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Abstract: 11 

Observational estimates of global top-of-atmosphere radiation on monthly, seasonal, 12 

annual, and longer time-scales require estimates of the diurnal variability in insolation and 13 

the asymmetry of surface and atmospheric reflection. We compare EPIC and NISTAR 14 

observations from the DSCOVR satellite with CERES hourly synoptic fluxes, which are filled 15 

through geostationary observations, and find that a Fourier analysis of these data 16 

substantially agree, showing strong relative power at sub-diurnal, diurnal, seasonal, and 17 

annual time-scales, and power growing from diurnal to seasonal time-scales.  Frequency 18 

analysis of fluxes from several models shows that they distribute too much power over 19 

periods greater than 1 day but less than one year, indicating that a closer look is needed 20 

into how models achieve longer-term stability in reflected shortwave radiation.  Model 21 

developers can consider using these datasets for time-varying energetic constraints, since 22 

tuning parameter choices will impact modeled planetary shortwave radiation across 23 

timescales ranging from sub-diurnal to decadal.  24 

 25 
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Key Points: 27 

 We present the first intercomparison of observational estimates of the Earth’s 28 

albedo at sub-diurnal through inter-annual time-scales. 29 

 These observational estimates, from CERES, EPIC, and NISTAR, are in consensus, 30 

and can therefore be used to confront models. 31 

 Model estimates of planetary albedo show that models mostly disagree with 32 

observations at time-scales of longer than one day.   33 

 34 

Plain-Language Summary: 35 

The balance between incoming solar and outgoing thermal energy exerts a strong influence 36 

on the Earth’s climate.  The part of the incoming solar energy that is reflected back to space 37 

is called albedo.  Even a slight change in albedo would dwarf the impacts of greenhouse 38 

gases, but direct observations indicate that on time-scales longer than a few years, it is 39 

remarkably stable and has been for decades.  However, this albedo does fluctuate greatly at 40 

shorter time-scales, meaning that the underlying causes that ultimately shape albedo 41 

interact in a variety of ways to achieve this stability.  Using novel data, we present three 42 

different observational estimates of how this reflected energy varies at these shorter time-43 

scales, and they all substantially concur. However, a wide variety of climate models do not 44 

capture the observed variability, suggesting that further model developments is needed to 45 

better represent the underlying contributions to the Earth’s albedo and the causes for its 46 

stability to date. 47 

 48 
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Introduction: 54 

Modeling centers have recognized that the achievement of a long-term top-of-atmosphere 55 

(TOA) energy imbalance of less than 1 W/m2 is a prerequisite that their models must 56 

achieve to produce credible historical simulations and future projections of the Earth’s 57 

climate system [Willis et al, 2004; Hansen et al, 2005].  As part of the development process, 58 

model component interactions and model free parameters are tuned so that the version of 59 

each model that reports to publicly-available repositories yields results that lie within that 60 

range [Mauritsen et al, 2012; Golaz et al, 2013; Hourdin et al, 2017; Schmidt et al, 2017]. 61 

While there are other observational constraints on model tuning many of which vary from 62 

model to model, the TOA radiative tuning approach is, as far the publications to date on 63 

tuning indicate, generally consistent across models. 64 

 65 

TOA radiative fluxes, specifically reflected shortwave and outgoing longwave radiation, are 66 

derived from NASA’s Clouds and Earth’s Radiant Energy System (CERES) mission [Wielicki 67 

et al, 1996; Loeb et al, 2009] and form the observational basis for model tuning.  That 68 

mission directly measures broadband radiances at a fixed set of local solar hours, and from 69 

these derives best-estimates of the spatially-resolved broadband, diurnally-averaged 70 

shortwave and longwave fluxes at the TOA [Loeb et al, 2018].  However, there are 71 

numerous steps involved in the process chain to develop these fluxes.  With respect to 72 

reflected shortwave radiation, and the associated unitless quantity of planetary albedo, 73 

some of these steps, most notably the development of diurnal averages from sun-74 

synchronous observations, have received relatively little scrutiny.   75 

 76 

At the same time, the importance of diurnal variability in shortwave reflection for models 77 

has long been recognized (e.g., [Bergman and Salby, 1997]). More recently, it was suggested 78 

that the diurnal cycle of clouds could be important to understand constraints on cloud 79 

adjustments and identify where models redistribute clouds in a warmer climate [Webb et 80 

al, 2015].  Over land, cloud diurnal cycles, especially, are not well-captured by models [Yin 81 

and Porporato, 2017].  Model errors in the diurnal cycle of cloud fraction (DCC) have been 82 

suggested to be the result of tuning the models without properly capturing the processes 83 

controlling the DCC over land [ibid].  Recent work has shown that Earth System Model 84 
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tuning for centennial-length simulations can be developed from ensembles of 3-day model 85 

runs that better explore structural vs. parametric error [Qian et al, 2018], suggesting that 86 

model constraints at high frequencies are warranted. 87 

 88 

In spite of the recognized importance of diurnal variability in reflected shortwave radiation 89 

(RSR), the lack of scrutiny of this quantity is due primarily to a lack of observational 90 

datasets that directly measure RSR across the diurnal cycle.  To date, the approach has 91 

been to fill in the gaps in the diurnal cycle in direct broadband radiance observations from 92 

CERES data with geostationary observations, where the latter dataset provides high-93 

frequency observations over a limited set of wavelengths [Doelling et al, 2013].  This 94 

diurnal filling has been tested with data from the Geostationary Earth Radiation Budget 95 

(GERB) mission [Clerbaux et al, 2009], but only over the Meteosat domain (60°S–60°N, 96 

60°W–60°E).  Global testing of the filling algorithms is warranted. 97 

 98 

Instruments from the Deep Space Climate Observatory (DSCOVR) spacecraft provide more, 99 

and potentially complete, information about the diurnal cycle of shortwave radiation, 100 

because the spacecraft resides at the L-1 Lagrange Point between the Earth and the Sun 101 

and continuously observes almost all of the illuminated portion of the Earth from that 102 

vantage point [Burt and Smith, 2012; Marshak et al, 2018].  By virtue of DSCOVR’s viewing 103 

geometry, there may be additional information about the diurnal cycle in radiative fluxes 104 

from DSCOVR beyond what has been observed previously.  The DSCOVR spacecraft has two 105 

primary instruments onboard that are of direct relevance to shortwave radiation 106 

observations: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of 107 

Standards and Technology Advanced Radiometer (NISTAR).  Recent work has shown how 108 

data from these instruments can be used to produce globally averaged broadband 109 

shortwave fluxes [Su et al, 2018; Su et al, 2020]. These data can be used to directly test the 110 

diurnal filling algorithms, establish the temporal structure of variability by which the Earth 111 

achieves albedo stability, and evaluate whether models capture this structure. 112 

 113 

Here, we first compare fluxes derived from the CERES diurnal filling algorithm with fluxes 114 

derived from EPIC and NISTAR, and then evaluate the skill that models exhibit in 115 
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reproducing the observed modes of variability.  From these results, we conclude by 116 

discussing how high-frequency observations may be useful for model development. 117 

 118 

Materials and Methods: 119 

Here, we use three distinct observational datasets.  First, we use the CERES Synoptic hourly 120 

shortwave radiative flux product, Edition 4.1 [Rutan et al, 2015]. Second, we use the hourly 121 

flux product produced from EPIC narrow-band radiances [Su et al, 2018], and third, we use 122 

the hourly fluxes produces from NISTAR Band-B radiances [Su et al, 2020].  These datasets 123 

were collected covering 2017 and 2018, and all datasets use the same angular distribution 124 

modeling (ADM) framework built from CERES [Loeb et al, 2003; Su et al, 2015]. We 125 

recognize the potential challenges of using CERES ADMs on data acquired with a 126 

substantially different viewing geometry, and will discuss implications thereof at the 127 

conclusion of this paper. 128 

 129 

For comparing observations to models, data from the CMIP5 [Taylor et al, 2012] archive is 130 

used. Model radiative fluxes are taken from the Atmospheric Model Intercomparison 131 

Project (AMIP) which provides 3-hourly flux values for 1 year and includes the following 132 

models: CNRM-CM5 [Voldoire et al, 2013], MRI-CGCM3 [Yukimoto et al, 2012], and 133 

HadGEM2-ES [Jones et al, 2011], and 21 years for the CanESM2 model. The 3-hourly fluxes 134 

are convolved with a mask with the time-varying portion of the Earth that is within the 135 

field-of-view of the DSCOVR instrument, and this convolution is area-averaged to produce 136 

global fluxes.   137 

 138 

We focus on observational datasets from 2017-2018, and frequency analysis is conducted 139 

on detrended flux time-series using fast Fourier Transforms. We perform discrete Fast 140 

Fourier Transforms on RSR time-series and display power spectral density (PSD) functions. 141 

For cross PSD, we use a Welch’s averaged, modified periodogram method of spectral 142 

estimation (Matlab’s cpsd function).  Uncertainty in frequency analysis is developed using 143 

bootstrap methods, wherein we selectively remove data and determine statistical 144 

distributions for the range in power at a given frequency, assuming that spectral density 145 

power is a normally-distributed random variable [Hall et al, 2004]. 146 
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 147 

Results: 148 

We first present the three time-series of observationally-derived reflected shortwave 149 

radiation (RSR) from CERES SYN, EPIC, and NISTAR, shown in Figure 1(a).  These data 150 

show a seasonal cycle and numerous sub-seasonal modes of variability across a wide range 151 

of time-scales, indicating that frequency analysis of these observations is warranted.  152 

Figure 1(b) presents a difference plot between the NISTAR or EPIC and CERES SYN and 153 

shows negligible differences between the EPIC and CERES SYN RSR time-series (+1.1±3.9 154 

(1σ) W/m2), though there are much more significant differences in fluxes between them 155 

and those from the NISTAR instrument (+11.9±7.9 (1σ) W/m2).  RSR from EPIC and 156 

NISTAR are highly correlated with the RSR from CERES SYN [Su et al, 2018; 2020]. 157 

 158 

The DSCOVR Science Team has investigated this RSR discrepancy and found that some of 159 

this discrepancy can be due to uncertainty in the transmission function of the filter wheel, 160 

as elaborated in Su et al [2020]. The differences between CERES SYN/EPIC and CERES 161 

SYN/NISTAR are plotted in Figure 1(b).   162 

 163 

There are a number of periodic features in the RSR datasets.  We will start by discussing 164 

the prominent features in observed PSDs.  First, the diurnal cycle of RSR is a major feature 165 

of the time-series.  It arises primarily due to the large difference in surface reflectivity 166 

between the Earth when Africa and Europe are illuminated vs. when the Pacific Ocean is 167 

illuminated.   The diurnal cycles of RSR as determined from EPIC and CERES SYN fluxes are 168 

similar, as shown in Figure 1(c), while those from NISTAR are systematically higher than 169 

the other datasets due to the issues discussed above. All three datasets show similar 170 

diurnal variations.   The PSDs of the three estimates of RSR are shown in Figure 1(d), 171 

normalized by the maximum power at any period, and indicate that there is substantial 172 

agreement in relative strength in modes of variability in the three time-series.  There are 173 

major sources of variability at diurnal time-scales, but also secondary sources of variability 174 

at shorter periods, including at 6, 8, and 12 hours.  There are also non-prominent features 175 

at periods longer than one day, for which CERES and EPIC have slightly larger 176 
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disagreement.  The upward slope of the PSD with period length indicates that there are a 177 

number of processes that occur at irregular intervals that contribute to variability in RSR. 178 

 179 

Building off of the substantial agreement in the modes of variability in all-sky RSR fluxes 180 

from CERES, EPIC, and NISTAR, it is reasonable to explore the modes of variability in RSR in 181 

more detail to understand the impact of clouds on that quantity.  The panels in Figure 2 182 

indicate the contribution of clouds to the variability in RSR.  Figure 2(a) shows the power 183 

spectral density function of both clear-sky and all-sky CERES SYN fluxes, where the former 184 

is estimated by calculating fluxes based on measurements of the atmospheric state, 185 

including surface albedo, aerosols, and water vapor, largely based on data from other, 186 

collocated satellites [Rutan et al, 2015], whereas the latter is derived from CERES radiance 187 

measurements directly.   Figure 2(b) shows the cross spectral density function of clear-sky 188 

and all-sky CERES SYN fluxes and reveals, at periods of 2 hours and longer, the most 189 

prominent power at 1 day, and potentially power at seasonal time-scales.  These features 190 

indicate that clouds tend to modulate and suppress the variability in RSR that would 191 

otherwise exist in the absence of clouds.  That is, the more frequent occurrence of clouds 192 

over dark ocean areas reduces the albedo difference between marine and bright, relatively 193 

cloud-free land surfaces.  Below seasonal time-scales, most of the modulation in variability 194 

occurs at 1-day periods, but there are non-negligible effects at sub-diurnal periods.  These 195 

features are impacted by the contrast between RSR over the portion of the daylit Earth that 196 

has more land vs. RSR with more ocean.  Surface albedo plays a prominent role in these 197 

sub-diurnal features, but again clouds modulate the stronger variability associated 198 

primarily with surface reflection under clear-sky conditions. 199 

 200 

The means and 95% confidence intervals of clear- and all-sky CERES SYN PSDs, derived 201 

from observational data spanning 2001-2019, are shown in Figures 2(c) and 2(d).  These 202 

plots indicate that the prominent diurnal feature of clear- and all-sky PSDs is stationary and 203 

nearly invariant over nearly 2 decades of observations.  There is limited variability in sub-204 

diurnal prominent features at 4-, 8-, and 12-hour periods of these PSDs. 205 

Also, there are other features, such as the distribution of power between one day and 206 

several months that have an upward slope with little relative uncertainty in its upper 207 
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bound, but with no prominent features.  These super-diurnal features indicate that there 208 

are a large number of interacting processes operating irregularly on super-diurnal time-209 

scales that contribute to RSR time-series.  The small level of uncertainty in features that are 210 

both super-diurnal and sub-annual suggests that these processes are stationary over time.  211 

Together, these findings indicate that there is a relatively small uncertainty in prominent 212 

features of RSR PSDs, and therefore, that comparisons between observations and model 213 

fields over a limited time-window will be meaningful and reveal underlying model skill, or 214 

lack thereof, in achieving longer-term RSR stability.   215 

 216 

Building off of the results in Figure 2, we undertake a comparison of clear-sky and all-sky 217 

RSR PSDs between observations and models, and some results of this comparison are 218 

shown in the panels of Figure 3.  They indicate that there are similarities and differences to 219 

be explored.  First, the clear-sky RSR PSDs from CNRM-CM5 and HadGEM2-ES have varying 220 

levels of concurrence in their apportionment of power at diurnal and sub-diurnal 1-day 221 

periods with the CERES SYN flux product.  Where models are greater than observations for 222 

sub-diurnal periods, this means that these models exhibit too much zonal contrast in RSR, 223 

and vice versa.  For super-diurnal periods, the cause(s) of excessive model apportionment 224 

of power are not attributable to a single period, since the modeled power at all periods 225 

greater than one day and less than one year is greater than the observed power. 226 

 227 

The three primary surface-atmosphere constituents that lead to clear-sky RSR variability 228 

are surface albedo, aerosols, and water vapor.  Surface albedo is generally variable at 229 

super-diurnal periods, driven by changes in snow and sea-ice coverage, and to a lesser 230 

extent, changes in albedo from seasonal vegetation and surface wetness, while aerosols and 231 

water vapor can exhibit variability at sub-diurnal and super-diurnal periods.   Biases in 232 

surface albedo may be due to differences in frozen surface extent and snow/ice reflectivity, 233 

but biases have also been found in modeled snow-free surface albedo [Levine and Boos, 234 

2017].   However, a closer investigation regarding how these three factors interact to 235 

produce model biases is warranted to determine if the origin(s) of biases are structural, in 236 

terms of radiative transfer code issues, or parametric.  237 

 238 
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Figures 3(b) and 3(d) compare the cross-spectral density of observations and models.  239 

These figures indicate that models generally overestimate power at prominent diurnal and 240 

sub-diurnal frequencies, indicating that the variability in RSR is overly correlated between 241 

clear- and all-sky conditions in models relative to observations.  That is, models 242 

overestimate how clouds modulate all-sky RSR variability relative to clear-sky RSR. 243 

 244 

We summarize the findings of total power for clear-sky and all-sky RSR in Tables 1 and 2, 245 

respectively.  The primary result that is shown by these tables is that at periods greater 246 

than 1 day but less than 1 year, models apportion too much power, indicating that they 247 

overestimate the variability in the sum of processes that contribute to albedo but have 248 

irregular periods.  These findings suggest that a closer investigation into the causes of bias 249 

in the variability in modeled RSR over the range of periods from greater than 1 day to less 250 

than 1 year is warranted. 251 

 252 

Discussion and Conclusions: 253 

Here, we have undertaken frequency analysis of high-frequency RSR observational time-254 

series from CERES SYN, EPIC, and NISTAR.  From these observations, we have developed 255 

several findings.  First, frequency analysis reveals that there are prominent sub-diurnal and 256 

diurnal features due to a zonal contrast in surface and cloud reflection, and there are no 257 

prominent features over periods greater than 1 day but less than one year, though these 258 

super-diurnal features indicate that most of the variability in RSR is contributed from a set 259 

of processes that occur at irregular intervals. 260 

 261 

Second, we have tested whether we can use CERES SYN observations to confront Earth 262 

System Models at a range of frequencies ranging from sub-diurnal to annual.  Because 263 

CERES observations at the top-of-atmosphere have few data points across the diurnal cycle, 264 

the process chain for filling in the diurnal cycle relies on geostationary products with 265 

calibration tied to MODIS. Here, we have shown that the diurnal-filling process chain, 266 

which is a key component of the development of TOA energy-balance estimates from 267 

observations, does not exhibit discernible biases, and is stationary over nearly 2 decades, 268 

so it may be considered robust for model confrontation.   269 
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 270 

More specifically, we have found that there is broad concurrence between different 271 

observational datasets, including CERES SYN, EPIC, and NISTAR on the modes of variability 272 

in the Earth’s RSR.  That being said, these are all predicated on radiance-to-flux conversion 273 

algorithms that have been built based on low-earth observations.  It may be difficult to 274 

directly assess errors incurred in the use of these angular distribution models with such 275 

different viewing geometries, though efforts to do so have been outlined in Su et al [2020].  276 

Nevertheless, where radiative transfer models indicate there is the most potential for bias 277 

in extrapolating radiance-to-flux conversion from low-earth orbit viewing geometries to 278 

those associated with L-1 orbit, targeted rotating azimuthal scans from CERES or a CERES-279 

like instrument can be developed to constrain this conversion. 280 

 281 

When we compare frequency features of RSR between CMIP5 models and observations, the 282 

most significant differences occur over periods ranging from greater than 1 day to less than 283 

1 year.  Both observations and models concur that there are no isolated sources of 284 

variability at regular intervals over this range of periods, but rather a number of processes 285 

that are not insignificant for RSR but occur at irregular intervals.  However, the 286 

contribution to total variability over this range of periods is overestimated by models, both 287 

for clear-sky and all-sky RSR.  288 

 289 

We also explore how clouds modulate the variability in RSR on time-scales ranging from 290 

sub-diurnal to annual, and find that over diurnal and sub-diurnal periods, models 291 

reasonably concur with observations, but, as with clear-sky RSR, models overestimate the 292 

contribution of super-diurnal frequencies to total RSR variability. 293 

 294 

Together, these findings show that there is an uneven path by which models achieve their 295 

tuning requirement for long-term stability in reflected shortwave radiation.  These high-296 

frequency observations of shortwave flux therefore provide the model development 297 

community the opportunity to consider time-varying constraints on shortwave radiation 298 

that capture the processes by which the Earth system achieves long-term stability in 299 

albedo, and not just the long-term number.  While there is no debate about the paramount 300 
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importance of using tuning to ensure a model achieves TOA radiation balance in principle, 301 

the specific approaches that modeling centers have taken differ in practice. The choices in 302 

tuning this balance, which largely focus on adjusting cloud parameters, can have different 303 

temporal signatures.  304 

 305 

We show here that there is concurrence in observational datasets in how the temporal and 306 

spatial variability of cloud systems realizes longer-term features in planetary albedo. We 307 

also show that there are significant differences between observations and models in this 308 

metric, which is disquieting.  Longer-term TOA radiation balance is enforced, and therefore 309 

achieved by tuning, but there would be greater confidence in modeled radiative processes, 310 

particularly with respect to clouds, if they would substantially concur with the 311 

observations that form the basis for this radiation balance. 312 

 313 

Especially given recent work that finds that the parametric tuning constraints, developed 314 

from perturbed-physics ensemble model simulations of 3 days, improve long-term model 315 

performance [Qian et al, 2018], modeling centers should, at the very least, consider using 316 

high temporal frequency features of TOA radiation as constraints in their approaches to 317 

tuning.  318 
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Figures and Tables: 329 

(a) (b) 330 

(c)  (d) 331 

Figure 1: (a) Time-series from 2017-2019 of the daylit portion of the Earth’s reflected 332 

shortwave radiation (RSR) as determined from NISTAR and EPIC Level-2 data and from the 333 

CERES SYN product. (b) Difference time-series between NISTAR or EPIC and CERES SYN 334 

RSR.   (c) Diurnal cycle and 95% confidence interval from the 3 RSR data sources (d) Power 335 

spectral density of the 3 detrended RSR data sources.  336 
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(a) (b) 337 

(c) (d) 338 

Figure 2: (a) Clear-sky (red) and all-sky (black) PSD functions of CERES SYN RSR fluxes 339 

covering 2017-2018. (b) Cross PSD function for clear-sky and all-sky CERES SYN RSR 340 

fluxes. (c) Mean and 95% confidence interval of PSD for clear-sky CERES SYN RSR fluxes 341 

derived from two-year intervals from 2001-2019. (d) Same as (c) but for all-sky CERES SYN 342 

RSR fluxes.  343 
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(a) (b) 344 

(c) (d) 345 

Figure 3: (a) Clear-sky RSR PSD for CERES SYN fluxes and fluxes reported by the CNRM-346 

CM5 model. (b) Same as (a) but for clear vs all-sky cross PSD. (c) Same as (a) but for the 347 

HadGEM2-ES model.   348 
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 >1day, <1year 1 day 12 hours 8 hours 

CERES SYN 0.7092 ± 0.003 0.0277 ± 1x10-3 0.0088 ± 4x10-4 0.005 ± 1x10-4 

CanAM4 0.7548 0.0328 0.0111 0.0070 

CNRM-CM5 0.8020 0.0215 0.0108 0.0040 

HadGEM2-ES 0.7920 0.0308 0.0096 0.0059 

MRI-CGCM3 0.7781 0.0322 0.0087 0.0040 

 349 

Table 1: Fraction of total power for a given period or range of periods for clear-sky daylit 350 

RSR fluxes from CERES and several AMIP models.  Mean of CERES SYN represents values 351 

for 2017-2018, while uncertainty is 95% confidence interval derived all two-year intervals 352 

from 2001-2019. 353 

 354 

 >1day, <1year 1 day 12 hours 8 hours 

CERES SYN 0.5042 ± 5x10-3 0.0173 ± 7x10-4 0.0080 ± 2x10-3 0.0070 ± 5x10-4 

EPIC 0.4964 0.0168 0.0118 0.0082 

NISTAR 0.5879 0.0118 0.0080 0.0068 

CanAM4 0.7988 0.0089 0.0066 0.0075 

CNRM-CM5 0.7950 0.0101 0.0085 0.0062 

HadGEM2-ES 0.8028 0.0107 0.0055 0.0072 

MRI-CGCM3 0.7951 0.0128 0.0092 0.0052 

 355 

Table 2: Same as Table 1, but for all-sky conditions, and including EPIC and NISTAR 356 

observations for 2017-2018.  357 



 17 

References: 358 

Bergman, J.W. and M.L. Salby, (1997) The Role of Cloud Diurnal Variations in the Time-359 

Mean Energy Budget. J. Climate, 10, 1114–1124, doi:10.1175/1520-360 

0442(1997)010<1114:TROCDV>2.0.CO;2 361 

 362 

Burt, J., R. Smith, (2012) Deep Space Climate Observatory: The DSCOVR mission, 2012 IEEE 363 

Aerospace Conference, doi: 10.1109/AERO.2012.6187025 364 

 365 

Clerbaux, N., et al. (2009) Comparison of GERB instantaneous radiance and flux products 366 

with CERES Edition-2 data, Remote Sensing of Environment, 113, 102-114, 367 

doi:10.1016/j.rse.2008.08.016. 368 

 369 

Doelling, D.R., N.G. Loeb, D.F. Keyes, M.L. Nordeen, D. Morstad, C. Nguyen, B.A. Wielicki, D.F. 370 

Young, and M. Sun, (2013) Geostationary Enhanced Temporal Interpolation for CERES Flux 371 

Products. J. Atmos. Oceanic Technol., 30, 1072–1090, doi:10.1175/JTECH-D-12-00136.1 372 

 373 

Golaz, J.‐C., Horowitz, L. W., and Levy, H. (2013), Cloud tuning in a coupled climate model: 374 

Impact on 20th century warming, Geophys. Res. Lett., 40, 2246– 2251, 375 

doi:10.1002/grl.50232. 376 

 377 

Hall, M.J., H.F.P. van den Boogard, R.C. Fernando, A.E. Mynett (2004) The construction of 378 

confidence intervals for frequency analysis using resampling techniques, Hydrol. Earth Syst. 379 

Sci., 8, 235-246, doi:10.5194/hess-8-235-2004. 380 

 381 

Hansen, J., et al. (2005), Earth's Energy Imbalance: Confirmation and Implications, Science, 382 

308(5727), 1431-1435, doi: 10.1126/science.1110252. 383 

 384 

Hourdin, F., T. Mauritsen, A. Gettelman, J. Golaz, V. Balaji, Q. Duan, D. Folini, D. Ji, D. Klocke, 385 

Y. Qian, F. Rauser, C. Rio, L. Tomassini, M. Watanabe, and D. Williamson, (2017) The Art and 386 

Science of Climate Model Tuning. Bull. Amer. Meteor. Soc., 98, 589–602, doi:10.1175/BAMS-387 

D-15-00135.1. 388 

https://doi.org/10.1175/1520-0442(1997)010%3C1114:TROCDV%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010%3C1114:TROCDV%3E2.0.CO;2
https://doi.org/10.1109/AERO.2012.6187025
https://doi.org/10.1016/j.rse.2008.08.016
https://doi.org/10.1175/JTECH-D-12-00136.1
https://doi.org/10.1002/grl.50232
https://doi.org/10.5194/hess-8-235-2004
https://doi.org/10.1126/science.1110252
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-15-00135.1


 18 

 389 

Jones, C.D., et al. (2011) The HadGEM2-ES implementation of CMIP5 centennial 390 

simulations, Geosci. Mod. Dev., 4, 543-570, doi: 10.5194/gmd-4-543-2011. 391 

 392 

Levine, X. J., and Boos, W. R. ( 2017), Land surface albedo bias in climate models and its 393 

association with tropical rainfall, Geophys. Res. Lett., 44, 6363– 6372, 394 

doi:10.1002/2017GL072510. 395 

 396 

Loeb, N.G., N. Manalo-Smith, S. Kato, W.F. Miller, S.K. Gupta, P. Minnis, and B.A. 397 

Wielicki, (2003) Angular Distribution Models for Top-of-Atmosphere Radiative Flux 398 

Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the 399 

Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteor., 42, 240–400 

265, doi:10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2 401 

 402 

Loeb, N.G., B.A. Wielicki, D.R. Doelling, G.L. Smith, D.F. Keyes, S. Kato, N. Manalo-Smith, and 403 

T. Wong, (2009) Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation 404 

Budget. J. Climate, 22, 748–766, doi:10.1175/2008JCLI2637.1. 405 

 406 

Loeb, N.G., D.R. Doelling, H. Wang, W. Su, C. Nguyen, J.G. Corbett, L. Liang, C. Mitrescu, F.G. 407 

Rose, and S. Kato, (2018) Clouds and the Earth’s Radiant Energy System (CERES) Energy 408 

Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. 409 

Climate, 31, 895–918, doi:10.1175/JCLI-D-17-0208.1. 410 

 411 

Marshak, A., J. Herman, S. Adam, B. Karin, S. Carn, A. Cede, I. Geogdzhayev, D. Huang, L. 412 

Huang, Y. Knyazikhin, M. Kowalewski, N. Krotkov, A. Lyapustin, R. McPeters, K.G. Meyer, O. 413 

Torres, and Y. Yang, (2018) Earth Observations from DSCOVR EPIC Instrument. Bull. Amer. 414 

Meteor. Soc., 99, 1829–1850, doi:10.1175/BAMS-D-17-0223.1 415 

 416 

Mauritsen, T., et al. (2012), Tuning the climate of a global model, J. Adv. Model. Earth Syst., 4, 417 

M00A01, doi:10.1029/2012MS000154. 418 

 419 

https://doi.org/10.5194/gmd-4-543-2011
https://doi.org/10.1002/2017GL072510
https://doi.org/10.1175/1520-0450(2003)042%3C0240:ADMFTO%3E2.0.CO;2
https://doi.org/10.1175/2008JCLI2637.1
https://doi.org/10.1175/JCLI-D-17-0208.1
https://doi.org/10.1175/BAMS-D-17-0223.1
https://doi.org/10.1029/2012MS000154


 19 

Qian, Y., Wan, H., Yang, B., Golaz, J.‐C., Harrop, B., Hou, Z., et al. (2018). Parametric 420 

sensitivity and uncertainty quantification in the version 1 of E3SM atmosphere model 421 

based on short perturbed parameter ensemble simulations. Journal of Geophysical 422 

Research: Atmospheres, 123, 13,046– 13,073, doi:10.1029/2018JD028927. 423 

 424 

Rutan, D.A., S. Kato, D.R. Doelling, F.G. Rose, L.T. Nguyen, T.E. Caldwell, and N.G. 425 

Loeb, (2015) CERES Synoptic Product: Methodology and Validation of Surface Radiant 426 

Flux. J. Atmos. Oceanic Technol., 32, 1121–1143, doi:10.1175/JTECH-D-14-00165.1. 427 

 428 

Schmidt, G.A., D. Bader, L.J. Donner, G.S. Elsaesser, J.-C. Golaz, C. Hannay, A. Molod, R. Neale, 429 

S. Saha (2017) Practice and philosophy of climate model tuning across six U.S. modeling 430 

centers, Geosci. Mod. Dev., 10(9), 3207-3223, doi: 10.5194/gmd-10-3207-2017. 431 

 432 

Stephens, G. L., O'Brien, D., Webster, P. J., Pilewskie, P., Kato, S., and Li, J. (2015), The albedo 433 

of Earth. Rev. Geophys., 53, 141– 163. doi: 10.1002/2014RG000449. 434 

 435 

Su, W., J. Corbett, Z. Eitzen, L. Liang (2015) Next-generation angular distribution models for 436 

top-of-atmosphere radiative flux calculation from CERES instruments: methodology, Atmos. 437 

Meas. Tech., 8, 611-623, doi: 10.5194/amt-8-611-2015. 438 

 439 

Su, W., Liang, L., Doelling, D. R., Minnis, P., Duda, D. P., Khlopenkov, K. V., et al. 440 

(2018). Determining the shortwave radiative flux from Earth polychromatic imaging 441 

camera. Journal of Geophysical Research: Atmospheres, 123, 11,479–442 

 11,491. doi:10.1029/2018JD029390. 443 

 444 

Su, W., P. Minnis, L. Liang, D.P. Duda, K. Khlopenkov, M.M. Thieman, Y. Yu, A. Smith, S. 445 

Lorentz, D. Feldman, F.P.J. Valero (2020) Determining the Daytime Earth Radiative Flux 446 

from National Institute of Standards and Technology Advanced Radiometer (NISTAR) 447 

Measurements, Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-214. 448 

 449 

https://doi.org/10.1029/2018JD028927
https://doi.org/10.1175/JTECH-D-14-00165.1
https://dx.doi.org/10.5194%2Fgmd-10-3207-2017
https://doi.org/10.1002/2014RG000449
https://doi.org/10.5194/amt-8-611-2015
https://doi.org/10.1029/2018JD029390
https://doi.org/10.5194/amt-2019-214


 20 

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, (2012) An overview of CMIP5 and the 450 

experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-451 

00094.1.  452 

 453 

Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Taguchi, S. (2015), Climate variability and 454 

relationships between top‐of‐atmosphere radiation and temperatures on Earth. J. Geophys. 455 

Res. Atmos., 120, 3642– 3659. doi: 10.1002/2014JD022887. 456 

 457 

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D. et al. (2013) The CNRM-CM5.1 global 458 

climate model: description and basic evaluation, Clim Dyn, 40, 2091-2121, doi: 459 

10.1007/s00382-011-1259-y. 460 

 461 

Webb, M., et al. (2015) The diurnal cycle of marine cloud feedback in climate models, 462 

Climate Dynamics, 44(5-6), 1419-1436, doi:10.1007/s00382-014-2234-1  463 

 464 

Wielicki, B.A., B.R. Barkstrom, E.F. Harrison, R.B. Lee, G.L. Smith, and J.E. 465 

Cooper, (1996) Clouds and the Earth's Radiant Energy System (CERES): An Earth 466 

Observing System Experiment. Bull. Amer. Meteor. Soc., 77, 853–868, doi:10.1175/1520-467 

0477(1996)077<0853:CATERE>2.0.CO;2 468 

 469 

Willis, J. K., Roemmich, D., and Cornuelle, B. (2004), Interannual variability in upper ocean 470 

heat content, temperature, and thermosteric expansion on global scales, J. Geophys. 471 

Res., 109, C12036, doi:10.1029/2003JC002260. 472 

 473 

Yin, J., and A. Porporato (2017) Diurnal cloud cycle biases in climate models, Nature 474 

Communications, 8, 2269, doi: 10.1038/s41467-017-02369-4. 475 

 476 

Yukimoto, S. et al. (2012) A New Global Climate Model of the Meteorological Research 477 

Institute: MRI-CGCM3, Journal of the Meteorological Society of Japan, 90A, 23-64, doi: 478 

10.2151/jmsj.2012-A02. 479 

https://doi.org/10.1175%2FBAMS-D-11-00094.1
https://doi.org/10.1175%2FBAMS-D-11-00094.1
https://doi.org/10.1002/2014JD022887
https://doi.org/10.1007/s00382-011-1259-y
https://doi.org/10.1007/s00382-014-2234-1
https://doi.org/10.1175/1520-0477(1996)077%3C0853:CATERE%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077%3C0853:CATERE%3E2.0.CO;2
https://doi.org/10.1029/2003JC002260
https://doi.org/10.1038/s41467-017-02369-4
https://doi.org/10.2151/jmsj.2012-A02

