (1990, 1996], (1996, 2002], (2002, 2008], (2008, 
2014], (2014, 2020] - and were filtered to those with at least three observations per month per 204 
period, resulting in 26,607 lakes with enough data to calculate periodic seasonality for the 
analyses. Within each period, lake color phenology was calculated for both raw dominant 206 
wavelength and lake/period z-normalized dominant wavelength using a Nadaraya–Watson kernel 
regression (Nadaraya, 1964; Watson, 1964) implemented with the kmsooth function from the 208 
stats package in R (RCore Team, 2019). Application of the kernel regression allowed for the 
calculation of a weekly color value based on a gaussian weighted average of all observations 210 
within a window of 21 days from the point calculated. Extreme outliers (>4 standard deviations 
from the lake/period mean) were removed prior to the kernel regression for each series. The 212 
resulting time series consist of weekly estimates of lake color from May to October for each lake 
for each period (Figure 1). 214 

Normalization of the time series is critical for accurately clustering lake phenologies using the 
dynamic time warping (DTW) method described below (Keogh & Kasetty, 2003; Mueen & 216 
Keogh, 2016). However, by standardizing the variance across time series, we artificially impose 
equal seasonal variation between lakes/periods that are relatively monotonic (i.e. aseasonal) and 218 
those that show true seasonality in the phenology of their color. Examination of the mean and 
standard deviation of dominant wavelength for the non-normalized time series shows that this is 220 
particularly problematic for end member lakes on either end of the color spectrum that show very 
little seasonal variation (𝜎 < 5 nm, Figure S4). This can be seen in Figure 1, where oligotrophic 222 
Crater Lake shows minimal seasonality when compared to known eutrophic waterbodies (Lake 
Mendota and Lake Okeechobee). To address this issue while still following best practices of 224 
normalization for clustering analysis, those lakes/periods with a dominant wavelength standard 
deviation of less than 5 nm were classified a priori as aseasonal. This threshold guarantees that 226 
seasonal variation within any remaining time series is at least ~10 nm around the mean color 
while effectively classifying aseasonal, monotonic, and end-member lakes as their own grouping.  228 

This process resulted in 109,643 individual time series available for cluster analysis and an 
additional 46,759 classified a priori as aseasonal. These time series were clustered using 230 
dynamic time warping (DTW) (Sakoa and Chiba, 1978) within a partitional clustering 
framework with barycenter averaging (Sarda-Espinosa et al., 2019). Dynamic time warping 232 
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allows points within two time series to be compared within a user-defined window as opposed to 
using a one-to-one comparison found in traditional metrics like Euclidean distance. This 234 
elasticity reduces the impacts of noise, minor temporal shifts, and outliers, making it ideal for 
ecological systems with natural interannual variations (Savoy et al., 2019; Xue et al., 2014; 236 
Zhang & Hepner, 2017). The final number of clusters was determined by comparing the Davies-
Bouldin (Davies & Bouldin, 1979) and Modified Davies-Bouldin (Kim & Ramakrishna, 2005) 238 
cluster validity indexes (CVI) across iterations ranging from 2 to 8 clusters. The Davies-Bouldin 
and Modified Davies Bouldin were chosen because of their computational efficiency and strong 240 
performance when compared to other common CVIs (Arbelaitz et al., 2013). 

 242 
Figure 1: Examples of the calculated seasonal phenologies for three well studied lakes of 
different trophic states. Phenologies are composed of one observation per 7 days calculated by 244 
taking a gaussian weighted average of all points +/- 21 days from each calculated point. 
Lakes/periods marked by an asterisk were classified as aseasonal and placed in the a priori 246 
aseasonal cluster. 

One important validation of clustering analysis is how sensitive final clusters are to sample 248 
variations in their input, the idea being that stable, or ‘universal’, clusters will emerge across 
differing sampling schemes (Jain & Moreau, 1987). Here, we addressed issues of cluster stability 250 
using the Jaccard Similarity Index across 100 iterations of bootstrap sampling of our input time 
series. At each iteration, the original input time series were sampled with replacement, clustered, 252 
and the resulting clustering algorithm used to predict groupings for the original data. The Jaccard 
Similarity Index was then calculated based on how similar each new cluster was to the 254 
corresponding original cluster. The index ranges from 0 to 1, indicating that clusters share all or 
no members, with values greater than 0.5 generally indicating cluster stability and 256 
representativeness of true patterns within the data (Savoy et al., 2019). Significant differences in 



manuscript submitted to Water Resources Research 
 

the distribution characteristics of the final clusters were identified using the non-parametric 258 
Kruskall Wallace Analysis of Variance on Ranks (Hollander & Wolfe, 1973) followed by 
Dunn’s Test with a Bonferroni p-value correction (Dunn, 1961). 260 

Finally, we examined the spatial autocorrelation of clusters and the overall stability of individual 
lake phenologies. Spatial autocorrelation was measured by randomly sampling 30% of the lakes, 262 
assigning them their most common cluster, and calculating the proportion of same cluster lakes 
versus different cluster lakes within 50 km windows moving outward from each lake in the 264 
subsample. Lake phenology stability was calculated by examining the number of times a given 
lake shifted between clusters throughout the 6 periods of study. Lakes were categorized on a 266 
scale from 0 (stable) to 5 (unstable) based on the total number of cluster transitions they made 
between 1984 and 2020. Lake and landscape level factors from HydroLAKES (Messager et al., 268 
2016) and the Global Lake Area, Climate, and Population database (Meyer et al., 2020) were 
then used to assess lake characteristics that influence the stability of a lake's seasonal phenology 270 
over time. Variables that potentially influence stability were identified through linear regression 
of lake stability (0-5) on the median value of the lake/climate attribute within each stability class. 272 
Those attributes with a coefficient p-value of less than 0.05 were further examined as correlates 
with lake stability.   274 

3 Results 

The final LimnoSat-US database includes reflectance values spanning 36 years for 56,792 lakes 276 
across > 328,000 Landsat scenes. After initial quality control measures, the database contains 
over 22 million individual lake observations with an average of 393 +/- 233 (mean +/- standard 278 
deviation) observations per lake over the entire study period. While observations date back to 
1984, the total number for any given year approximately doubles with the launch of Landsat 7 in 280 
1999 (Figure 2). 
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 282 
Figure 2. Temporal and spatial distributions of satellite observations contained within the 
LimnoSat-US database. 284 

 

 3.1 Classes of lake color phenology. 286 

Our final clustering partitions resulted in one of three membership classes for each lake/period 
that was not a priori classified as aseasonal (Figure 3). We describe these groups as Spring 288 
Greening, Summer Greening, or Bimodal. High mean Jaccard Similarity Indices across bootstrap 
sampling iterations (0.77, 0.80, 0.94 respectively) show these clusters are relatively universal, 290 
and that regardless of the initial sample, the same lakes are consistently clustered together. 
Within these clusters, we refer to red-shifted portions of the time series (increasing values) as 292 
greening or green-shifted and blue shifted portions of the time series (decreasing values) as 
blueing or blue-shifted. We highlight this terminology because even though red is the end-294 
member of the upper wavelengths, the vast majority of the colors do not extend beyond the green 
portion of the spectrum. Descriptions of the summary attributes for each cluster are as follows: 296 

1) Spring Greening (n = 55,378, 35.4%): Lake color is green-shifted in May/June and gradually 
moves towards the blue end of the spectrum throughout the summer and fall months. Median 298 
dominant wavelengths for these phenologies are significantly bluer (p < 0.0001) than those in the 
Summer Greening, Bimodal, or Aseasonal clusters (median 𝛌d = 513). They have the highest 300 
average coefficient of variation within each individual time series (p < 0.0001), with an average 
range of 37 nm for a given lake/period compared to 34 nm, 33 nm, and 12 nm for Summer 302 
Greening, Bimodal, and Aseasonal clusters, respectively. The distribution of colors within the 
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cluster is concentrated around a mode 498 nm and skewed towards the greener portion of the 304 
spectrum.  

 306 
Figure 3. Results of cluster analysis for over 26,000 lakes and 156,000 seasonal time series. 
Black lines represent medians with grey ribbons representing the 1st-3rd quartile of each cluster. 308 
Clusters are shown both in their (a) z-normalized form used in the cluster analysis and (b) their 
raw dominant wavelength form. Distributions of color observations in each cluster are displayed 310 
using their associated Forel-Ule Index color. Note that the range of wavelengths associated with 
each Forel-Ule Index value varies.  312 

 
2) Summer greening (n = 24,580, 15.7%): Lake color is characterized by gradual greening from 314 
May-August after which time it drops towards the blue end of the color spectrum. The 
distribution of colors shows a mode of 542 nm and a median of 524 nm with a blue-skewed 316 
distribution. On average, each individual time series within this class shows significantly less 
variation than Spring Greening lakes/periods (p < 0.0001) but no significant difference from 318 
Bimodal lakes/periods.  
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3) Bimodal (n = 29,685, 19.0%): Lake color is most green-shifted in May/June and again in 320 
September/October, with a somewhat blue-shifted phase in the intervening months. Phenologies 
within this cluster are significantly more green-shifted (p < 0.0001) than lakes within either the 322 
Spring or Summer Greening clusters and show less variation (p < 0.0001) than those in the 
Spring Greening clusters. The distribution of colors is concentrated around 553 nm with a much 324 
less pronounced peak at 507 nm.  

4) Aseasonal (n = 46,759, 29.9%): The overall color distribution of this cluster is distinctly 326 
bimodal, with a primary mode at 559 nm and a secondary mode at 492 nm. This bimodal 
distribution, combined with the small variance in any given lake/period in the cluster, suggests it 328 
contains predominantly blue and predominantly green time series with very few observations in 
the intermediate green/blue space common within the three other clusters. The cluster also 330 
contains both the most green-shifted and most blue-shifted time series included within the 
analyses. Because of the crisp partition contained within the cluster and the ecological 332 
significance of blue versus green aseasonal time series, we further partition this cluster into 
Aseasonal (Blue) (n = 15,934) and Aseasonal (Green) (n = 30,825) lakes for the remainder of the 334 
analysis. Time series with a median dominant wavelength less than or greater than the anti-mode 
of the distribution (525 nm) are considered Aseasonal (Blue) and Aseasonal (Green) 336 
respectively. 

 3.3 Lake stability over time 338 

Aseasonal Green lakes showed the most stability over time, with an average of 73% +/- 6% 
(mean +/- standard deviation) of lakes remaining within the cluster between consecutive time 340 
periods. Aseasonal (Blue) and Spring Greening clusters showed similar retention rates of 57% 
+/- 17% and 57% +/- 9% respectively, while Bimodal and Summer Greening showed similar 342 
retention rates of 46% +/- 8% and 45% +/- 7%. However, of these, only the differences between 
Aseasonal (Green) and Bimodal/Summer Greening clusters were statistically significant at a 344 
95% confidence interval. For Spring Greening, Aseasonal (Green), and Aseasonal (Blue) 
distributions, the number of lakes retained between each period was significantly higher than the 346 
number of lakes that transitioned to a different cluster (p = 0.047, p = 0.007, and p = 0.0001 
respectively).  Summer Greening and Bimodal clusters showed no significant difference between 348 
the proportion of lakes retained and lakes that transitioned to other clusters, indicating less 
stability than the other three classes. However, these transitions showed distinct patterns, with 350 
lakes transitioning more commonly between similar clusters. As an example, on average 27% of 
Summer Greening lakes transitioned to Spring Greening lakes between periods, but only 4% of 352 
Summer Greening lakes transitioned to Aseasonal (Green) (Figure 4). Similarly, less than 0.2% 
of lakes in Aseasonal (Green) and Aseasonal (Blue) transitioned between the two clusters in any 354 
two consecutive periods indicating that state shifts between dominantly blue lakes and 
dominantly green lakes are very uncommon. 356 

 

 358 

 

 360 
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Figure 4. Sankey diagram showing the distribution of lake phenology transitions between 362 
periods. Each ribbon is proportional to the number of lakes that moved from one cluster class to 
another. 364 

 
Lake stability, or the number of times a lake moved from one class to another (ranging from 0 366 
transitions to 5), showed that lakes with three transitions were most common (n =  6,458) and 
lakes with five transitions least common (n = 1254) (Figure S5). We also calculated the number 368 
of unique clusters a lake occupied throughout its transitions. For instance, a lake could change 
states between all five periods, giving it a stability score of five, but only be changing between 370 
two of the potential five clusters, giving it two unique states. Of the 26,067 lakes, 4,339 (16.6%) 
remained within the same cluster through all periods while only 21 (< 0.1%) occupied all five 372 
clusters at some point. For those lakes in between, lakes occupying two distinct states (n = 
11,091; 42.5%) were most common followed by three states (n = 8,942; 34.3%) and four states 374 
(n = 1,674; 6.5%) respectively. Linear regressions between lake and landscape level metrics with 
overall lake stability showed significant relationships (p <0.01) with 5 out of 26 possible metrics 376 
(Table S1), although some of these metrics have significant cross-correlation (Figure S6). 

4 Discussion  378 

 4.1 - Lake seasonal phenology types 
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Existing paradigms regarding the seasonality of lake color are generally derived from individual 380 
lakes with rich sampling histories of water quality observations; however these long-term field 
records are rare and limited to a small subsample of lakes (Stanley et al., 2019). While these 382 
data-rich study lakes are essential for understanding fine-scale ecosystem processes, they lack 
the spatial coverage to generalize across entire landscapes (Collins et al., 2019; Soranno et al., 384 
2014). Within our clustering analysis, we found that lake color phenology can largely be 
categorized as Aseasonal, Spring Greening, Summer Greening, or Bimodal. These phenologies 386 
show distinct regional patterns and spatial auto-correlation, with the probability of two lakes 
being in the same cluster showing a significant relationship to the distance between those two 388 
lakes (p < 0.0001) up to a distance of ~1,500 km (Figure 5b).  

Each cluster has a unique distribution of dominant wavelengths (Figure 3), which suggests that 390 
the timing of seasonal variation in color is connected with lake biogeochemistry. This conclusion 
is supported by long-standing models of freshwater phytoplankton succession (Sommer et al., 392 
1986) and observations of annual cycles of chlorophyll-a, a proxy for phytoplankton biomass 
(Winder & Cloern, 2010). Oligotrophic temperate lakes often show the archetypal pattern of a 394 
spring phytoplankton bloom followed by low summer concentrations. This was the dominant 
phenology in our observations (35.4%), which is in-line with a study of 125 aquatic systems that 396 
found that nearly half of the sites displayed a dominant 12-month cycle with one phytoplankton 
peak per year (Winder & Cloern, 2010). As nutrient availability increases, eutrophic lakes tend 398 
to experience discrete phytoplankton blooms in the spring and late-summer/fall (Marshall & 
Peters, 1989). This pattern is captured in our Bimodal cluster, where the raw dominant 400 
wavelength values are significantly greener than those in any other cluster except for Aseasonal 
(Green). The summer-greening cluster captures eutrophic to hyper-eutrophic lakes featuring 402 
prolonged summer blooms with highly variable summer algal concentrations (Carpenter et al., 
2020; Huisman et al., 2018). The characterization of Bimodal and Summer Greening 404 
lakes/periods as eutrophic is further supported by the low levels of variation we observe in 
dominant wavelengths when compared to Spring Greening lakes/periods.  Dominant wavelength 406 
saturates with high amounts of suspended matter, chl-a, and/or CDOM (Bukata et al., 1997), 
meaning that highly productive, algae-filled lakes with significant amounts of these constituents 408 
would show low variation as dominant wavelength saturates.  It is also possible that lakes in 
these categories are dystrophic CDOM-dominated lakes, as they include some of the most red-410 
shifted (brown) waterbodies within the study. 
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 412 

Figure 5. a) The modal cluster within each 100 km x 100 km grid across time periods. Mixed 
grids are those where there is no dominant cluster (i.e. two or more clusters are equally 414 
prevalent). b) The frequency of same cluster pairs to different cluster pairs using each lake's 
modal cluster. The frequency distributions were calculated within 50 km windows for a random 416 
sample of 30% of the study lakes. The dotted line represents the expected frequency if the 
distribution was random without any spatial autocorrelation. 418 

 
The proportion of lakes that fall within different clusters does not show an overall trend over 420 
time; however, since the 1996-2002 period, the number of lakes classified as either Bimodal or 
Aseasonal (Blue) have increased while the number classified as Spring Greening have been 422 
decreasing (Figures 4, 5). Much of the increase in Aseasonal (Blue) lakes is concentrated in the 
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Pacific Northwest and occurred prior to 2008, whereas the decrease in Spring Greening Lakes 424 
has predominantly occurred in higher-latitude lakes that may be more sensitive to changes in 
snowmelt and ice cover regimes which control nutrient and sediment fluxes that influence lake 426 
productivity (Gerten & Adrian, 2002; Sharma et al., 2019). Patterns in the Aseasonal (Green) 
cluster show much less variation both spatially and temporally, being largely concentrated in the 428 
agriculturally dominated central and northern plains and showing no distinct temporal pattern in 
quantity. While the increase in Aseasonal (Blue) lakes is potentially indicative of reduced 430 
sediment and nutrient inputs in certain parts of the country, the increase in Bimodal lakes, when 
taken with its close match to eutrophic phytoplankton succussion patterns, indicates increases in 432 
lake productivity across portions of the U.S. since the mid 1990s. This pattern supports recent 
research showing a transition from bluer lakes to murky chlorophyll-a and CDOM-dominated 434 
lakes throughout the US between 2007 and 2012 (Leech et al., 2018).  However, dominant 
wavelength, and optical water color more generally, is controlled by a variety of optically active 436 
water color constituents in addition to phytoplankton (Gholizadeh et al., 2016; Mobley, 1994), 
and partitioning these optical components is beyond the scope of this analysis. The result does, 438 
however, merit further research using a database like LimnoSat-US to examine country wide 
trends in lake chlorophyll-a content.  440 

 4.3 - Factors influencing lake stability over time 

Lake stability, or the number of times a lake moved between clusters during the study period, 442 
showed significant relationships with multiple lake and landscape level metrics from 
HydroLAKES and the GLCP database (Figure 6, Table S1). These relationships can generally be 444 
categorized as either hydrological properties or landscape properties. Important hydrological 
properties related to stability include lake size and discharge (both positively correlated with 446 
stability). This result supports existing research suggesting that larger water bodies are less 
reactive to perturbations than smaller, shallower lakes that can fluctuate among multiple 448 
productivity regimes (Scheffer & van Nes, 2007). We also find that hydrologically dynamic 
lakes are consistently less stable, with lakes showing large interannual variations in seasonal 450 
surface extent exhibiting less stability. It is likely that these hydrologically dynamic lakes are 
more sensitive to seasonal variations in runoff and resuspension of lakebed sediments leading to 452 
large interannual variations in nutrient and sediment load.  

The landscape level metrics that showed the strongest relationship with lake stability were 454 
catchment population and elevation (p < 0.01) followed by mean temperature and mean monthly 
precipitation (p < 0.05). Similarly, for the subset of these variables where we had observations at 456 
annual timescales, we found that high coefficients of variation between years (interannual 
variation) of these metrics showed strong linear relationships to stability. The impact of these 458 
landscape-level metrics on stability supports work showing that lakes integrate surrounding 
climatic and land cover changes (Rose et al., 2017). These results are of particular interest for 460 
relatively pristine high-elevation lakes that will be disproportionately impacted by changing 
precipitation and temperature regimes through climate change (Oleksy, Baron, et al., 2020; 462 
Oleksy, Beck, et al., 2020). Finally, we found that lakes in catchments with higher populations 
were generally more stable; however, lakes in catchments with high variation in population 464 
(likely increasing urban areas) showed less stability. Overall, our examination of landscape level 
metrics shows that the stability of a lake often follows the stability of its environment, with lakes 466 
subject to interannual variations in climate or anthropogenic stressors generally showing less 
stability in their overall seasonal phenology. 468 
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Figure 6. Lake and landscape level metrics that showed the most significant relationships with 470 
stability, or the number of times a given lake moved from one cluster to another between periods 
(p < 0.01 with the exception of discharge, p = 0.019). Center bars represent median values while 472 
boxes span the 1st-3rd quartiles. 

5. Conclusion 474 

 Remote sensing has the capability to substantially increase our understanding of 
macroscale aquatic ecosystem processes. Here, we contribute to a growing body of inland water 476 
remote sensing resources with LimnoSat-US, which contains >22,000,000 remotely sensed lake 
observations. Prior to this study, large-scale analyses of lake phenologies were limited to dozens 478 
to hundreds of waterbodies (Ho et al., 2019; Marshall & Peters, 1989; Winder & Cloern, 2010). 
Here, we were able to analyze U.S. summer lake color phenology across more than 26,000 lakes 480 
over 36 years, showing both temporal and spatial patterns and trends, as well as linking 
phenology to lake and landscape-level metrics. Better understanding the full distribution of lake 482 
phenology will allow for more accurate scaling of global nutrient and carbon cycling. While the 
analysis presented here relies simply on lake color, combining LimnoSat-US with databases such 484 
as AquaSat (Ross et al., 2019), RiverSR (Gardner et al., 2020), and LIMNADES (Spyrakos et 
al., 2020), will allow for more explicit modelling and analysis of specific water quality 486 
components, allowing researchers to partition the patterns observed here into optically active 
water quality components including chlorophyll-a, suspended sediments, and CDOM. 488 
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