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Abstract 19 

Lakes emit globally significant amounts of carbon dioxide (CO2) to the atmosphere, but 20 

quantifying these rates for individual lakes is extremely challenging. The exchange of CO2 21 

across the air-water interface is driven by physical, chemical, and biological processes in both 22 

the lake and the atmosphere that vary at multiple spatial and temporal scales. None of the 23 

methods we use to estimate CO2 flux fully capture this heterogeneous process. Here, we 24 

compared concurrent CO2 flux estimates from a single lake based on commonly used methods. 25 

These include floating chambers (FC), eddy covariance (EC), and two concentration gradient 26 

based methods labelled fixed (F-pCO₂) and spatial (S-pCO₂). At the end of summer, cumulative 27 

carbon fluxes were similar between EC, F-pCO₂ and S-pCO₂ methods (-4, -4 and -9.5 gC), while 28 

methods diverged in directionality of fluxes during the fall turnover period (-50, 43 and 38 gC). 29 

Collectively these results highlight the discrepancies among methods and the need to 30 

acknowledge the uncertainty when using any of them to approximate this heterogeneous process.  31 

 32 

Plain Language Summary 33 

Lakes comprise a small percentage of the landscape, but they are active and complex areas of 34 

carbon cycling. Lakes receive mixed carbon inputs from upstream sources, process this carbon 35 

internally, store it in sediments and biomass, and export it downstream. In addition, some 36 

fraction of the carbon in lakes exchanges into and out of the atmosphere, linking lakes with the 37 

global atmosphere. The exchange of carbon dioxide across lake surfaces has globally significant 38 

implications but quantifying these rates has yet to be fully resolved. Here, we compared four 39 

methods of estimating diffusive carbon dioxide exchange between the atmosphere and the lake 40 

surface. Flux rates generally agreed during the summer, but estimates diverged in the fall, a 41 

critical time period with elevated carbon cycling rates. These discrepancies among methods may 42 

arise because of the high degree of spatial and temporal variability in gas exchange and our 43 

ability to portray these processes accurately. In the future, we need to improve our observational 44 

resolution to better estimate carbon gas exchange between lakes and the atmosphere. 45 

 46 

Key Points 47 

1) Lake-atmosphere CO2 exchange estimate using four common methods  48 

2) CO2 concentration gradient flux estimates agreed in direction and magnitude with floating 49 

chambers but disagreed with eddy covariance. 50 

3) Inconsistencies among methods highlight the spatial and temporal assumptions underlying 51 

methods and the need to acknowledge uncertainty 52 

 53 
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1. Introduction 62 

Lakes are a major component of the Earth’s carbon cycle and an increasing focus has 63 

been placed on carbon dynamics within inland waters [Biddanda, 2017; Tranvik et al., 2009; 64 

Williamson et al., 2009]. A substantial fraction of the organic carbon that is delivered to or fixed 65 

within lakes is outgassed to the atmosphere as carbon dioxide (CO2) [Cole et al., 2007; Cory et 66 

al., 2014]. While there is consensus that collectively lakes and other inland waters emit 67 

meaningful amounts of CO2 to the atmosphere, it remains extremely difficult to calculate 68 

spatially and temporally resolved emission rates for individual lakes. This difficulty is because 69 

the exchange of CO2 across the air-water interface is driven by multiple physical, chemical, and 70 

biological processes in both the lake and the atmosphere that vary at multiple spatial and 71 

temporal scales. The scientific community lacks methods to fully capture the spatial and 72 

temporal heterogeneity in gas exchange between lakes and the atmosphere. Thus, every estimate 73 

of global CO2 emissions from lakes has uncertainty.  74 

The reason that lake-atmosphere fluxes are difficult to quantify is because they vary in 75 

magnitude [Raymond et al., 2013], in time [Reed et al., 2018], and across space [Natchimuthu et 76 

al., 2016]. In many temperate dimictic lakes, seasonal phenologies in ice-cover and stratification 77 

govern the direction and magnitude of CO2 flux. Large off-gassing events occur during periods 78 

of vertical mixing such as ice-off and fall turnover [Denfeld et al., 2016]. Lakes with higher 79 

productivity show pronounced temporal variation in CO2 flux [S C Maberly et al., 2013] , 80 

characterized by influx during the summer periods coinciding with higher rates of primary 81 

production [Reed et al., 2018]. Thus, for even a single lake, flux estimation needs to be 82 

continuous and year-round in order to capture the temporal heterogeneity in gas exchange. 83 

Spatially, heterogeneity in metabolic processes, hydrology, and turbulence can have pronounced 84 
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impacts on CO2 flux from the lake surface. Rivers flowing into lakes typically differ in a number 85 

of physical, chemical, and biological properties that can create contrasts in pCO2 in habitats 86 

where they enter a lake [Chmiel et al., 2019]. Further, spatial heterogeneity varies temporally [L 87 

C Loken et al., 2019; Natchimuthu et al., 2016] due to changes in river flow, lake mixing, and 88 

biological processes. Thus, to accurately measure CO2 flux from a single lake we need to 89 

incorporate both spatial and temporal processes. 90 

Any calculations of lake-atmosphere CO2 flux are limited in either special or temporal 91 

extent. Perhaps the simplest and most cost-effective method for measuring gas efflux from lakes 92 

is using floating chambers (FC) [Bastviken et al., 2015]. Chambers are placed atop the lake 93 

surface and the flux is derived from the gas accumulation rate within the chamber. However, flux 94 

chambers characterize only a small area of the lake for what is typically a short deployment, and 95 

can alter turbulence and thus gas exchange within the chamber environment [Vachon et al., 96 

2010]. Historically, FC’s for CO2 required manual gas sampling followed by laboratory 97 

determination of gas concentrations, while newer FCs integrate continuous CO2 sensors and 98 

automatic purging mechanisms that allow for longer deployments [Bastviken et al., 2015; 99 

Jonsson et al., 2008; Martinsen et al., 2018]. While a single measurement is small in its spatial 100 

scale, multiple chambers have been used to quantify the spatial variability of gas emissions 101 

within and among lake habitats [Natchimuthu et al., 2016; Tangen et al., 2016]. Similarly, 102 

measuring temporal variability of fluxes using FCs is common but in both cases, characterizing 103 

spatial and/or temporal variability with this approach is time intensive. New automated chambers 104 

show promise in increasing the duration of continuous observation [Duc et al., 2012]. 105 

A common alternative to FCs is modeling exchange rates using  the concentration 106 

gradient or boundary layer method (F-pCO₂) [Cole and Caraco, 1998] that is based on 107 
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differences in pCO₂ between the lake surface and the atmosphere and an estimate of water 108 

turbulence or gas transfer velocity (k). Spatial scales of pCO₂ measurements within the water 109 

column are on the order of cubic centimeters and typically fixed in space. Estimation of k is 110 

typically based on empirically derived models using wind-speed, lake size, and/or water density 111 

gradients [Crusius and Wanninkhof, 2003; MacIntyre et al., 2010; Read et al., 2012]. k can also 112 

change in response to environmental conditions [Natchimuthu et al., 2016; Vachon and Prairie, 113 

2013]; moreover, estimation of k can vary by multiple orders of magnitude simply due to model 114 

choice [Dugan et al., 2016]. Recent pCO₂ studies have shown the scaling k from point 115 

measurements to the lake scale strongly underestimates emissions [Mammarella et al., 2015; 116 

Schubert et al., 2012]. New methods have been developed to quickly quantify spatial variation in 117 

pCO₂ and k [Bastviken et al., 2015; Crawford et al., 2015] and have revealed substantial spatial 118 

variations in pCO₂ and fluxes within individual lakes and reservoirs [L C Loken et al., 2019; 119 

Natchimuthu et al., 2016; Paranaíba et al., 2018]. Boundary layer methods have provided the 120 

most frequent and comprehensive understanding of CO2 exchange between lakes and the 121 

atmosphere, yet most assume spatial homogeneity and are reliant on physical lake models that 122 

have large uncertainty.   123 

A third approach for quantifying lake CO2 fluxes is eddy covariance (EC) [Morin et al., 124 

2018; Reed et al., 2018]. In contrast to the water-based approaches, EC uses measurements of 125 

concentrations of gas in the atmosphere along with high-frequency measurements of wind speeds 126 

in 3 dimensions. While this top-down flux method seems like the silver bullet for quantifying 127 

CO₂ flux, EC has several assumptions built into estimation and is spatially limited. It relies on 128 

measurement during windy periods and includes uncertainty of footprint models that estimate the 129 

area over which fluxes are being measured (i.e., the footprint), with a single flux estimate 130 
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integrating over 100’s of square meters. Turbulence and footprint issues can lead to upwards of 131 

80% of EC data being excluded [Reed et al., 2018]. EC estimates represent the average flux from 132 

a portion of the lake surface, which bias observations toward near-shore areas [Morin et al., 133 

2018] where most towers are located. Despite these limitations, EC offers a promising method 134 

for assessing carbon fluxes from lakes [Vesala et al., 2012].  135 

Because each technique for measuring carbon flux has its limitations, efforts have been 136 

made to compare these methods. However, these investigations have been limited to relatively 137 

short time periods [Erkkila et al., 2018; Podgrajsek et al., 2016; Schubert et al., 2012]. These 138 

authors found discrepancies among methods for quantifying CO₂ flux in both space and time. 139 

While estimates of carbon fluxes are critical for global carbon cycling, how best to measure lake-140 

atmosphere fluxes remains challenging and is an open question for the scientific community.  141 

In order to compare methods of quantifying lake-atmosphere fluxes of CO2, we leveraged 142 

multiple concurrent datasets from a single north temperate lake (Lake Mendota, Wisconsin, 143 

USA). This lake has been subject to prior CO2 flux investigations [L C Loken et al., 2019; Reed 144 

et al., 2018]. Here, we combined flux records based on measurements of pCO₂ at a moored buoy, 145 

measurements distributed across the entire lake surface, EC from a tower located at the end of a 146 

narrow peninsula, and FC. The overarching question of this work is: Are lake-atmosphere CO2 147 

flux estimates consistent among pCO₂, FC, and EC methods? Due to multiple temporal and 148 

spatial scales which the independent observations are taken over, we seek to answer the question 149 

using 1) analysis of flux distribution over multiple seasons, 2) quantifying cumulative sums of 150 

carbon flux, 3) direction comparison of methods, and 4) spectral time-series analysis of fluxes. 151 

 152 

2. Methods 153 
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2.1 Site Description  154 

Lake Mendota is a well-studied lake located in Southern Wisconsin, USA (43.1° N, 89.4° 155 

W) and is part of the North Temperate Lakes Long-Term Ecological Research (NTL-LTER) 156 

program. It is dimictic and eutrophic, with a surface area of 39.9 km
2
, a maximum depth of 25.3 157 

m (mean 12.7 m). The majority of the lake’s watershed is composed of agricultural and urban 158 

land uses, resulting in elevated nutrient concentrations and high productivity [Carpenter et al., 159 

2007]. Thermal stratification typically occurs between May and October and ice cover from late 160 

December through March. We defined seasons using water column temperature gradients with 161 

spring and fall as periods in which the water column was isothermal, while in summer the lake 162 

was thermally stratified.  163 

 164 

2.2 Flux Estimates 165 

2.2.1 Fixed point concentration gradient method (F-pCO₂) 166 

Since 2006, NTL-LTER has managed a monitoring buoy on Lake Mendota that is 167 

moored above the lake’s deepest point (43.0995°N, 89.4045°W). The buoy is equipped with 168 

meteorological and limnological sensors and is deployed seasonally (~April through October), 169 

capturing the majority of the ice-free season. In 2015, a Turner Designs C-sense pCO₂ sensor 170 

(Turner Designs, San Jose, USA; 3% accuracy) was added to the buoy and installed at 0.5 m 171 

depth. For this study, we used wind speed, surface water temperature, and surface pCO₂ 172 

[Magnuson et al., 2019]. Wind speed was measured at a height of 2.7 m above the lake surface 173 

using an anemometer (R. M. Young Marine Wind Monitor). Water temperature and pCO₂ were 174 

measured at a depth of 0.5m using a RBR concerto thermistor string and a Turner C-Sense CO₂ 175 

sonde, respectively. Wind speed and water temperature were measured every 30 minutes, while 176 
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pCO₂ was measured every 15 minutes. pCO2 in air was measured from an in situ spectroscopy 177 

gas analyzer (Picarro, inc. 4-Species Gas Analyzer) located at a nearby building, 178 

Using data collected at the buoy, we calculated the diffusive efflux of CO₂ from the lake 179 

surface to the atmosphere according to: 180 

𝐹𝑙𝑢𝑥 = 𝑘𝑔𝑎𝑠 𝑥 𝑘ℎ 𝑥 (𝑝CO₂𝑤𝑎𝑡𝑒𝑟 − 𝑝CO₂𝑎𝑖𝑟)   (1) 181 

This fixed-point boundary layer method (F-pCO₂) is based on the partial pressure gradient 182 

between the water (pCO₂water) and the atmosphere (pCO₂air). Multiplying this difference by the 183 

Henry’s law constant (kh) converts to molar units and by the gas transfer velocity (kgas) to 184 

generate diffusive flux estimates. We estimated kgas using concurrent wind speed and water 185 

temperature recorded at the buoy, applying the k600 model and Schmidt model coefficients 186 

provided in Raymond et al. [2013]. The Henry’s law constant (kh) was calculated using 187 

atmospheric pressure and temperature-dependence models provided in Plummer and Busenberg 188 

[1982] See L C Loken et al. [2019] for further description of the pCO₂ flux model. pCO₂ flux 189 

estimates were computed at 30-minute intervals. To temporally match observations between 190 

methods, a subset of F-pCO₂ was used from 8 a.m.-12:00 p.m., the time period that overlapped 191 

with the majority (>90%) of the spatially-explicit pCO₂ sampling times (described below). 192 

 193 

2.2.2 Spatial concentration gradient method (S-pCO₂) 194 

In addition to the F-pCO₂-based flux estimation at the buoy, we also compared flux 195 

estimates using pCO₂ measurements from the entire lake surface (S-pCO₂) from L C Loken et al. 196 

[2019]. For the entire ice-free period of 2016, [L C Loken et al., 2019] generated CO₂ efflux 197 

estimates at 988 points distributed in a gridded pattern across the lake surface. Efflux 198 

measurements were based on measurements of pCO2 that were distributed across the entire lake 199 
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surface. Similar to the F-pCO₂ method, efflux was calculated using the difference in pCO₂ 200 

between the water and the air. L C Loken et al. [2019] used a spatially explicit k model [Vachon 201 

and Prairie, 2013], which takes into account wind speed and direction and allows k to vary 202 

across the lake surface. pCO₂ measurements were collected over a ~3-hour window in the 203 

morning during each survey, and efflux was estimated at daily time scales. Two subsets of S-204 

pCO₂ data was used to quantify spatial variability, 10 stratified random points from the entire 205 

lake and S-pCO₂ measurement locations from within the EC footprint. 206 

 207 

2.2.3 Flux Chamber Diffusion Method (FC) 208 

We conducted four FC campaigns between July 6, 2017 and April 24, 2018. CO2 sensors 209 

(Sensair K30) were installed inside floating chambers with a diameter of 0.3 m and a height of 210 

0.12 m. Flux rates were calculated using the chamber dimensions (surface area and volume) and 211 

continuous pCO2 measurements within the enclosed headspace. Each 24-hr sampling campaign 212 

consisted of 7 sampling trips spaced every 4 hours with the goal of measuring flux rates over a 213 

complete diel cycle. For each measurement, we placed two chambers on the lake surface in the 214 

middle of the lake (same location as the buoy) and let them drift for 5 minutes. We repeated the 215 

FC procedure 3 times per chamber and calculated the average of the 6 flux measurements. CO2 216 

flux was calculated as:  217 

𝐹𝑙𝑢𝑥 =  
𝛥𝑝𝐶𝑂2 

∆𝑡 
 ×  

𝑉

𝑆𝐴
     (2) 218 

where V is the chamber volume (0.03114 m
3
), SA is the chamber bottom area (0.071 m²), and t 219 

is time (s). Prior to the first campaign, we calibrated all sensors using N2 gas and the “zero 220 

calibration” method per Bastviken et al. [2015]. For all subsequent campaigns we re-confirmed 221 

the zero CO2 readings using N2 gas. 222 
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 223 

2.2.4 Eddy Covariance Tower  224 

           Eddy covariance flux observations (Ameriflux site: US-PnP, doi: 225 

10.17190/AMF/1433376) were collected from a tower at the end of a ~50 m wide peninsula on 226 

the shore of Lake Mendota (Figure 1) starting on June 20, 2016. These flux observations were 227 

made with a sonic anemometer (CSAT3, Campbell Scientific, Logan UT, USA) and open-path 228 

infrared gas analyzer for CO2 and water vapor gas concentration (LI-7500A, Li-Cor, Lincoln, 229 

NE, USA) at a height of 12.4 m above the lake on a 0.95 m boom, along with measurements of 230 

air temperature and humidity (Vaisala, Inc. HMP45C). Measurements of incoming solar 231 

radiation and atmospheric pressure were collected from a nearby meteorological tower located 232 

on the roof of the Atmospheric, Oceanic, and Space Sciences building. 233 

Eddy fluxes were calculated based on the covariance of vertical wind velocity and scalar 234 

concentrations following the approach of Mauder and Foken [2015], with quality control flags 235 

for stationarity, integral turbulence, and propagates estimates of random error. Using an eddy 236 

flux surface flux footprint model [Kljun et al., 2015], we identified and removed non-lake data at 237 

30-minute time-scales, primarily when winds were from the forested portion of the peninsula. 238 

After footprint screening and quality control, 26% of data were remaining. 239 

 240 

2.3 Comparison of methods 241 

Flux estimates varied in temporal and spatial coverage (Table 1). EC-based fluxes were 242 

collected continuously since 2016. Buoy-based F-pCO2 estimates are also continuous since this 243 

time, with the exception of winter months. We only have S-pCO2 rates for the ice-free period of 244 

2016, which were collected ~weekly and daily rates were modelled by interpolating pCO2 245 



11 

 

through time (see L C Loken et al. [2019] for details). Thus, these three data sources (S-pCO2, F-246 

pCO2, and EC) overlapped throughout the ice-free period in 2016. We collected FC flux rates 247 

seasonally starting in summer 2017 (July 28-29, 2017, Oct 28-29, 2017, and April 23-24, 2018). 248 

Thus, there are three 24-hr intervals where FC, EC, and F-pCO2 estimates overlapped in time. In 249 

addition to temporal overlap, we must also consider spatial coverage as sampling sites varied 250 

among methods. Both the FC- and F-pCO2-based rates were determined at the center of the lake. 251 

The EC rates reflect the area surrounding the tower along the lake’s southern shoreline, and S-252 

pCO2 covered the entire lake surface (Figure 1).  253 

Because of varying temporal resolution among datasets, we converted all datasets to daily 254 

averages, representing the coarsest temporal scale. Using the S-pCO2 flux estimates, we 255 

generated two additional spatial datasets. First we randomly selected 10 stratified points from the 256 

entire lake to visualize spatial variability across the lake. Second, we subset the S-pCO2 dataset 257 

by only including flux estimates from within the EC footprint for a comparison between these 258 

two methods that was not confounded by differences in sampling areas. Cumulative fluxes from 259 

2016 were calculated from F-pCO2, S-pCO2, and EC observations. 260 

In addition to comparing similarity in seasonal pattern and magnitude, we also wanted to 261 

determine if the different methods exhibited similar temporal variance. To do so, we calculated 262 

Fourier power spectra of each daily time series. Data analysis was done in Matlab R2019a and 263 

IDL 8.6.0. 264 

 265 

3. Results  266 

3.1 Patterns among methods 267 
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Footprint modeling revealed that the EC footprint originated primarily from open water, 268 

with very little apparent input from the terrestrial peninsula (Figure 2a), with the distance of 269 

maximum contribution of fluxes on average being 40 m while the distance containing 80% of 270 

flux contribution was 410 m. Friction velocity (u*) values were high due to winds crossing the 271 

peninsula, showing increased turbulence due to the tree canopy (Figure 2b). While winds 272 

originated from all directions, wind speeds were lower over the peninsula as well (Figure 2c). 273 

These factors combined to limit the footprint along the narrow range of wind directions over the 274 

peninsula. 275 

In all years, F-pCO2 flux estimates followed a similar pattern of near-zero or slightly 276 

negative fluxes denoting CO2 movement from the atmosphere to the lake during spring and 277 

summer months before becoming strongly positive (net CO2 efflux from the lake to the 278 

atmosphere) in the fall (Figures 3, 4). Daily-averaged fluxes varied from -1.2 to 4.1 μm m
-2

 s
-1

 279 

across all dates with a CV of 8.42. This same pattern was also demonstrated by the S-pCO₂ 280 

method (Figures 3, 4), and flux estimates were similar in magnitude and direction as the F-pCO2 281 

results in 2016 (-0.39 to 1.6 μm m
-2

 s
-1

, CV of 6.34). The limited set of FC deployments also 282 

followed the same general pattern of CO2 influx to the lake in spring, a weaker influx during 283 

summer, and efflux in the fall (Figure 3b-d). However, the range of FC flux values were 284 

narrower than for the two pCO2-based methods (-1.6 to 2.1 μm m
-2

 s
-1

, CV of 8.72). 285 

Fluxes derived from the EC method were characterized by higher variation, often shifting 286 

from negative to positive fluxes within a period of 1-3 days. Daily-averaged fluxes varied from -287 

22.5 to 18 μm m
-2

 s
-1

, and the coefficient of variation was 3.13. There were no clear seasonal 288 

patterns in terms of magnitude, direction, or variance, although large CO2 uptakes were recorded 289 
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prior to ice-on in both 2016 and 2017 and negative- and smaller positive fluxes were more 290 

common during ice-covered winter days.  291 

 292 

3.2 Comparisons among methods 293 

Differences among methods were clearly illustrated when flux data were expressed as 294 

cumulative flux (Figure 5). All methods indicated the lake was a slight CO2 sink over the 295 

summer; however, estimates diverged substantially during fall. Both the S-pCO2 and F-pCO2 296 

methods consistently indicated CO2 flux into the lake all summer and substantial CO2 flux out of 297 

the lake during fall. At the end of the year, the cumulative flux based on F-pCO2 was 15% higher 298 

(43.4 vs 37.7 gC m
-2

) than flux based on S-pCO2, but both followed similar temporal trends. In 299 

contrast, the EC method suggested the lake fluctuated between CO2 source and sink behavior 300 

with a high degree of variability on the weekly time-scale. At the end of summer (day ~268), the 301 

EC-based cumulative flux was comparable to the boundary layer-based rates. However, during 302 

fall, once mixing begins, the EC cumulative flux became progressively more negative, 303 

suggesting the lake became a more substantial CO2 sink. 304 

CO2 fluxes based on FC (flux chamber) agreed in magnitude and direction with the F-305 

pCO2 during spring, summer, and fall (Figure 3b-d). Comparing FC with EC, the two methods 306 

disagreed in flux magnitude during summer and direction during fall.   307 

The discrepancy between methods could be caused by the temporal or spatial resolution 308 

of observations. The day-time EC data more closely aligned with the F-pCO₂ and S-pCO₂ results 309 

during the summer. These methods agreed that the daytime flux of CO2 during the summer was 310 

consistently into the lake. During the fall, the daytime EC fluxes remained negative, suggesting a 311 

consistent flux of CO2 into the lake. Spatially, the S-pCO₂ results within the EC footprint were 312 
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consistent with the majority of the S-pCO₂ data. This suggests the lake was relatively 313 

homogeneous in regard to flux rates, with subset S-pCO₂ locations showing ~20% variability in 314 

accumulated fluxes at the end of the year. Temporal subsets of EC data show differences during 315 

the summer with the full-day EC data, but ultimately small differences in accumulated fluxes at 316 

the end of the year. Average EC error was 38.9%, with larger accumulated errors during the fall. 317 

Directly comparing estimates using linear regression models further demonstrate the 318 

dissimilarity among methods. The two concentration gradient methods, F-pCO2 and S-pCO2, 319 

agreed in magnitude and direction (R² = 0.55, p value < 0.001; Figure 6a). When flux estimates 320 

were categorized by season, data from the summer were tightly clustered, while data from the 321 

fall were more scattered.  Comparing EC to S-pCO2 (Figure 6b), there was poor agreement (R
2
 = 322 

0.07; p = 0.03), and the regression model had a negative slope. Thus, daily flux rates using EC 323 

disagreed in direction with the concentration-based methods. 324 

Fourier power spectral decomposition (Figure 7) of daily flux from EC, F-pCO2 and S-325 

pCO2 data all had similar patterns over the quantifiable frequencies, with highest spectral power 326 

is seen in EC time-series, and S-pCO2, and finally F-pCO2. Seasonal and synoptic (3-10 day) 327 

variability dominate all three, though the EC tower also shows a sub-monthly (~20 day) mode of 328 

variability not seen in the other two. 329 

 330 

4. Discussion 331 

Few studies have used multiple measurements of long-term lake-atmosphere fluxes to 332 

address systemic biases in methods. Using concurrent long-term records from a single lake, we 333 

showed divergent behavior among flux estimates, particularly during the fall turnover period. 334 

EC-based calculations had large and opposing sign CO2 flux estimates compared to FC and 335 
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concentration gradient-based methods (F-pCO2 and S-pCO2). FC-based methods agreed in 336 

direction and magnitude as pCO2-based methods, however we lack sufficient FC coverage to 337 

interrogate the validity of this agreement. Together, these results suggest that at least for this lake 338 

and these estimates, EC and concentration gradient methods for estimating CO2 flux differ 339 

dramatically. 340 

The spatial and buoy-based concentration gradient estimates closely agreed. Both 341 

estimates followed similar seasonal patterns, indicating that the lake was taking in CO2 from the 342 

atmosphere during the summer, and emitted a substantial amount during the fall. The buoy-based 343 

data showed this seasonal phenology in three consecutive years [Reed et al., 2018], aligning with 344 

other studies of productive lakes [S Maberly, 1996] and the perception that productive lakes 345 

behave as CO2 sinks during the summer [Balmer and Downing, 2011]. The agreement between 346 

the spatial and buoy-based concentration data suggests low spatial heterogeneity in CO2 fluxes 347 

across the surface of Lake Mendota. On average most of the lake surface was within a within a 348 

0.2 µmol m
-2

 s
-1 

range in CO2 flux [L C Loken et al., 2019]. Thus, spatial variability is small 349 

compared to the seasonal variability from all our CO2 flux methods (Figures 3 and 5). However, 350 

spatial heterogeneity increased during fall turnover, making the buoy location less representative 351 

of the whole lake during this period [L C Loken et al., 2019]. During periods of chaotic water 352 

mixing, the representativeness of a single location decreases [Erkkila et al., 2018]. Thus, we 353 

suspect the discrepancies among methodologies during the summer season are not due to spatial 354 

heterogeneity in gas exchange across the lake surface. 355 

With a limited number of FC observations, FC data approximately matched F-pCO2 and 356 

S-pCO2 during the spring and summer. Comparing FC and F-pCO2 methods, López Bellido et al. 357 

[2009] found that FC were systematically higher than F-pCO2, due to site‐specific and time‐358 
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specific gas transfer velocities. They used daily concentration measurements and hence were not 359 

able to access daily patterns. Podgrajsek et al. [2014] found that FC and EC fluxes generally 360 

agreed, except when pCO2 varied within the EC footprint. This is expanded on to show higher 361 

eddy covariance CO2 fluxes at night relative to F-pCO2 and also that F-pCO2 methods need to 362 

account for convection within the water column [Podgrajsek et al., 2016]. Erkkila et al. [2018] 363 

found F-pCO2-based estimates were lower than EC while those based on FC were higher than 364 

EC estimates. Together, there does not appear to be an emerging trend among results, other than 365 

EC fluxes can be typically higher at night. 366 

k may be responsible for the discrepancy among flux estimates. The k model underlying 367 

our concentration gradient based methods may have not adequately portrayed turbulence at the 368 

lake surface. Convective mixing within the water column introduce error into F-pCO2 methods 369 

[Podgrajsek et al., 2016]. These models base k on wind speed, but the effects of individual wind 370 

events on lakes are highly variable. For example, two days with similar wind speed and direction 371 

likely do not have the identical patterns of surface turbulence, compounded with spatial 372 

variability of k across fine scales [L C Loken et al., 2019]. Ultimately, concentration gradient-373 

based estimates rely on measurements that have a spatial scale on the order of one liter, and 374 

while k parameter incorporates wind speed and convection at a broader scale, our k model does 375 

not account for processes at the finer scales. While only using short periods (1-3 days), Eugster 376 

et al. [2003] used eddy covariance and chambers from Alaska and Switzerland to show the 377 

importance of convective mixing due to lake-atmosphere fluxes, with significant differences 378 

between methods during periods of stratification and with deep, penetrative convection.  379 

Another possible explanation is potential biases in EC measurements during periods of 380 

low turbulence, complex turbulence, or advection. Morin et al. [2018] noted in a model study the 381 
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role of tower height and lake-land circulations in driving eddy transport that would be bias 382 

traditional flux calculation based on half-hourly Reynold’s decomposition. As the surface cools, 383 

enhanced low-level atmospheric stability may suppress turbulence, leading to larger than typical 384 

storage or advective contribution to surface fluxes [Lee et al., 2004]. As noted by Xu et al. 385 

[2019], below-sensor storage flux calculation can be critical to correcting tower-measured flux to 386 

represent surface flux, especially periods around sunrise and sunset. However, while we lack 387 

storage flux observations at this site or models of local circulation and turbulence on the 388 

peninsula, and there is no evidence in the data of a preferential circulation during fall or other 389 

periods of stable conditions. Further work on data quality filtering of EC over lakes is necessary 390 

to build confidence in its use over lakes. 391 

EC may have other benefits, even when subject to potential systematic bias. Here, when 392 

examining the spectral density of the multiple observations, the EC observations show a 20-30 393 

day frequency not observed by the other methods, including the similarly high frequency buoy 394 

measurements. Eugster et al. [2003] also concludes that EC methods should be used in order to 395 

collect process-scale data from the full season. Similarly, Podgrajsek et al. [2016] suggests the 396 

high temporal resolution of EC is crucial to resolve diel changes in flux, combined with 397 

measurements within the water column with high (30 minute) frequency. Reed et al. [2018] used 398 

a different EC observation dataset on Lake Mendota, not used here due to a large amount of gaps 399 

from that tower’s location during the study period, but showed high degrees of coherence 400 

between CO2 flux and air temperature at a similar sub-monthly (20-30 day) timescale. An 401 

emerging trend in aquatic flux literature is this monthly timescale of variation where Liu et al. 402 

[2011]; Liu et al. [2016] connect synoptic weather patterns to mixing, and Shao et al. [2015] and 403 
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Ouyang et al. [2017] show monthly correlation between CO₂ flux and chlorophyll and algal 404 

blooms.  405 

There are ways to capture this 20-30 day timescale without high temporal coverage. 406 

Previously Natchimuthu et al. [2016] used a long-term FC dataset and then sub-sampling the 407 

observations following the methods of Wik et al. [2016]. They concluded that only ≥8 408 

measurement days, distributed over multiple seasons, and high enough spatial coverage (≥8 409 

locations during summer, ≤5 during spring and fall) are key for representative (± 20%) flux 410 

estimates at the annual timescale. However, they note that the flux estimates would be biased if 411 

observations excluded episodic events such as lake circulation patterns, diel or seasonal 412 

variation, or high flux areas from a lake. Given the mismatch between what the EC literature is 413 

concluding about needing high temporal resolution observations and the FC literature about only 414 

needing ≥8 days for CO₂ [Natchimuthu et al., 2016], with a lower average flux [Wik et al., 2016], 415 

we argue that while it is possible to estimate annual fluxes from a small number of sample days, 416 

functionally we think it would be difficult to observe only 8 days of FC fluxes and have a high 417 

degree of confidence that we have captured the temporal processes needed. Ultimately, we do 418 

judge the flux signal found at the 20-30 day frequency as important and the best way to capture 419 

appears to be EC methods. 420 

 421 

5. Conclusions 422 

While major advances have been made, quantifying lake-atmosphere fluxes from 423 

individual lakes over multiple spatial and temporal scales, remains a challenge. We are becoming 424 

more aware of the importance of lakes in global and local carbon cycles. Accurately accounting 425 
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for temporally and spatially heterogeneity in the flux of carbon across lake surfaces is vital for 426 

incorporation and constraining process-based predictions within lake models. 427 

Overall, there is a need for increased spatiotemporal resolution in studies of CO2 428 

exchange between lakes and the atmosphere. Long term temporal data collection is essential to 429 

capture, diel, 20-30 day, and seasonal patterns. Spatially, there is still an open question as to 430 

which method is capturing flux magnitude correctly, as each method integrates different 431 

processes into the observation. This is done most explicitly when choosing between multiple k 432 

models but is also implicated when screening EC data. There is no emerging trend in magnitude 433 

or direction between methods and additional work is needed to bridge spatiotemporal scales.  434 

 435 
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https://doi.org/10.6073/pasta/f6a915989753aba6f18b6b095e7a52d0.  452 

  453 

 454 



20 

 

References 455 

Balmer, M. B., and J. A. Downing (2011), Carbon dioxide concentrations in eutrophic lakes: undersaturation implies 456 

atmospheric uptake, Inland Waters, 1(2), 125-132. 457 

Bastviken, D., I. Sundgren, S. Natchimuthu, H. Reyier, and M. Gålfalk (2015), Cost-efficient approaches to measure 458 

carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, 459 

Biogeosciences, 12(12), 3849-3859. 460 

Biddanda, B. (2017), Global significance of the changing freshwater carbon cycle, Eos. 461 

Carpenter, S. R., B. J. Benson, R. Biggs, J. W. Chipman, J. A. Foley, S. A. Golding, R. B. Hammer, P. C. Hanson, 462 

P. T. Johnson, and A. M. Kamarainen (2007), Understanding regional change: a comparison of two lake districts, 463 

Bioscience, 57(4), 323-335. 464 

Chmiel, H. E., H. Hofmann, S. Sobek, T. Efremova, and N. Pasche (2019), Where does the river end? Drivers of 465 

spatiotemporal variability in CO 466 

 2 467 

 concentration and flux in the inflow area of a large boreal lake, Limnology and Oceanography, n/a(n/a), doi: 468 

10.1002/lno.11378. 469 

Cole, J. J., and N. F. Caraco (1998), Atmospheric exchange of carbon dioxide in a low‐wind oligotrophic lake 470 

measured by the addition of SF6, Limnology and Oceanography, 43(4), 647-656. 471 

Cole, J. J., et al. (2007), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon 472 

budget, Ecosystems, 10(1), 171-184, doi: 10.1007/s10021-006-9013-8. 473 

Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling (2014), Sunlight controls water column processing of 474 

carbon in arctic fresh waters, Science, 345(6199), 925-928. 475 

Crawford, J. T., L. C. Loken, N. J. Casson, C. Smith, A. G. Stone, and L. A. Winslow (2015), High-Speed 476 

Limnology: Using Advanced Sensors to Investigate Spatial Variability in Biogeochemistry and Hydrology, 477 

Environmental Science & Technology, 49(1), 442-450, doi: 10.1021/es504773x. 478 

Crusius, J., and R. Wanninkhof (2003), Gas transfer velocities measured at low wind speed over a lake, Limnology 479 

and Oceanography, 48(3), 1010-1017. 480 

Denfeld, B. A., M. Ricão Canelhas, G. A. Weyhenmeyer, S. Bertilsson, A. Eiler, and D. Bastviken (2016), 481 

Constraints on methane oxidation in ice-covered boreal lakes, Journal of Geophysical Research: Biogeosciences, 482 

121(7), 1924-1933, doi: 10.1002/2016jg003382. 483 

Desai, A. (2018), AmeriFlux US-Pnp Lake Mendota, Picnic Point Site, edited, ; AmeriFlux; University of 484 

Wisconsin Madison. 485 

Desai, A. R. (2019), GLEON DC-FLUX Lake Mendota floating chamber carbon dioxide flux, 2017-2018, 486 

Environmental Data Initiative, doi: doi:10.6073/pasta/1178a60f9e3997e3c3ad25ab6d6250fc. 487 

Duc, N. T., S. Silverstein, L. Lundmark, H. Reyier, P. Crill, and D. Bastviken (2012), Automated flux chamber for 488 

investigating gas flux at water–air interfaces, Environmental science & technology, 47(2), 968-975. 489 

Dugan, H. A., R. I. Woolway, A. B. Santoso, J. R. Corman, A. Jaimes, E. R. Nodine, V. P. Patil, J. A. Zwart, J. A. 490 

Brentrup, and A. L. Hetherington (2016), Consequences of gas flux model choice on the interpretation of metabolic 491 

balance across 15 lakes, Inland Waters, 6(4), 581-592. 492 

Erkkila, K.-M., A. Ojala, D. Bastviken, T. Biermann, J. J. Heiskanen, A. Lindroth, O. Peltola, M. Rantakari, T. 493 

Vesala, and I. Mammarella (2018), Methane and carbon dioxide fluxes over a lake: comparison between eddy 494 

covariance, floating chambers and boundary layer method, Biogeosciences, 15(2), 429-445. 495 

Eugster, W., G. Kling, T. Jonas, J. P. McFadden, A. Wüest, S. MacIntyre, and F. S. Chapin III (2003), CO2 496 

exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing, 497 

Journal of Geophysical Research: Atmospheres, 108(D12). 498 

Jonsson, A., J. Åberg, A. Lindroth, and M. Jansson (2008), Gas transfer rate and CO2 flux between an unproductive 499 

lake and the atmosphere in northern Sweden, Journal of Geophysical Research: Biogeosciences, 113(G4), doi: 500 

10.1029/2008jg000688. 501 

Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid (2015), A simple two-dimensional parameterisation for Flux 502 

Footprint Prediction (FFP), Geosci. Model Dev., 8(11), 3695-3713, doi: 10.5194/gmd-8-3695-2015. 503 

Lee, X., W. Massman, and B. Law (2004), Handbook of Micrometeorology: A Guide for Surface Flux Measurement 504 

and Analysis, Kluwer, Dordrecht, The Netherlands. 505 

Liu, H., P. D. Blanken, T. Weidinger, A. Nordbo, and T. Vesala (2011), Variability in cold front activities 506 

modulating cool-season evaporation from a southern inland water in the USA, Environmental research letters, 6(2), 507 

024022. 508 



21 

 

Liu, H., Q. Zhang, G. G. Katul, J. J. Cole, F. S. Chapin III, and S. MacIntyre (2016), Large CO2 effluxes at night 509 

and during synoptic weather events significantly contribute to CO2 emissions from a reservoir, Environmental 510 

Research Letters, 11(6), 064001. 511 

Loken, L., E. Stanley, P. Schramm, and M. Gahler (2019), Spatial surface water chemistry of Lake Mendota with 512 

FLAMe: 2014-2016. 513 

Loken, L. C., J. T. Crawford, P. J. Schramm, P. Stadler, A. R. Desai, and E. H. Stanley (2019), Large Spatial and 514 

Temporal Variability of Carbon Dioxide and Methane in a Eutrophic Lake, J Geophys Res-Biogeo, 124(7), 2248-515 

2266, doi: 10.1029/2019jg005186. 516 

López Bellido, J., T. Tulonen, P. Kankaala, and A. Ojala (2009), CO2 and CH4 fluxes during spring and autumn 517 

mixing periods in a boreal lake (Pääjärvi, southern Finland), Journal of Geophysical Research: Biogeosciences, 518 

114(G4), doi: 10.1029/2009jg000923. 519 

Maberly, S. (1996), Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a 520 

productive lake, Freshwater Biology, 35(3), 579-598. 521 

Maberly, S. C., P. A. Barker, A. W. Stott, and M. M. De Ville (2013), Catchment productivity controls CO2 522 

emissions from lakes, Nature Climate Change, 3(4), 391-394, doi: 10.1038/Nclimate1748. 523 

MacIntyre, S., A. Jonsson, M. Jansson, J. Aberg, D. E. Turney, and S. D. Miller (2010), Buoyancy flux, turbulence, 524 

and the gas transfer coefficient in a stratified lake, Geophysical Research Letters, 37(24). 525 

Magnuson, J., S. Carpenter, and E. Stanley (2019), North Temperate Lakes LTER: High Frequency Water 526 

Temperature Data-Lake Mendota Buoy 2006-current. 527 

Mammarella, I., A. Nordbo, Ü. Rannik, S. Haapanala, J. Levula, H. Laakso, A. Ojala, O. Peltola, J. Heiskanen, and 528 

J. Pumpanen (2015), Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland, Journal of 529 

Geophysical Research: Biogeosciences, 120(7), 1296-1314. 530 

Martinsen, K. T., T. Kragh, and K. Sand-Jensen (2018), Technical note: A simple and cost-efficient automated 531 

floating chamber for continuous measurements of carbon dioxide gas flux on lakes, Biogeosciences, 15(18), 5565-532 

5573, doi: 10.5194/bg-15-5565-2018. 533 

Mauder, M., and T. Foken (2015), Documentation and Instruction Manual of the Eddy-Covariance Software 534 

Package TK3 (update), Univ., Abt. Mikrometeorologie. 535 

Morin, T., A. Rey-Sánchez, C. Vogel, A. Matheny, W. Kenny, and G. Bohrer (2018), Carbon dioxide emissions 536 

from an oligotrophic temperate lake: An eddy covariance approach, Ecological Engineering, 114, 25-33. 537 

Natchimuthu, S., I. Sundgren, M. Gålfalk, L. Klemedtsson, P. Crill, Å. Danielsson, and D. Bastviken (2016), Spatio‐538 

temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates, Limnology and 539 

Oceanography, 61(S1), S13-S26. 540 

Ouyang, Z., C. Shao, H. Chu, R. Becker, T. Bridgeman, C. Stepien, R. John, and J. Chen (2017), The effect of algal 541 

blooms on carbon emissions in western Lake Erie: An integration of remote sensing and eddy covariance 542 

measurements, Remote Sensing, 9(1), 44. 543 

Paranaíba, J. R., N. Barros, R. Mendonça, A. Linkhorst, A. Isidorova, F. Roland, R. M. Almeida, and S. Sobek 544 

(2018), Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly 545 

Influence Carbon-Emission Estimates of Reservoirs, Environmental Science & Technology, 52(2), 607-615, doi: 546 

10.1021/acs.est.7b05138. 547 

Plummer, L. N., and E. Busenberg (1982), The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions 548 

between 0 and 90 C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochimica et 549 

cosmochimica acta, 46(6), 1011-1040. 550 

Podgrajsek, E., E. Sahlée, and A. Rutgersson (2014), Diurnal cycle of lake methane flux, Journal of Geophysical 551 

Research: Biogeosciences, 119(3), 236-248. 552 

Podgrajsek, E., E. Sahlée, D. Bastviken, S. Natchimuthu, N. Kljun, H. Chmiel, L. Klemedtsson, and A. Rutgersson 553 

(2016), Methane fluxes from a small boreal lake measured with the eddy covariance method, Limnology and 554 

Oceanography, 61(S1), S41-S50. 555 

Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. 556 

Mayorga, and C. Humborg (2013), Global carbon dioxide emissions from inland waters, Nature, 503(7476), 355. 557 

Read, J. S., et al. (2012), Lake-size dependency of wind shear and convection as controls on gas exchange, 558 

Geophysical Research Letters, 39(9), L09405, doi: Artn L09405 559 

10.1029/2012gl051886. 560 

Reed, D. E., H. A. Dugan, A. L. Flannery, and A. R. Desai (2018), Carbon sink and source dynamics of a eutrophic 561 

deep lake using multiple flux observations over multiple years, Limnology and Oceanography Letters, 3(3), 285-562 

292, doi: 10.1002/lol2.10075. 563 



22 

 

Schubert, C. J., T. Diem, and W. Eugster (2012), Methane emissions from a small wind shielded lake determined by 564 

eddy covariance, flux chambers, anchored funnels, and boundary model calculations: A comparison, Environmental 565 

science & technology, 46(8), 4515-4522. 566 

Shao, C., J. Chen, C. A. Stepien, H. Chu, Z. Ouyang, T. B. Bridgeman, K. P. Czajkowski, R. H. Becker, and R. John 567 

(2015), Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case 568 

study in Western Lake Erie, Journal of Geophysical Research: Biogeosciences, 120(8), 1587-1604. 569 

Tangen, B. A., R. G. Finocchiaro, R. A. Gleason, and C. F. Dahl (2016), Greenhouse Gas Fluxes of a Shallow Lake 570 

in South-Central North Dakota, USA, Wetlands, 36(4), 779-787, doi: 10.1007/s13157-016-0782-3. 571 

Tranvik, L. J., et al. (2009), Lakes and reservoirs as regulators of carbon cycling and climate, Limnology and 572 

Oceanography, 54(6), 2298-2314, doi: DOI 10.4319/lo.2009.54.6_part_2.2298. 573 

Vachon, D., and Y. T. Prairie (2013), The ecosystem size and shape dependence of gas transfer velocity versus wind 574 

speed relationships in lakes, Canadian Journal of Fisheries and Aquatic Sciences, 70(12), 1757-1764, doi: 575 

10.1139/cjfas-2013-0241. 576 

Vachon, D., Y. T. Prairie, and J. J. Cole (2010), The relationship between near-surface turbulence and gas transfer 577 

velocity in freshwater systems and its implications for floating chamber measurements of gas exchange, Limnology 578 

and Oceanography, 55(4), 1723-1732, doi: 10.4319/lo.2010.55.4.1723. 579 

Vesala, T., W. Eugster, and A. Ojala (2012), Eddy covariance measurements over lakes, in Eddy covariance, edited, 580 

pp. 365-376, Springer. 581 

Wik, M., B. F. Thornton, D. Bastviken, J. Uhlbäck, and P. M. Crill (2016), Biased sampling of methane release from 582 

northern lakes: A problem for extrapolation, Geophysical research letters, 43(3), 1256-1262. 583 

Williamson, C. E., J. E. Saros, W. F. Vincent, and J. P. Smol (2009), Lakes and reservoirs as sentinels, integrators, 584 

and regulators of climate change, Limnology and Oceanography, 54(6part2), 2273-2282. 585 

Xu, K., N. Pingintha-Durden, H. Luo, D. Durden, C. Sturtevant, A. R. Desai, C. Florian, and S. Metzger (2019), The 586 

eddy-covariance storage term in air: Consistent community resources improve flux measurement reliability, 587 

Agricultural and Forest Meteorology, 279, 107734, doi: https://doi.org/10.1016/j.agrformet.2019.107734. 588 

  589 

https://doi.org/10.1016/j.agrformet.2019.107734


23 

 

Tables 590 

Table 1. Temporal duration, water/gas sampling frequency, and spatial extent and resolution for the four methods used to estimate 591 

CO2 fluxes in Lake Mendota between 2016 and 2018, along with data availability information. 592 

Method Measurement period 

Sampling 

frequency  Spatial extent 

Spatial 

resolution Citation 

Fixed point concentration 

gradient (F-pCO2) 

Open Water Seasons 

(approx. April-Oct) 

2016 15 min Single point 10 cm
3
 

Magnuson 

et al. [2019] 

Spatial concentration gradient 

(S-pCO2) Mar-Dec 2016 14 d  whole lake 200 m
2
 

L Loken et 

al. [2019] 

Flux chamber diffusion (FC) 

4 measurement 

campaigns, Jul 2017 

– Apr 2018 

5 min 

sampling, 

every 4 hours 

for 24 hours Single point 0.28 m
2
 

A R Desai 

[2019] 

Eddy covariance (EC) 

June 2016-August 

2018 30 min 1 km
2
 1 km

2
 

A Desai 

[2018] 



24 

 

 593 

Figures 594 

Figure 1 595 

Panel (a) Lake Mendota. Buoy (yellow) is deployed in the deepest part of the lake and is the 596 

location for the F-pCO₂ and FC flux estimates. The red circles are a stratified selection of data 597 

points from the S-pCO₂ method used in Figure 5. Grid section (orange with a center circle) of EC 598 

tower location and 1 km
2
 footprint. Panel (b) 2016 average daily air (blue) and surface water 599 

(black) temperatures. Spatial gradient concentration measurements were taken on the 2016 days 600 

of year indicated by the (25 orange) vertical lines. Dashed line (gray) at 20°C used to symbolize 601 

phenology. Summer stratification is generally when surface waters were above 20°C, while 602 

spring and fall mixing occurred below this water temperature. 603 

 604 

 605 

  606 
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Figure 2 607 

Panel (a) Map of picnic point EC tower and contributing footprint showing the distance of 608 

maximum flux and distance of 80% of the footprint. Average friction velocity (u*, panel b) and 609 

wind speed (panel c) measured from the eddy covariance tower, shown in 10° bins. 610 

  611 
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Figure 3 612 

Panel A: Multi-year time series of mean daily CO2 flux. F-pCO₂, fixed gradient concentration 613 

method, recorded from a stationary buoy (purple), S-pCO₂, spatial gradient concentration 614 

method, recorded by a moving boat (orange), and eddy covariance (green). Dates of flux 615 

chamber measurements shown as brown dotted vertical line. Panels B-D: Hourly three day 616 

subsets from spring, summer, and fall, centered on when FC data was collected. F-pCO₂ (purple), 617 

and EC (green) being 30-minute data, and FC (brown) are every 4 hours for a diel cycle.  618 

 619 

620 
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Figure 4 621 

Histograms of seasonal daily CO₂ gas fluxes. Spatial S-pCO₂ fluxes (orange), fixed F-pCO₂ 622 

fluxes (purple), EC fluxes (green) for spring 2016 to spring 2018 and three seasons of FC mean 623 

fluxes in 2016 (brown). 624 

 625 

 626 
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Figure 5 628 

Cumulative summation of lake-atmosphere CO2 fluxes. Flux estimates using the S-pCO₂ method 629 

(bold orange), from ten random points across the lake (orange), and within the tower footprint 630 

(orange dashed line), EC (green) and EC only during day (8AM-12PM, green dashed line), and 631 

the F-pCO₂, method (purple) and fixed boundary layer method during the day (8AM-12PM, 632 

purple dashed line). 633 

634 
  635 
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Figure 6 Daily mean S-pCO fluxes versus F-pCO₂ (panel a) and EC (panel b). Summer data are 636 

plotted as open circles, fall data as *. Linear regression line (dashed) and one-to-one line 637 

(dotted). Statistics (p and R
2
) for linear regression included. 638 

 639 

  640 
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Figure 7 Fourier power spectral decomposition of daily EC (green), F-pCO₂ (purple) and S-pCO₂ 641 

(orange) CO2 flux. 642 

 643 


