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Abstract14

The magnitude of the aerosol forcing remains among the largest unknowns when assessing15

climate sensitivity over the historical period. Here, we describe a previously unconsidered16

source of uncertainty in aerosol forcing: the temporal variability of aerosol emissions. We17

show that time-variability in biomass burning (BB) emissions weakens the time-averaged18

total aerosol forcing, particularly in the Northern Hemisphere mid- to high-latitudes. BB19

emissions variability produces weaker (less negative) mean effective radiative forcing (ERF)20

compared to scenarios with no interannual variability in emissions. Satellite-estimated BB21

emissions (and associated variability) results in a June–September absolute ERF (relative22

to zero BB emissions) of -7.7 W·m−2 from 50–70◦N, compared to -10.4 W·m−2 when no23

emissions variability is used in the Community Earth System Model version 2 (CESM2).24

This difference in forcing is attributable to nonlinear aerosol-cloud interactions. Aerosol25

forcing will be overestimated (i.e. more negative) if emissions are temporally-smoothed.26

Plain Language Summary27

Aerosols and their interaction with the climate system remain one of the largest28

sources of uncertainty in understanding historical and future climate change. Here we29

describe a factor that has not been previously considered that contributes additional un-30

certainty in the influence of aerosols on the climate: the temporal variability of aerosol31

emissions. We show that when time-variability exists in biomass burning emissions used32

in Earth System Model simulations, more solar radiation is absorbed in the Northern33

Hemisphere mid- to high-latitudes; a weakening of the influence that biomass burning34

aerosols have on the climate. The weakened forcing and climate consequences associated35

with subseasonal variations in biomass burning aerosols is attributable to nonlinear aerosol-36

cloud interaction effects.37

1 Introduction38

Atmospheric aerosols are a critical component of the climate system, but the complex39

processes governing their production, deposition, and interactions with clouds are difficult40

to observe and model. Uncertainty in the aerosol forcing is one of the greatest challenges for41

understanding historical climate change and projecting near-future climate evolution (Kiehl,42

2007; Forster et al., 2021).43
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Previous research on aerosol radiative forcing has focused on the effect of secular change44

in aerosol emissions, with little consideration of the impact of shorter timescale variability45

in the emissions. For example, the fifth Coupled Model Intercomparison Project (CMIP5;46

Taylor et al., 2012) historical and future simulations use biomass burning (BB) emissions es-47

timates that are smooth temporally compared to real-world emissions, particularly on inter-48

and sub-annual time scales. Real-world BB emissions in the extratropics occur episodically49

and stochastically, and may depend on weather conditions (precipitation, drought, lightning)50

or human activity (agricultural burning, forest clearing, arson) (Lamarque et al., 2010; van51

der Werf et al., 2017).52

To incorporate more realistic aerosol emissions variability, the latest CMIP (sixth phase;53

CMIP6; Eyring et al., 2016) includes BB emissions estimates derived from satellite obser-54

vations for historical simulations from 1997 to 2014 (Figure 1a; van Marle et al., 2017).55

Historical CMIP6 BB emissions in this time period have much higher temporal variabil-56

ity than those used in previous model intercomparison efforts (e.g., the CMIP5 historical57

simulations). However, the BB emissions used for CMIP6 prior to 1997 (before satellite mea-58

surement capability) are similar to the CMIP5 inventories, with weak temporal variability59

(Figure 1a black line; Lamarque et al., 2010; van Marle et al., 2017).60

Recent analyses in the Community Earth System Model version 2 (CESM2; Danaba-61

soglu et al., 2020) have estimated the climate effect of this change in BB emissions variabil-62

ity by comparing simulation scenarios with temporally-smoothed BB emissions to scenarios63

with time-varying CMIP6 emissions over the 1997 to 2014 period (DeRepentigny et al.,64

2022; Fasullo et al., 2022; Heyblom et al., 2022; Rodgers et al., 2021). The largest set65

of these comparison simulations is the CESM2 Large Ensemble (CESM2-LE; Figure 1a66

Rodgers et al., 2021). Studies using the CESM2-LE show that the sudden change in BB67

emissions variability in the CMIP6 late-historical simulations leads to shifts in the climate,68

producing increases in simulated downwelling shortwave radiation and enhancing surface69

warming (Fasullo et al., 2022, also Figure 1b), increases in atmospheric water vapor and70

precipitation (Heyblom et al., 2022), and accelerated Arctic sea ice loss (DeRepentigny et71

al., 2022). These studies postulated that nonlinearities in the climate system’s response to72

BB aerosols produced these climate effects. However, the coupled climate model simula-73

tions used in these studies did not allow for the decoupling of climate forcing and feedback,74

making attribution of the cause difficult.75

–3–



manuscript submitted to Geophysical Research Letters

Figure 1. Biomass burning (BB) emissions used for CMIP6 and the effect of high BB

emissions variability on surface temperature in CESM2. Panel (a) shows the annual mean

biomass burning (BB) emissions averaged over 50–70◦N prescribed for CMIP6 (black line) and a

second smoothed emissions inventory used for 50 members of the Community Earth System Model

Large Ensemble version 2 (CESM2-LE) over the recent historical period (red line), in particles m−2

min−1. The vertical grey dashed lines delineate the period of high BB emissions variability in the

CMIP6 prescribed BB emissions (1997–2014). Panel (b) shows the difference in surface temperature

between the CMIP6 emissions ensemble members and smoothed BB emissions ensemble members

in the CESM2-LE during 1997–2014 (average of 50 CMIP6 emissions ensemble members minus

average of 50 smoothed BB emissions ensemble members; in ◦C). Stippling signifies 90% confidence

(Text S7). See Text S1 for a further description of CESM2-LE and BB emissions therein.

Here, we use idealized Earth System Model (ESM) simulations to show that the tem-76

poral variability of BB aerosol emissions substantially impacts the magnitude of the forcing77

attributable to these emissions. We show that BB emissions variability impacts BB aerosol78

forcing because of a nonlinear response of aerosol-cloud interactions to atmospheric aerosol79

concentrations. Our study provides direct evidence that temporal variability of BB aerosol80

weakens the time-averaged aerosol cloud radiative effect in a state-of-the-art ESM, and that81

temporal smoothing will lead to a much stronger BB aerosol radiative effect.82

2 Methods83

To quantify the impact that greater interannual variability in biomass burning (BB)84

emissions has on the total radiative forcing attributable to these emissions, we conduct85

simulations using the Community Earth System Model version 2 (CESM2; Danabasoglu86

et al., 2020) with idealized BB emissions perturbations. In each simulation we configure87
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CESM2 in the same way as the CESM2-LE (Text S1), but fix sea surface temperatures88

(SSTs), sea ice concentrations, and all forcings (except BB emissions) to the 2000 climatology89

(mean monthly values from 1995 to 2005). We use three different simulations, each of which90

treat BB emissions variability differently (Figure 2). Each simulation is run for 54 years.91

The first simulation (hereafter “Real-Var”; Figure 2 green line) uses BB emissions as92

prescribed for CMIP6 historical simulations from 1997 to 2014 (van der Werf et al., 2017;93

van Marle et al., 2017). The emissions estimates for this period are thus taken to represent94

a best estimate of real-world BB emissions. The second simulation (hereafter “Pulse-Var”;95

Figure 2 yellow line) prescribes an idealized high-temporal variability emissions scenario96

where all emissions for each grid cell occur every six years in phase with all other grid cells.97

Total emissions in years that simulate a pulse of BB emissions are equal to six times the98

annual mean emissions from the Real-Var experiment at each grid cell; during other years99

BB emissions are zero. A third experiment (hereafter “Zero-Var”; Figure 2 black line) uses100

emissions based upon a climatology that repeats each year, and thus has no interannual101

variability in BB emissions. It is important to note that due to the aggregation of emissions102

in time, the Pulse- and Zero-Var inventories are also spatially smoother than the Real-Var103

inventory.104

All simulations use fixed SSTs to allow the direct quantification of the effective radiative105

forcing (ERF) in the absence of most feedbacks (Text S2; Hansen et al., 2005; Forster et106

al., 2021). Because the time-integrated emissions are equal across these three simulations,107

differences in ERF are attributable entirely to differences in the variability of BB emissions.108

3 Results109

3.1 The Effects of Emissions Variability on the Aerosol Forcing110

Figure 3a–c shows that the BB aerosol effective radiative forcing (ERF) weakens (i.e.,111

becomes less negative) when emissions vary in time (as in Real-Var and Pulse-Var) com-112

pared to when there is no interannual variability (as in Zero-Var). We denote the change in113

ERF due to BB emissions variability as ∆ERFBBVar, computed as the difference in the ERF114

between scenarios with time-varying emissions (Pulse-Var and Real-Var) and Zero-Var. The115

∆ERFBBVar is strongest over regions of high column-integrated aerosol concentration vari-116

ability (Figure S1), particularly over the NH mid- to high-latitudes from June–September117

(JJAS; the period of most active fires in this region; see Figure S2 for annual mean differ-118
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Figure 2. Idealized simulations to quantify changes in effective radiative forcing

(ERF) due to biomass burning (BB) emissions variability. The center image shows the

time-integrated emissions rate of BB emissions for all scenarios (in particles cm−2 s−1) in red,

while the surrounding insets show the time evolution of BB emissions from Zero-Var, Real-Var, and

Pulse-Var (black, green, and brown lines, respectively) at selected locations.

ence). For example, averaged from 50–70◦N, we find a +1.1 W·m−2 (+0.1 W·m−2 global)119

annual mean and +2.7 W·m−2 (+0.42 W·m−2 global) JJAS mean ERF weakening in the120

Real-Var experiment relative to Zero-Var. In effect, episodic BB emissions leads to a weaker121

(i.e. less negative) aerosol forcing associated with biomass burning.122

3.2 Differences in Forcing are Driven by Differences in the Cloud Radiative123

Effect124

ERF sensitivity to emissions variability (i.e., ∆ERFBBVar) is due to a weaker time-125

averaged cloud response to aerosol emissions when BB emissions are variable. Figure 3d–g126

shows how time-averaged cloud properties are affected by BB emissions variability. Each127

panel displays selected JJAS cloud property changes for the higher variability simulation128

compared to the Zero-Var simulation (Real-Var and Pulse-Var simulations in the left and129

right column respectively; also see Figure S3 for annual mean change). Averaged cloud130

droplet number concentration (CDNC; Figure 3d,e) is smaller in the simulations with higher131

interannual BB variability. Similar to ERF changes, the largest sensitivity in CDNC is found132

in regions where BB emissions interannual variability is large (i.e. predominately over the133
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Figure 3. Change in effective radiative forcing (ERF) and cloud properties due

to biomass burning emissions variability. Panel (a) shows the June–September (JJAS) mean

absolute ERF due to BB emissions in the Zero-Var experiment (relative to no BB emissions). Panels

(b)–(g) show the JJAS mean change in ERF (denoted ∆ERFBBVar; in W·m−2; b and c), vertically

integrated cloud droplet number concentration (CDNC; in 109 m−2; d and e), and total (long and

shortwave) cloud radiative effect (CRE; in W·m−2; f and g) due to BB emissions variability in the

Real-Var (left column) and Pulse-Var (right column) experiments. Changes due to BB emissions

variability are defined as the variability experiments minus the Zero-Var experiment. Stippling

signifies 90% confidence (Text S7). –7–
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NH mid- to high-latitudes land regions). There are similar reductions in cloud amount and134

liquid water path (Figure S4).135

The time-averaged increase in absorbed radiation due to changes in clouds is shown in136

Figure 3f,g as the cloud radiative effect (CRE). The CRE change due to BB emissions vari-137

ability is highly correlated with ∆ERFBBVar: global Pearson pattern correlation coefficient138

of the annual means of 0.87 in the Real-Var experiment and 0.93 in the Pulse-Var experi-139

ment. These correlations, and the similar magnitudes of CRE and ∆ERFBBVar, indicates140

that ∆ERFBBVar is driven by changes in time-averaged cloud properties when BB emissions141

are variable.142

We note that there is a small region over Arctic land where there is increased absorbed143

radiation that is not due to changes in clouds (Figure S5a,b; shown as clear-sky top of144

atmosphere net radiative flux). The increase in absorbed radiation in the absence of clouds145

is due to a decrease in land-surface albedo over the same region (Figure S5c,d), which is146

a feedback resulting from the difference in forcing. Though the configuration and method147

used here to quantify the ERF is a widely accepted approach (Text S2; also see Hansen148

et al., 2005; Smith et al., 2020; Forster et al., 2021), it does allow for the possibility that149

computed changes in ERF are due differences in land-surface feedbacks not corrected for150

in our computation (Text S2). We replicated the Real-Var experiment in an aquaplanet151

configuration with CESM2 (in which land surfaces are replaced with an idealized ocean;152

Text S3; Marshall et al., 2007) and find qualitatively similar results (Figure S6). From153

this, we conclude the climate response to BB emissions variability is not driven by land154

surface interactions. Though nonlinear land feedbacks, such as the land surface albedo,155

may be amplifying the change in ERF (as computed in this study) due to differences in BB156

emissions variability, they are not the driver of the model response.157

3.3 Differences in Cloud Radiative Effect are due to Nonlinear Aerosol-158

Cloud Interactions159

We now show that the time-averaged CRE weakens when BB emissions are more vari-160

able because of a nonlinear relationship between atmospheric aerosol concentrations and161

their effects on cloud properties. Figure 4 shows the time- and area-averaged relationship162

between aerosol concentration, CDNC, and CRE across multiple simulations over 50–70◦N163

during JJAS. Shown in this figure are the cloud responses to varying fixed BB emissions164
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rates (purple), as well as Real-Var (green) and Pulse-Var (yellow) simulations. Figure 4 also165

shows responses to varying aerosol concentrations in the CESM2-LE during the simulated166

high BB emissions variability period from 1997 to 2014 (blue; shown as probability density167

function). From Figure 4, it is clear that CDNC and CRE depend nonlinearly on aerosol168

concentration (Aer): the magnitude of the slopes ∂CDNC
∂Aer and ∂CRE

∂Aer are much larger at169

lower aerosol concentrations than higher concentrations. This nonlinear response is appar-170

ent across the fixed aerosol emissions simulations, as well as in the Real-Var experiment and171

CESM2-LE.172

Nonlinearity in aerosol-cloud interactions are expected from both modelling and obser-173

vational studies. As aerosol concentrations increase, they less effectively nucleate to become174

cloud droplets (Twomey, 1977; Rissman et al., 2004; Reutter et al., 2009; Carslaw et al.,175

2013; Bougiatioti et al., 2016; Kacarab et al., 2020). Because cloud droplet nucleation176

becomes less effective at higher aerosol concentrations, the relationship between aerosol177

concentration and CRE is nonlinear. The nonlinear response to BB emissions influences178

the temporal evolution of the simulations, seen in the right column of Figure 4. When179

emissions are higher than the Zero-Var case, the incremental change in CDNC and CRE is180

smaller in magnitude than when emissions are lower than the Zero-Var case. As a result,181

over low emissions years, there is a larger increase in absorbed solar energy (relative to the182

Zero-Var baseline) compared to the decrease in absorbed solar energy over high emissions183

years, explaining the time-averaged effects seen in Figure 3.184

We use a heuristic model to demonstrate that nonlinearities in aerosol-cloud interactions185

lead to a weakening of the time-averaged CRE if aerosol emissions are variable in time.186

Figure 5a shows distributions representative of the 50–70◦N area mean aerosol concentration187

resulting from emissions in the Zero-Var (normal distribution; black) and Real-Var (log-188

normal distribution; green) experiments, both of which have the same mean (overlapping189

vertical green and black lines). Note that the Zero-Var distribution has some variability (i.e.,190

width) because of meteorological variability within these simulations, not BB emissions191

variability itself, which is nil. Figure 5b shows nonlinear (logarithmic; solid) and linear192

(dashed) functions describing two separate inferred relationships between aerosol emissions193

and CRE, derived from Figure 4b (see Text S4 for further description).194

Figure 5c shows the projected distributions of CRE using the functions shown in Figure195

5b. Comparing CRE distributions resulting from nonlinear (solid lines) and linear (dashed196
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Figure 4. Responses of CDNC and CRE to varying aerosol emissions for June–

September (JJAS) averaged over 50–70◦N, relative to a reference zero variability run. The left

column shows the relationship between column-integrated aerosol concentrations and (a) column-

integrated CDNC or (b) CRE for a collection of years (number of years displayed in the legend)

drawn from each experiment. The average and range of that collection is shown by marker and

whiskers. The “High” and “Low” statistics are produced by averaging the years which do and do not

have BB emissions in the Pulse-Var experiment, respectively. “Fixed emissions” experiments scale

the Zero-Var BB emissions. CESM2-LE probability density functions (PDF) represent changes of

each year in the high BB emissions variability simulations relative to the ensemble annual mean

from the low BB emissions variability simulations of the CESM2-LE historical simulations from

1997 to 2014 (see Text S1 for a description of different CESM2-LE ensemble members). The right

column shows the time evolution of the of CDNC and CRE from the Zero-Var, Real-Var, and Pulse-

Var simulations. The horizontal dashed line represents the JJAS mean for the entire simulation

period.
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lines) aerosol-CRE functions shows the effect of nonlinearity in the aerosol-CRE relationship197

(Figure 5c). First, any aerosol distribution will be skewed towards weakened CRE values as198

the nonlinear aerosol-CRE function deviates further from the linear function at lower aerosol199

concentrations than at higher concentrations. Second, realistic emissions variability (such200

as in Real-Var) has a much higher frequency of low emissions years (where the nonlinear201

relationship deviates the most from the linear function) compared to high emission years,202

resulting in further CRE weakening. The combination of these two effects results in a weaker203

mean CRE for the log-normal emissions distribution when using the nonlinear aerosol-204

CRE function (horizontal solid green line) compared to the linear aerosol-CRE function205

(horizontal dashed green and black lines). We note that the mean CRE is also weaker for206

the normal emissions distribution when using the nonlinear aerosol-CRE function (horizontal207

solid black line) compared to if the linear aerosol-CRE function is used, though the change208

is small (and not visible on Figure 5c) as the variability is low.209

Two synthetic time series of aerosol concentrations (Figure 5d) and the resulting CRE210

values (Figure 5e) confirm the time-averaged effect leading to differences in mean CRE211

shown in the time series in Figure 4. When emissions are low (and CRE is less negative), a212

nonlinear aerosol-CRE relationship results in much weaker (less negative) CRE values than213

if the relationship is linear (compare large positive deviations in CRE due to nonlinear and214

linear aerosol-CRE relationships).215

4 Discussion216

4.1 A Need for More Idealized Experiments217

To-date, there have been few sets of experiments that can be used to infer the impacts218

of BB emissions variability on the climate system. To the best of our knowledge, there has219

only been experiments conducted by Fasullo et al. (2022) and DeRepentigny et al. (2022),220

the CESM2-LE (Rodgers et al., 2021), and those performed for this study (Section 2). As221

the only difference in forcing is the treatment of BB emissions variability, these experiments222

can be used to directly quantify the impact of BB emissions variability on the climate.223

Furthermore, here we have conducted a set of idealized ESM simulations in the absence of224

climate feedbacks that allow us to quantify the difference in radiative forcing attributed to225

BB emissions variability.226
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Figure 5. Idealized cloud radiative effect (CRE) response to varying aerosol con-

centrations. Panel (a) shows probability density functions (PDF) of aerosol concentrations repre-

sentative of Real-Var and Zero-Var BB emissions scenarios (green and black, respectively). Panel

(b) shows the cloud radiative effect (CRE) response to aerosol concentration derived from CESM2

(nonlinear; solid purple) and a linear response (dashed purple). Panel (c) shows the resulting CRE

PDFs from the nonlinear and linear aerosol-CRE responses (solid and dashed lines, respectively).

Panel (d) shows a 100-year emissions time series randomly drawn from the high and zero aerosol

emissions variability concentration PDFs (green and black lines, respectively). Panel (e) shows

the resulting CRE from emissions shown in panel (d) from the nonlinear and linear aerosol-CRE

responses (solid and dashed lines, respectively).
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It is important to assess how the radiative forcing is affected in more ESMs to under-227

stand how model-specific aerosol and cloud microphysics parameterizations may affect the228

forcing uncertainty attributable to aerosol emissions variability. For example, ∆ERFBBVar229

may be particularly noticeable in CESM2 as it has relatively strong aerosol-cloud inter-230

actions (Smith et al., 2020). Therefore, understanding the strength of the ∆ERFBBVar in231

ESMs is important for the design of future intercomparisons. Further idealized experiments,232

such as those described here, are necessary to detect and quantify the effect of aerosol vari-233

ability on the effective radiative forcing due to aerosol-cloud interactions in a variety of234

ESMs.235

Current model intercomparison projects (i.e., those for CMIP6) are not adequate to236

attribute changes in the climate to differences in BB emissions variability because it is237

unlikely that quantifying statistically robust differences in climate is feasible without a direct238

comparison between high and low BB emissions variability scenarios. Indeed, we find that239

robust evidence of non-linearity between yearly BB emissions and CRE is not evident when240

we analyze only the 50 CESM2-LE ensemble members subject to CMIP6 BB emissions (Text241

S6). Similarly, we do not find evidence of nonlinearity in individual ESM output submitted242

to the CMIP6 historical Atmospheric Model Intercomparison Project (AMIP; Figure S7;243

Gates et al., 1999; Eyring et al., 2016).244

4.2 Implications245

The temporal variability in BB aerosol emissions changes the climate forcing attributable246

to these aerosols. In particular, we show that realistic BB emissions variability leads to a247

weaker (lower amplitude) negative forcing, compared to low emissions variability. This ef-248

fect is particularly strong and widespread over the NH mid- to high-latitudes. This ERF249

change (reduction in the magnitude of the total aerosol forcing) induced by BB emissions250

variability is due to nonlinear aerosol-cloud interaction effects.251

These findings are of particular importance when considering the total aerosol forcing252

over historical periods and into the future. Most emissions inventories neglect realistic253

interannual variability (e.g., van Marle et al., 2017; Hoesly et al., 2018; O’Neill et al.,254

2016), which would lead to a more negative ERF due to aerosol-cloud interaction effects255

(ERFACI). Furthermore, many modelling approaches used to evaluate ERFACI do not256

prescribe realistic variability in aerosol emissions, if at all. For example, the Radiative257
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Forcing Model Intercomparison Project (RFMIP) uses either fixed present-day or CMIP6258

historical aerosol emissions that include only secular trends to quantify the radiative forcing259

of aerosols in CMIP6 ESMs; they do not include realistic BB emissions variability prior to260

1997 (Pincus et al., 2016). Likewise, emissions prescribed for future projection scenarios261

(after 2014) also neglect temporal variability in aerosol emissions (recall Figure 1a); Riahi262

et al., 2017). We also note that, while the issues have been discussed here in the context263

of the interannual variability of BB emissions, these issues may also be relevant to other264

emissions that are sensitive to natural and anthropogenic variability (e.g., DMS emissions265

that are sensitive to ocean variability).266

As treatments of aerosol variability differ in the historical, present-day, and future267

scenario simulations, significant biases in the total aerosol forcing may be present. The268

inclusion of interannual variability for some years, and neglect of it in others, will introduce269

discrepancies and discontinuities in the aerosol forcing that may be significant (such as270

spurious sea ice trends, as shown in DeRepentigny et al., 2022). To properly evaluate271

aerosol forcings and model past, present, and future climates, the temporal variability of272

aerosol emissions should be treated consistently and more realistically.273

Past (prior to the satellite era) and future biomass burning aerosol emissions (and274

thus their variability) are uncertain. They will depend on many different factors, includ-275

ing changes in fire weather and fuel loads. As ESMs simulate aerosol-cloud interactions276

using more and more complex physics, they must also consider how BB aerosol emissions277

variability has changed through the past and into the future. Ideally, emissions variabil-278

ity should be prescribed with a carefully stated, well understood set of assumptions with279

impacts that can be evaluated and quantified. Alternatively, to avoid any assumptions of280

emissions variability, prognostic fire models should be integrated into the next generation281

of ESMs.282

5 Open Research283

This material is based upon work supported by the National Center for Atmospheric Re-284

search (NCAR). CESM2-LE data are available here https://www.cesm.ucar.edu/projects/285

community-projects/LENS2/. Information on the release of the CESM2-LE is available286

here https://doi.org/10.5194/esd-12-1393-2021. The CMIP6 data used for calculat-287

ing cloud radiaitve effects from multiple Earth System Models (see Figure S7) are pub-288
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licly available through the World Climate Research Programme CMIP6 website (https://289

esgf-node.llnl.gov/search/cmip6/).290
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