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Abstract16

Climate change adaptation under resource constraints and future climate uncertainties17

would benefit from fully probabilistic climate risks assessments. Conducting such risk18

analyses requires assigning probabilities to the future greenhouse gases (GHG) and land-19

use scenarios used by global climate models. This paper proposes an approach to esti-20

mate the relative likelihood of carbon dioxide (CO2) concentration scenarios used in key21

climate change modeling experiments. The approach relies on the comparison of CO222

emissions from probabilistic simulations of Integrated Assessment Models (IAM) with23

compatible CO2 emissions diagnosed by global climate models participating in the Cou-24

pled Model Intercomparison Project Phase 5 (CMIP5) and 6 (CMIP6). The approach25

is demonstrated with five emission simulations from four IAMs, leading to independent26

estimates of the relative likelihood of CMIP5 Representation Concentration Pathways27

and CMIP6’ Shared Socioeconomic Pathways (SSP) up to 2100. Results suggest that28

SSP5-8.5 is an unlikely scenario for the second half of the century, but there is no clear29

consensus on the most likely scenario. Scenario likelihood is affected by a number of po-30

tential errors, including sampling errors, differences in emission sources simulated by the31

IAMs, and the lack of a common experimental framework for IAM simulations. These32

errors, along with the small IAM ensemble size, limit the applicability of the results. The33

delivery of fully probabilistic climate risk assessments would benefit from a coordinated34

probabilistic IAM experiment jointly designed with a coordinated climate modeling ex-35

periment where Earth System Model are driven by representative emission pathways.36

Plain Language Summary37

Climate model simulations are being increasingly used to understand future trends38

in the severity and frequency of impactful climate hazards and associated physical and39

socioeconomic risks. To run climate model simulations as part of large scale, coordinated40

climate projection exercises, climate models are provided with scenarios of greenhouse41

gases and land-use change over coming decades. However, the scenarios most widely used42

today for adaptation planning have no assigned probabilities; rather, they are explicitly43

intended to span a range of arbitrary climate futures. This reduces the applicability of44

resulting hazards projections for cost/benefit analysis of adaptation investments. To sup-45

port risk-based adaptation decision making, this study combines five sets of probabilis-46

tic carbon dioxide emissions simulated by four Integrated Assessment Models (IAM) with47
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CMIP5 and CMIP6 climate model ensemble results to estimate the probability of future48

GHG concentration and associated climate scenarios. The results are IAM-dependent,49

though the majority of individual IAM-based analyses suggest that the high-emissions50

scenario SSP5-8.5 becomes unlikely as we reach the second half of the century. Based51

on lessons learned in this exercise, we propose that new sets of IAM and climate model52

experiments be appropriately designed at their initial stages to better support proba-53

bilistic climate change risk assessments.54

1 Introduction55

Future climate change impacts are captured in multi-model climate experiments56

designed and coordinated through the Coupled Model Intercomparison Project (CMIP).57

These climate modeling experiments explore, among other topics, the climate consequences58

of rising greenhouse gases (GHG) concentrations in the atmosphere (Taylor et al., 2012).59

Many decision-makers are now using these climate projections to assess hazards and make60

consequential planning and investment decisions. In many instances however, risk as-61

sessments are carried out without the benefit of a probabilistic framework quantifying62

the leading sources of uncertainties affecting projections: climate and carbon cycle sen-63

sitivity, natural variability, and future GHG emission and concentration scenarios.64

While the climate community has been diligent in assessing and quantifying cli-65

mate modelling uncertainties and natural variability (Lehner et al., 2020), and integrated66

assessment studies routinely evaluate socio-economic uncertainties (Pastor et al., 2020;67

Capellán-Pérez, 2016), there is very little guidance available regarding the relative prob-68

abilities of GHG scenarios underpinning the climate change simulations typically used69

to assess the impacts of climate change. In CMIP3, these transient climate change ex-70

periments were driven by a family of GHG scenarios called SRES. Despite significant dif-71

ferences across GHG SRES scenarios, the climate community has, by and large, avoided72

commenting on their respective likelihood; a common stance has been to consider all emis-73

sion scenarios as “equally valid with no assigned probabilities of occurrence” (Nakicenovic74

et al., 2000). Murphy et al. (2009) explains that SRES scenarios have, by design, no as-75

signed probability.76

This reluctance to assign probabilities to GHG scenarios has carried into the fol-77

lowing generations of GHG scenarios. In CMIP5, GHG concentration scenarios are de-78
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fined by Representative Concentration Pathways (RCPs), and “no likelihood or prefer-79

ence is attached to any of the individual scenarios in the set” (van Vuuren et al., 2011).80

The same non-commitment holds for CMIP6’ Shared Socioeconomic Pathways (SSPs)81

(Riahi et al., 2017).82

From the point of view of users of climate projections, this lack of guidance on the83

probability of emission scenarios is however a serious impediment to judgment forma-84

tion, risk analysis and ultimately, effective decision-making (Schneider, 2001; King et al.,85

2015; Hieronymus, 2020). According to Morgan and Keith (2008): “If judgments about86

likelihood are not supplied with the scenarios, they will be assumed by the users either87

explicitly or implicitly. The convention of not communicating information about the rel-88

ative likelihood of scenarios therefore muddies communication between analysts and users.”89

A concrete example of this are stakeholders’ frequent requests for climate impacts based90

on “business-as-usual” scenarios. IAM modelers may have no preference for one scenario91

over the other, but most people will naturally assume that the continuation of histor-92

ical trends is more likely than a change in the world’s socioeconomic dynamics. This in-93

sistence on scenario-agnostism leaves decision-makers, with no special expertise in GHG94

scenarios, effectively responsible for assigning implicit or explicit likelihoods to future95

scenarios in order to craft high-cost, high-consequences adaptation plans (Ho et al., 2019).96

To be fair, the probability of GHG emission scenarios is not a question climate mod-97

elers are well qualified to answer. The evolution of anthropogenic GHG emissions is in-98

fluenced by policy, demography, economy, geopolitics and technology, topics well outside99

the expertise of climate science. The description of these factors and their interactions100

are captured by another class of model called Integrated Assessment Models (IAMs) (Sokolov101

et al., 2005; Moss et al., 2010; Agrawala et al., 2011; Koomey et al., 2019)). The IAM102

community generates hundreds of different scenarios, predicated on assumptions regard-103

ing future climate policies, technological advances, demography and energy markets. It104

is from these IAM simulations that the climate science community has drawn the GHG105

and land-use scenarios underlying RCPs and SSPs. The selection of model inputs was106

not meant to capture the most plausible scenarios, but rather to generate a sample of107

representative pathways exploring the “full range of emission scenarios available in the108

current scientific literature, with and without climate policy” (van Vuuren et al., 2011).109
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The IAMs used in CMIP experiments describe different storylines, but there are110

other avenues to assess emission scenario uncertainties. Indeed, van Vuuren et al. (2008)111

distinguish between storyline-based alernative scenarios and fully probabilistic scenar-112

ios. Storylines embody fundamentally different, yet internally consistent, representations113

of the future that can be represented by an IAM. Fully probabilistic scenarios are cre-114

ated by assigning probability distributions to key IAM input parameters, and sampling115

from those distributions to create a set of probabilistic emission pathways. The “condi-116

tional probability approach” combines both storylines and probabilistic scenarios, argu-117

ing that it is easier to define probability distributions for IAM parameters in the con-118

text of a particular storyline.119

Uncertainty analysis has been identified as one of the current key weaknesses of IAMs120

(Pastor et al., 2020; Rogelj et al., 2017). For example, one contentious topic relates to121

the parameterization of climate damages in cost-benefit IAMs. The family of cost-benefit122

IAMs traditionally relies on median damages, overlooking the low and high tails of the123

distribution for the climate sensitivity. A lower or higher climate sensitivity implies smaller124

or larger climate hazards, and costs, for the same CO2 concentration. If the climate sen-125

sitivity distribution has “fat tails”, using the median estimate could bias cost assessments126

(Ackerman et al., 2010; Keen, 2020; Stern, 2013; Weitzman, 2012). A related issue is the127

possibility of tipping points in the climate system and their impact on damage functions128

(Lontzek et al., 2015; Cai et al., 2016).ă129

The need for quantitative probabilistic assessments of uncertainties was expressed130

back in 2000 in a guidance document to Intergovernmental Panel on Climate Change (IPCC)131

authors by Moss and Schneider (2000): “We believe it is more rational for scientists de-132

bating the specifics of a topic in which they are acknowledged experts to provide their133

best estimates of probability distributions and possible outliers based on their assessment134

of the literature than to have users less expert in such topics make their own determi-135

nations.” This comment was followed by the expectation that Bayesian approaches would136

be most appropriate to describe inherently subjective degrees of belief in our assessment137

of the state of science.138

This view on the need for a Bayesian interpretation of uncertainties is often cited139

in later papers looking into probabilistic emission scenarios. For example, M. D. Web-140

ster et al. (2002), M. Webster et al. (2003), M. Webster et al. (2008) and M. Webster141
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et al. (2012) sampled an a priori parameter distribution of the Emissions Predictions142

and Policy Analysis (EPPA) model to generate probabilistic GHG emission trajectories.143

These emissions were then fed into the MIT Integrated Global System Model (IGSM)144

to compute the posterior distribution for resulting temperature changes.145

Schneider and Mastrandrea (2005), Sokolov et al. (2009) and Repetto and Easton146

(2015) similarly assigned probability distribution to parameters of the DICE model to147

assess the probability of dangerous anthropogenic interference with the climate system148

and assess policy options. The authors stated: We do not recommend that our quanti-149

tative results be taken literally, but we suggest that our probabilistic framework and meth-150

ods be taken seriously: they produce relative trends and general conclusions that bet-151

ter represent a risk-management approach than estimates made without probabilistic rep-152

resentation of outcomes.”153

Ward et al. (2012) define a simplistic supply-side model of fossil fuel production154

to generate resource-constrained CO2 emissions. Fossil fuel production is broken down155

at the national level by fuel types. The model makes the hypothesis that known reserves156

of conventional and unconventional fuel can and will be extracted. Production growth157

rate is considered an uncertain parameter and sampled from a distribution, with an ini-158

tial growth rate of 10% for all fuels not currenly in production. Model assumptions are159

deliberately biased toward high production growth, with the intent of outlining the up-160

per structural limit to CO2 emissions.161

Gillingham et al. (2018) ran multiple IAMs to assess the relative contribution of162

model structure and parametric uncertainty to future temperature, CO2 concentration163

and economic output. Model parameters for population, productivity and climate sen-164

sitivity are sampled from a priori probability distribution drawn from the literature. This165

multi-model approach allowed the authors to assess leading sources of uncertainty and166

provide probability distributions for output variables.167

This paper builds on these ideas and leverages outputs from published probabilis-168

tic emission simulations to estimate the conditional probability for the CO2 concentra-169

tion scenarios within RCPs and SSPs. The paper targets the most popular CMIP tran-170

sient climate change experiments, in which scenarios impose time-varying GHG concen-171

trations to global climate models (GCM). Note that newer generation of Earth System172

Models (ESM) can simulate carbon cycle processes, allowing them to be driven directly173
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with GHG emissions; such emission-driven experiments would lend themselves to a much174

simpler probabilistic analysis than what is described in this paper.175

2 Data and Method176

Contrary to a common misconception, coordinated climate change experiments typ-177

ically used in climate impacts studies are not driven by GHG emission scenarios, but178

use prescribed GHG concentration scenarios. This is done in part to give climate mod-179

els that cannot simulate the carbon cycle an opportunity to participate. For recent CMIP180

iterations, emission scenarios drawn from select IAM simulations are converted into con-181

centrations using a reduced complexity model called MAGICC (MAGICC6 for CMIP5182

(Meinshausen, Raper, & Wigley, 2011), and MAGICC7 for CMIP6 (Meinshausen et al.,183

2019)). These GHG concentrations are part of the boundary conditions prescribed to184

climate models, along with land-use scenarios, aerosol concentrations, etc. Note that there185

are other CMIP experiments where ESMs are driven by emission scenarios, but they usu-186

ally count fewer participating models and are currently rarely used in impact assessments.187

This will likely change as more models include carbon cycle processes allowing them to188

be driven directly by emissions. Figure 1 illustrates how CMIP5 RCP experiments are189

tied to IAM emission scenarios.190

Figure 1. In CMIP5 RCP experiments, global climate models are prescribed greenhouse

gas concentrations estimated by MAGICC6 from emission scenarios simulated by four different

IAMs: IMAGE, GCAM, AIM and MESSAGE. In contrast, in the esmrcp85 experiment, ESMs

are prescribed GHG emissions directly and use their own carbon cycle processes to compute

concentrations. Although details differ, the experimental setup for CMIP6 is conceptually similar.
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An RCP or SSP scenario is a short-hand to describe an elaborate experimental de-191

sign, of which the GHG concentration trajectories is just one component (Eyring et al.,192

2015). Climate modeling teams set up their model following this experimental design,193

run one or many simulations (realizations), and then archive model outputs according194

to precise data and metadata specifications meant to facilitate model intercomparisons.195

Model outputs include hundreds of different variables, from which many climate hazards196

can be derived: heatwaves, sea level rise, annual maximum precipitation, droughts, etc.197

To quantify uncertainties, climate impact studies typically include results from multi-198

ple realizations from multiple models driven by multiple GHG concentration scenarios.199

With these results in hand, a legitimate question by decision-makers could be for exam-200

ple: “considering known uncertainties, what is the probability of precipitation exceed-201

ing a given threshold over the period 2030–2050?”202

2.1 Probabilistic Framework to Assess Climate Hazards203

Let’s denote a climate hazard as H. Risk analysts and decision makers are inter-204

ested in P(H(t)), the probability of occurrence of hazard H at some time t in the future.205

To lighten the presentation, time dependence t is implicitly assumed in the next equa-206

tions. Note also that we’re using the term probability to denote a subjective degree of207

belief in an hypothesis, not a frequency of occurrence.208

What CMIP experiments can provide is a probability conditional on the experi-209

mental design or scenario. If we let S stand for a CMIP scenario, including GHG and210

aerosols concentrations, initial conditions, etc., then climate model simulation ensem-211

bles can be used to compute P(H | S), the probability of a climate hazard H condi-212

tional to the scenario S.213

Although in principle CMIP offers multiple scenarios to draw from, the climate im-214

pact community has mostly relied on concentration-driven scenario experiments. For CMIP5,215

these include rcp26, rcp45, rcp60, rcp85, which we’ll denote as SCMIP5, the set of concentration-216

driven CMIP5 RCP experiments. For CMIP6, there are nine such ScenarioMIP exper-217

iments, but participating models are minimally expected to contribute simulations to Tier218

1 experiments: SCMIP6 = {ssp126, ssp245, ssp370, ssp585} (O’Neill et al., 2016). If219

we assume that the future climate will be captured by those sets of scenarios, then the220

hazard probability can be estimated by a weighted average of conditional hazard prob-221
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abilities:222

P(H) ≈
∑
S∈S

P(H | S)P(S), (1)223

where the weights P(S) are the Bayesian prior for each scenario.224

The first term on the right hand side of Eq. (1) is what climate impact studies rou-225

tinely compute. Its computation can be as simple as a fit of a normal distribution to the226

hazards simulated by a multi-model ensemble, or can include considerations regarding227

model performance or model independence (Knutti et al., 2017). Our focus in this pa-228

per is with the second term, the probability of a given RCP or SPP scenario, or how likely229

are the future conditions described in each scenario S. A full answer to this question would230

require an evaluation of the joint probability of all scenario components: concentration231

trajectory for each individual GHG, land-use changes, aerosols, solar forcing, etc. To re-232

duce the scope of the problem, we evaluate the scenario likelihood based only on the global233

CO2 trajectory and ignore the influence of other scenario components.234

This paper makes the claim that the scenario probability can be estimated condi-235

tionally to a set of probabilistic IAM emissions: P(S) ≡ P(S | EIAM). Using Bayes’236

theorem, and assuming RCPs and SSPs can be represented solely by their global CO2237

concentrations CS , we get238

P(S | EIAM) =
P(EIAM | S)P(S)

P(EIAM)
239

∝ P(EIAM | CS)P(S). (2)240

The second term on the right-hand side of Equation (2) is the prior for the scenario. It241

can be set subjectively by the risk analyst, or calculated based on other evidence. The242

next section discusses how to compute the first term, the likelihood of probabilistic emis-243

sions given the scenario CO2 concentration.244

2.2 Likelihood of Emission Trajectories245

In Eq. (2), the likelihood term P(EIAM | CS) stands for the probability of CO2246

emission trajectories given a known CO2 concentration scenario. Comparing concentra-247

tions and emissions implies a mechanism to convert one into the other. RCP and SSP248

scenarios use the MAGICC model to convert emissions into concentrations, but doing249

so here would dismiss carbon cycle uncertainties that are already partially neglected by250

concentration-driven experiments (van Vuuren et al., 2011).251
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The approach chosen here is to convert concentrations into compatible emissions.252

Compatible emissions are the anthropogenic fossil fuel emissions that balance carbon fluxes253

between the air, land and ocean when ESM are prescribed a given CO2 pathway. Indeed,254

climate models simulate CO2 exchanges between the atmosphere, land and ocean. If ca, co255

and cl stand respectively for the carbon stored in the atmosphere, the ocean and the land256

surface, then carbon emissions from fossil fuels e modify the total carbon budget:257

e =
∂ca
∂t

+
∂co
∂t

+
∂cl
∂t

. (3)258

The first term on the right is the time derivative of the CO2 concentration pathway used259

in the experimental design, and the other terms on the right are the carbon fluxes from260

the atmosphere into the ocean and land. These fluxes are simulated and archived by cli-261

mate models, allowing us to compute e, the compatible emissions that would have led262

to the concentrations imposed by the experimental design. Differences in the carbon cy-263

cle representation of ESMs such as vegetation dynamics, fire-carbon interactions or ocean264

biochemistry, appear as inter-model spread in compatible emissions. Compatible emis-265

sions are computed for CMIP5 in Jones et al. (2013), and for CMIP6 in Liddicoat et al.266

(2021). In the latter, mean fluxes during the preindustrial period are removed from fluxes267

over the historical and future scenarios to correct for the fact that some ESMs have not268

reached equilibrium.269

Carbon dioxide emissions compatible with prescribed concentrations are estimated270

for the CMIP5 and CMIP6 Tier 1 experiments following the methodology from Liddicoat271

et al. (2021). All model simulations for which both fgco2, the gas exchange carbon flux272

into the ocean, and nbp, the carbon flux from the atmosphere into the land, were avail-273

able on the Earth System Grid Federation and free from defects are used (the number274

of simulations available per model are listed for CMIP5 and CMIP6 in Tables A1 and275

A2 respectively). Global fluxes are computed by multiplying ocean and land fluxes by276

the respective fractional ocean area (sftof) and land area (sftlf) as well as the respec-277

tive grid cell area (areacello, areacella), and summing over the entire globe. Annual278

fluxes are entered into Equation (3) along with numerically differentiated RCP (Meinshausen,279

Smith, et al., 2011) and SSP concentrations (Riahi et al., 2017; Gidden et al., 2019), yield-280

ing annual compatible CO2 emission time series shown in Figure 2. In cases where prein-281

dustrial simulations (piControl) are available, the mean compatible emissions over the282

last 30 years of the preindustrial period (see Tables B1 and B2) are subtracted from his-283

torical and future emissions.284
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For each RCP and SSP experiment, we thus have an ensemble of emissions that285

are compatible with the CO2 concentration scenario. If we assume that the probability286

density of those compatible emissions can be described by a normal distribution, tak-287

ing the mean µS(t) and variance σ2
S(t) of diagnosed emissions for each scenario S lets288

us define a time dependent functional form for the IAM emission likelihood:289

P(EIAM | CS) ≡ N (EIAM | µS , σS). (4)290

To account for the varying number of realizations per model, ensemble statistics are first291

evaluated across realizations for each model, then across models within each experiment.292

More explicitly, if eS,m,r stands for compatible emission from experiment S, model m293

and realization r, and if Ed[X] and Vd[X] stand for the average and variance over dimen-294

sion d respectively, then295

µS = Em[Er[eS,m,r]],296

σS =
√
Vm[Er[eS,m,r]] + Em[Vr[eS,m,r]].297

Figure 2. Compatible fossil CO2 emissions diagnosed from CMIP5 (left) and CMIP6 (right)

simulations from historical (gray) and future (color) scenarios. Thin lines denote individual

model simulations, thick solid lines the multi-model mean for each experiment, and thick dashed

lines the IAM scenario fossil fuel emissions. Note that the mean is not always centered relative

to individual simulations, because the mean is first calculated over ensemble members, then over

individual models. This is especially visible in the right panel for SSP5-8.5, where a cluster of 50

CanESM5 simulations reaches much higher compatible emission values than other ESMs.
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Table 1 shows the total number of simulations and models available to compute those298

statistics for CMIP5 and CMIP6. Note that for RCP6.0, only seven different models were299

available.300

Table 1. Number of simulations and models with at least one simulation available for each

CMIP5 and CMIP6 experiment. For a break-down per model, see Tables A1 and A2.

Historical RCP2.6 RCP4.5 RCP6.0 RCP8.5

Model name

Simulations 35 23 27 10 27

Models 13 11 13 7 13

Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Model name

Simulations 233 121 155 131 112

Models 22 17 16 18 16

2.3 Probabilistic IAM Emission Simulations301

Probabilistic emission simulations are taken from five different papers, two of those302

using the same IAM. These papers were selected opportunistically based on two main303

criteria: ensembles of probabilistic CO2 emission time series up to 2100 were available304

publicly or from the authors, and the simulations did not explicitly constrain emissions305

to meet policy ambitions. Note that these IAMs were not necessarily intended to yield306

predictive emissions, hence results derived from those simulations should be not be in-307

terpreted too literally. They are used here mainly to illustrate the potential of proba-308

bilistic IAM simulations to inform climate risks. To lighten the text, each paper is iden-309

tified by an abbreviation.310

Fyke and Matthews (2015) [FM15] have developed a reduced-form numerical car-311

bon emission model based on differential equations describing the exchange of carbon312

between geological and exogenous (atmosphere, ocean and biosphere) reservoirs. The fluxes313

between those reservoirs depend on extraction and consumption rates, which in turn de-314

pend on availability and prices for fossil fuel and its alternatives. The model counts 28315
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parameters, 17 of which have significant uncertainty. For each of these uncertain param-316

eter, a probability distribution describing its uncertainty was defined based on published317

estimates and expert judgment. The parameters were sampled (n=100,000) from their318

prior distributions using a latin hypercube sampler, and time series (2012–2100) of car-319

bon emissions generated from the model equations (Figure 3). The parameters whose320

uncertainty had the greater impact on emissions are the minimum future non-fossil en-321

ergy cost, the maximum size of potential fossil energy resources and the maximum po-322

tential carbon pricing.

]

Figure 3. Stochastic emissions and cumulative emissions from Fyke and Matthews (2015)

(gray), overlaid with IAM emissions from CMIP5 RCPs (solid lines) and CMIP6 SSPs (dashed

lines).

323

Capellán-Pérez et al. (2016) [CP16] leverage the GCAM IAM, combined with a prob-324

abilistic assessment of recoverable energy resources, supply-cost curves and climate sen-325

sitivity, to analyze the relative importance of these factors in the temperature response326

at the end of the century. The study focuses on energy availability considerations, us-327

ing the “remaining ultimately recoverable resources” (RURR) approach to estimate non-328

renewable energy sources. It uses a Monte Carlo approach, where uncertain parameters329

are sampled (n=1,000) from their respective prior distribution, and then fed into GCAM-330

MAGICC to obtain CO2 emissions (Figure 4), total radiative forcing and the global tem-331
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perature response over the period 2005–2100. GCAM-MAGICC is run in baseline mode,332

meaning that no climate policy are imposed. The results reveal that the coal RURR un-333

certainty is the determinant factor among fossil fuel resources considered. It also shows334

that not accounting for the values in the upper ranges of fossil fuel availability can lead335

to an underestimate of total radiative forcing by the end of the century.

Figure 4. Stochastic emissions and cumulative emissions from Capellán-Pérez et al. (2016)

(gray), overlaid with IAM emissions from CMIP5 RCPs (solid lines) and CMIP6 SSPs (dashed

lines). Note that the abrupt jumps in the emission time series are likely due the lack of geological

constraints to fossil fuel extraction rates. Non-renewables availability is modeled using supply-

cost curves, and when a resource is depleted, its extraction drops to zero the following year.

336

Raftery et al. (2017) [R17] propose a model based on the country-level Kaya iden-337

tity, where the future carbon emissions of a country are given by the product of popu-338

lation, gross domestic product (GDP) per capita and carbon intensity (carbon emitted339

by GDP). Probabilistic population projections up to 2100 are taken from United Nations340

(2015), reflecting data up to 2015. A joint Bayesian hierarchical model for the GDP and341

carbon intensity is calibrated on data from 1960–2010. The model assumes an evolving342

world technology frontier, to which countries’ GDP converge at country-specific rates,343

and that all countries have reached a carbon intensity peak and are now on a declining344

trend. Model parameters are sampled by Monte Carlo (n=100,000) and the distribution345
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of emissions (Figure 5) analyzed to assess the relative importance of population (2%),346

GDP (50%) and carbon intensity (48%). The model does not include explicit future cli-347

mate policies, but the fact that model parameters are calibrated on historical data en-348

sures that the influence of past and current policies are included in future projections.349

Figure 5. Stochastic emissions and cumulative emissions from Raftery et al. (2017) (gray),

overlaid with IAM emissions from CMIP5 RCPs (solid lines) and CMIP6 SSPs (dashed lines).

350

Liu and Raftery (2021) [LR21] uses the same model as Raftery et al. (2017), but351

with five additional years of population (United Nations, 2019), economic and emission352

data. Slower growth in emissions between 2010–2015, compared to 1960–2010 period,353

explains the lower global annual emissions (Figure 6).354

Capellán-Pérez et al. (2020) [CP20] describe the MEDEAS-W IAM developed in355

the course of the homonymous EU project (Modeling Energy System Development un-356

der Environmental and Socioeconomic constraints). The model counts nine modules: econ-357

omy, energy demand, -availability, -infrastructures and -return on energy invested, min-358

erals, land-use, water, climate/emissions, and social and environmental impact indica-359

tors. The model is meant to inform decision-making regarding the transition to sustain-360

able energy systems, and grants considerable attention to biophysical constraints to growth361
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Figure 6. Stochastic emissions and cumulative emissions from Liu and Raftery (2021) (gray),

overlaid with IAM emissions from CMIP5 RCPs (solid lines) and CMIP6 SSPs (dashed lines).

and energy availability, mineral and energy investments for energy shifts, sectoral eco-362

nomic structure, and climate change damages. The model accounts for the character-363

istics of 25 energy sources and technologies, including reserves, extraction rate, intermit-364

tency of some renewable energy sources and requirements for storage and overcapacity.365

The model assumes technological improvements at economic sectoral and technologies366

level, but also constraints to the potential for renewables due to for example lower qual-367

ity siting and thermodynamical limits to generation efficiency. A non-linear climate dam-368

age function affects production and growth rate, consistent with the interpretation of “dan-369

gerous climate change” beyond CO2 concentration thresholds. Monte-Carlo simulations370

(n=1,000) are run to perform an uncertainty analysis for 72 inputs. CO2 emissions (1995–371

2100) simulated for the reference (Ref) scenario (a conditional probability approach based372

on the business-as-usual storyline) are shown in Figure 7.373

Comparing and contrasting the above studies highlights several themes. Firstly,374

it is notable that each of the studies make contrasted model choices. For example, R17375

and LR21 construct a data-driven statistical model framework that applies the simple376

Kaya identity at multiple points of time to develop emission time series. In contrast, FM15,377

CP16 and CP20 use more sophisticated time stepping numerical models with inherent378
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Figure 7. Stochastic emissions and cumulative emissions from Capellán-Pérez et al. (2020)

(gray), overlaid with IAM emissions from CMIP5 RCPs (solid lines) and CMIP6 SSPs (dashed

lines).

system dynamics, albeit with very different numerical methods: FM15 treat the global379

fossil fuel resource volume as an endogenous model component, whereas CP16 treat the380

same as an exogenous input variable and focus numerical efforts on estimating prices con-381

sistent with cleared markets, a concept which is entirely absent in the FM15 approach.382

In CP20, the total amount of reserves is fixed, but the extraction rate is subject to phys-383

ical constraints (maximum extraction curves).384

Secondly, the studies described here apply notably different methods to sample ex-385

ogenous inputs to the respective model frameworks. R17 arguably dedicate the most ef-386

fort towards this aspect, in applying a hierarchical (multi-level) Bayesian model frame-387

work approach for estimating modeled input parameters. Indeed, the term “model” in388

their study primarily applies to the statistical models which derive the inputs for the Kaya389

Identity relationship, rather than the functional equation itself. In contrast, FM15 use390

relatively simpler sampling of a larger number of uncertain, scalar, model parameters based391

on a normal distribution-weighted latin hypercube sampling approach that does not dis-392

criminate potential interdependencies between parameters. Providing further contrast,393

CP16 sample input parameters from empirical distribution functions for key input pa-394
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rameters, with distribution functions for important input parameters developed from avail-395

able published literature values. In CP20, 72 uncertain parameters are sampled from uni-396

form distributions, with ranges that go from ś20% around the reference scenario for most397

parameters, to ś50% or even [-50%, +100%] for the most uncertain parameters. As with398

model design diversity, there is significant long-term potential for convergent evolution399

towards optimal input parameter sampling practices, but also short-term challenges in400

comparing inter-study results because of differences in both sampled parameters, and401

statistical sampling methods.402

A critical difference across studies is the definition of CO2 emissions and the pro-403

cesses that contribute to them. FM15 simulate emissions from fossil fuel combustion only,404

while R17 and LR21 also include cement production. CP16 emissions account for indus-405

trial processes, fossil fuel combustion and land-use change, and in CP20 losses from en-406

ergy transformation and distribution are included as well.407

Despite model methodological differences, there are also several fundamental sim-408

ilarities between the studies. Per selection criteria, all papers adopted methodologies for409

model design and simulation production that avoided any predefinition of final results410

to which the model simulations are forced to meet (so-called “perfect foresight” or “pol-411

icy optimization” modeling). This contrasts fundamentally with the RCP and SSP sce-412

nario families which are constrained by design to match radiative forcing levels in 2100.413

It also contrasts with scenarios exploring pathways consistent with avoidance of exceedance414

of particular temperature thresholds (e.g. 2řC above preindustrial temperature). Avoid-415

ing the “perfect foresight” approach is a necessary precondition for any fully-scoped prob-416

abilistic assessment of future emissions, because it allows probabilistic assessments to de-417

velop in a free-running manner without a priori constraints on final emission levels, ra-418

diative forcing anomalies, or temperature targets.419

A second similarity between studies is their focus on evaluating the likelihood of420

exceeding global temperature thresholds, and its sensitivity to various factors. FM15 de-421

scribe the long-term likelihood of exceeding various global temperature change levels.422

Beyond the climate response to cumulative emissions, these likelihoods are most sensi-423

tive to minimum non-fossil energy prices, maximum fossil energy resources and maxi-424

mum carbon price. R17 focus on the likelihood of exceeding the 2řC threshold by 2100,425

with results that are largely influenced by the gross domestic product per capita and car-426
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bon intensity, and much less by population growth uncertainty. LR21 conduct a country-427

level analysis, estimating the likelihood that countries will meet their nationally deter-428

mined contributions, and keep warming below 2řC. CP16 describe the likelihood of sur-429

passing RCP emissions levels by 2100 and crossing the 2řC warming threshold in 2100.430

A sensitivity analysis covering resource related uncertainties indicate the dominant source431

of uncertainty are the remaining ultimately recoverable coal resources. CP20 is primar-432

ily devoted to the description of the MEDEAS modeling framework, and uses its Monte433

Carlo simulations to assess the robustness of the results, rather than estimate the prob-434

ability of outcomes.435

2.4 Annual vs Cumulative Emissions436

Key climate change features, such as global air temperature change, surface ocean437

temperature rise and sea level rise are nearly linearly related to cumulative emissions (Matthews438

et al., 2009; Williams et al., 2012). Given our objective is to assess the probability of such439

climate impacts, it makes sense then to compute Eq. (4) on cumulative emissions rather440

than annual emissions. This however complicates the analysis, because results now hinge441

on the year from which we start cumulating emissions.442

Historical CMIP5 and CMIP6 experiments start in 1850, while future scenarios start443

in 2006 for CMIP5 and 2015 for CMIP6. On the other hand, the five probabilistic IAM444

emissions simulations presented above start in 1990, 1995, 2010, 2012 and 2015. To align445

all results to a common starting point, all emissions are accumulated from 1750 onward,446

using observations taken from the Global Carbon Budget project (Friedlingstein et al.,447

2020) to fill gaps. For example, probabilistic cumulative emissions from FM15, starting448

in 2012, are incremented by the 2011 observed cumulative emission. Diagnosed compat-449

ible cumulative emissions for historical simulations are similarly incremented by ob-450

servations from the year prior to the start of the experiment (1849 for CMIP6, and 1861451

for CMIP5 to account for missing data in some simulations). Future simulations are matched452

with historical simulations from the same model, and whenever possible, the same re-453

alization.454
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2.5 Data Access and Analysis Software455

CMIP5 and CMIP6 CO2 land and ocean fluxes, grid cell areas and land-sea frac-456

tions were downloaded from ESGF using Synda (Nasser et al., 2020). Probabilistic emis-457

sion simulations were obtained from authors (FM15, CP16, CP20), or reproduced by run-458

ning publicly available code (R17, LR21, see Appendix B). Computations were carried459

out in the Python programming language using xarray (Hoyer & Hamman, 2017), pan-460

das (McKinney, 2010), NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020),461

and graphics created with Matplotlib (Hunter, 2007). Analysis-ready data and code to462

reproduce results from this paper are available at the Federated Research Data Repos-463

itory (https://doi.org/10.20383/102.0549).464

3 Results465

The following sections discuss different types of emissions, and to avoid confusion,466

we use the following terminology. Scenario emissions refer to CO2 emissions pathways467

defined in RCP and SSP scenarios. Compatible emissions are inferred from carbon fluxes468

simulated by CMIP models using Eq. (3). Finally, probabilistic emissions denote ensem-469

bles of CO2 emission trajectories simulated by the probabilistic IAMs described in sec-470

tion 2.3.471

The mean and standard deviation of compatible cumulative emissions for RCPs472

and SSPs are shown in Figure 8. For CMIP5 experiments RCP6.0 and 8.5, compatible473

cumulative emissions are considerably smaller than scenario emissions. In other words,474

less carbon emissions are needed in CMIP models than in MAGICC6 to reach the same475

CO2 concentration. This could suggest that positive carbon feedbacks might be more476

powerful in GCMs than in MAGICC6, or that MAGICC6 has more effective ocean or477

land carbon sinks. See Jones et al. (2013) and Friedlingstein et al. (2014) for further dis-478

cussions. The inverse is true for CMIP6, where the ensemble mean of compatible emis-479

sions are systematically larger than SSP scenario emissions. Note that although RCP8.5480

and SSP5-8.5 have approximately the same radiative forcing in 2100, their CO2 concen-481

trations are different, and the differences in emissions are not unexpected. These differ-482

ences have important repercussions for the interpretation of scenario probability.483

The mean and standard deviations shown in Figure 8 parameterize the normal dis-484

tribution of Eq. (4), which acts as the likelihood term in Eq. (2). To clarify, Eq. (4) es-485
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Figure 8. Mean and standard deviation of cumulative compatible emissions diagnosed from

carbon fluxes in CMIP5 RCP (left) and CMIP6 SSP (right) Tier 1 experiments.

sentially evaluates the overlap between the distribution of compatible cumulative emis-486

sions for each scenario, and the distribution of probabilistic IAM cumulative emissions.487

This is illustrated in Figure 9 for one ensemble of probabilistic emission and one year.488

The resulting relative likelihoods computed for CMIP5 and CMIP6 GHG scenar-489

ios and the five probabilistic emission simulations are presented in Figure 10. A poste-490

rior distribution can be obtained by multiplying these likelihoods with a prior for each491

scenario (Eq. 2). The likelihood time series are included in the supplementary material492

to enable assessments with different subjective priors. One notable feature is that high-493

end emission scenario RCP8.5 remains reasonably likely in all five IAMs until around494

2060, despite the fact that it lies in the upper tail of probabilistic emissions from R17,495

LR21 and CP20. This is due to Eq. (4) evaluating scenario likelihood against compat-496

ible emissions, which for RCP8.5 are smaller than scenario emissions (see Fig. 2). An-497

other feature worth highlighting is the low likelihood of RCP2.6 in all IAMs. Interest-498

ingly, for R17, LR21 and CP20, SSP1-2.6 is more likely than SSP3-7.0 by the end of the499

century.500

As mentioned earlier, results from this probability assessment should not be inter-501

preted too literally. For one, probabilistic CO2 emissions are not directly comparable among502

the different IAMs. The CO2 emission processes simulated by each probabilistic IAMs503

are different, some including cement production and industrial uses, while others do not.504
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Figure 9. Illustrative histogram of cumulative emissions from Raftery et al. (2017) com-

pared to the likelihood term (full line) for the four different SSP scenarios in 2100. SSP scenario

emissions (dashed line) are shown for reference.

Also, emissions from CP16 and CP20 account for land-use changes, while compatible emis-505

sions do not. Those differences directly affect the estimated likelihoods.506

Secondly, each IAM deals with policies very differently. Capellán-Pérez et al. (2020)507

include numerous policies regarding low carbon technologies, energy efficiency, recycling,508

transportation and afforestation. Fyke and Matthews (2015) includes policy-related pa-509

rameters such as a maximum carbon price, a carbon tax or non-fossil energy unit cost.510

In contrast, Capellán-Pérez et al. (2016), Raftery et al. (2017) and Liu and Raftery (2021)511

include no explicit parameterization for climate policies.512

Finally, the relatively small number of IAMs and the fact that multi-model ensem-513

bles are not homogeneous across experiments artificially distorts the likelihood estima-514

tion. For instance, in CMIP5 we would expect each RCP’s likelihood to start at 25%,515

because in 2006 the four RCPs have exactly the same CO2 concentration. With iden-516

tical CO2 concentration, the diagnosed emissions and their statistics should be very sim-517

ilar, except for small variations due to natural variability. Small ensemble sizes and dif-518

ferences in model make-up can shift the mean and variance of compatible emissions com-519

pared to the other RCPs, artificially perturbing the likelihood. This example gives a sense520
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Figure 10. Bayesian likelihood for CMIP5 RCPs (top) and CMIP6 SSPs (bottom) CO2 con-

centration pathways conditional on the probabilistic IAM CO2 cumulative emission simulations

ensembles from FM15, CP16, R17, LR21 and CP20. In theory, all scenarios should start with a

likelihood close to 25% because the CO2 concentration are identical at the start of each exper-

iment. Discrepancies seen in CMIP5 RCP6.0 and SSP3-70 are due to differences in the CMIP

ensemble make-up.

of the magnitude of the sampling error’s influence on the results, and cast doubts on the521

applicability of these likelihoods for actual decision-making.522

4 Discussion523

The motivation for this paper is grounded in the day-to-day experience of climate524

service providers. Climate services strive to translate the best available climate science525

into actionable information. Because key climate projection experiments are run with526

GHG concentration scenarios, derivative products such as climate impact assessments527

or risk analyses are also conditional on GHG concentrations. In applications such as en-528

gineering or flood zone mapping, where a single value reflecting a level of risk is required,529

the lack of guidance on scenario probability acts as a barrier to climate adaptation.530

One argument against assigning probabilities to emission scenarios is that it would531

be affected by reflexive uncertainty originating from human feedback to new informa-532

tion (Dessai & Hulme, 2004; van Vuuren et al., 2008). That is, the act of assigning prob-533
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abilities to scenarios would change the probability of these scenarios, making future cli-534

mate change “unquantifiable”. Although this argument might hold in the abstract, the535

idea that an academic paper would have a significant influence on global carbon emis-536

sions can nowadays only be met with irony.537

The reluctance of the climate community to assign probabilities to future GHG emis-538

sion scenarios has led to the study of alternative decision-making approaches, often re-539

ferred to as “Decision Making under Deep Uncertainty” (Stanton & Roelich, 2021). One540

suggestion stemming from these efforts is to switch the focus of discussions from agreement-541

on-assumptions, e.g. climate modeling assumptions, to agreement-on-decisions in order542

to find solutions that perform well under a wide array of future conditions and minimize543

regret (Kalra et al., 2014). Although valuable and illuminating, it is not clear how these544

concepts apply to decisions bound by strict regulatory frameworks, such as engineering545

or flood safety. Asking practitioners to overhaul laws, professional norms and regulations546

to account for climate change’ deep uncertainties is sure to delay adaptation actions.547

In the absence of a fully probabilistic decision-making framework, real-world adap-548

tation decisions are made by non-experts, based on ad hoc selection of climate scenar-549

ios based on data availability, the precautionary principle, personal opinions or hearsay.550

Even among experts, debates around the relative likelihood of climate change scenar-551

ios often struggle with the emission vs concentration aspects of climate change exper-552

iments (Hausfather & Peters, 2020a; Schwalm et al., 2020a; Hausfather & Peters, 2020b;553

Schwalm et al., 2020b). The argument that “RCP8.5 is unlikely because it requires an554

implausible increase in coal use” may be true for the scenario’s emissions (Ritchie & Dowlatabadi,555

2017), but on its own doesn’t imply that impacts derived from the concentration-driven556

rcp85 CMIP experiment are also unlikely. As long as climate hazards are determined557

by concentration-driven modeling experiments, arguments referring to emissions’ like-558

lihood will have to account for uncertainties in carbon cycle simulations and carbon feed-559

backs.560

Ideally, climate change experiments would be carried out by Earth System Mod-561

els (ESM) driven by an ensemble of representative emission pathways, instead of rep-562

resentative concentration pathways. Carbon cycle feedbacks would be free to fully play563

their role, instead of being curtailed by prescribed CO2 concentrations. The diagnosis564
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of compatible emissions would become unnecessary, because ESM emission pathways could565

be directly compared with IAM simulated emissions.566

Similarly, with only five probabilistic emission ensembles to draw from (two shar-567

ing the same model structure), it is clear that inter-model spread is not an accurate proxy568

for prediction uncertainties. Ideally, a coordinated multi-IAM experiment would be car-569

ried out, where dozens of independent modeling teams would contribute predictive sim-570

ulations covering the same period, starting from the same initial conditions, and archiv-571

ing their outputs using standardized variable definitions. IAM simulation outputs should572

map to ESM driving variables to facilitate the assignment of probabilities to represen-573

tative emission pathways.574

Together, these ESM and IAM coordinated experiments would provide researchers575

with the basic materials to conduct probabilistic climate change impact assessments, and576

answer a long-standing request from the climate service community and its stakehold-577

ers.578

5 Conclusion579

This paper adopts the argument that “it is very unhelpful to presume that all fu-580

tures are equally likely” (Mckibbin et al., 2004), and suggests an approach to estimate581

GHG scenario probability using probabilistic emissions simulated by IAMs. Because cli-582

mate models are driven by concentration pathways, CO2 emissions compatible with those583

concentrations are estimated from CMIP5 and CMIP6 simulated carbon fluxes. For each584

RCP and SSP, these compatible emissions are compared with the probabilistic CO2 emis-585

sions from five IAMs to estimate scenario’s relative likelihood.586

Although IAMs vary considerably in their structure and assumptions, the likeli-587

hoods obtained share similar traits. All rank RCP2.6 as the least likely until 2075. Al-588

though RCP8.5 depicts extremely high emissions, it remains relatively likely up until 2060.589

This is due to the fact that compatible emissions for high-end scenarios are considerably590

lower than their corresponding scenario emissions. For three IAMs out of five, SSP1-2.6591

ends up more likely than SSP3-7.0 and SSP5-8.5 by the end of the century, with SSP5-592

8.5’ likelihood dropping to zero in three IAMs.593

The approach presented suffers from a number of caveats that cast doubts on the594

reliability of results. The objective is not necessarily for these likelihoods to be used in595
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practice, but rather to illustrate the potential of probabilistic IAMs to inform scenario596

probability. Hopefully new climate and IAM experiments can be designed that will bet-597

ter address the need for fully probabilistic climate change risk assessments.598
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Appendix A CMIP Simulations Availability599

Search requests on ESGF for CMIP5 and CMIP6 simulations were last updated600

in August 2021. A simulation is considered available if both variables fgco2 and nbp are601

present for the historical period and at least one future experiment. In CMIP5, mod-602

els MRI-ESM1 and CMCC-CESM were not considered due to the presence of abnormal-603

ities in the data. Also, INMCM4 was kept out of the analysis because it does not rep-604

resent land-use changes.605

Table A1. Number of simulations storing land and ocean carbon fluxes for each CMIP5 tran-

sient scenario experiment.

Historical RCP2.6 RCP4.5 RCP6.0 RCP8.5

Model name

CanESM2 5 5 5 0 5

GFDL-ESM2G 1 1 1 1 1

GFDL-ESM2M 1 1 1 1 1

HadGEM2-CC 3 0 1 0 3

HadGEM2-ES 4 4 4 4 4

IPSL-CM5A-LR 6 4 4 1 4

IPSL-CM5A-MR 3 1 1 0 1

IPSL-CM5B-LR 1 0 1 0 1

MIROC-ESM 3 1 1 1 1

MIROC-ESM-CHEM 1 1 1 1 1

MPI-ESM-LR 3 3 3 0 3

MPI-ESM-MR 3 1 3 0 1

NorESM1-ME 1 1 1 1 1

Appendix B Preindustrial mean emissions606

Even in the absence of anthropogenic carbon emissions, some models exhibit non-607

zero carbon fluxes. This may be due to models not having reached equilibrium, or in other608

cases to how they account for river outgassing. To try to avoid attributing these fluxes609

to fossil fuel emissions, the mean preindustrial compatible emissions are subtracted from610

–27–



manuscript submitted to Earth’s Future

compatible emission time series of the historical and future periods. Tables B1 and B2611

present the mean compatible emissions computed over the last 30 to 50 years of the piControl612

simulation.613
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Table A2. Number of simulations storing land and ocean carbon fluxes for each CMIP6 Tier 1

ScenarioMIP experiment.

Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Model name

ACCESS-ESM1-5 29 10 12 10 10

CESM2 11 3 3 3 3

CESM2-FV2 3 0 0 0 0

CESM2-WACCM 3 1 5 3 5

CESM2-WACCM-FV2 3 0 0 0 0

CMCC-ESM2 1 1 1 1 1

CNRM-ESM2-1 9 5 10 5 5

CanESM5 65 50 50 50 50

CanESM5-CanOE 3 3 3 3 3

EC-Earth3-CC 1 0 1 0 0

GFDL-ESM4 1 1 0 1 0

INM-CM4-8 1 1 1 1 1

INM-CM5-0 3 1 1 5 1

IPSL-CM5A2-INCA 1 1 0 1 0

IPSL-CM6A-LR 32 6 11 11 6

MIROC-ES2L 31 10 30 10 10

MPI-ESM-1-2-HAM 3 0 0 3 0

MPI-ESM1-2-LR 9 10 10 10 10

MRI-ESM2-0 1 0 0 0 1

NorESM2-LM 3 1 3 3 1

NorESM2-MM 3 1 1 1 1

UKESM1-0-LL 17 16 13 10 4
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Table B1. Mean preindustrial compatible emissions from the CMIP5 piControl experiment.

Emissions (PgC)

Model name Member

CanESM2 r1i1p1 -0.07

GFDL-ESM2G r1i1p1 0.22

HadGEM2-CC r1i1p1 0.34

HadGEM2-ES r1i1p1 -0.29

IPSL-CM5A-MR r1i1p1 0.00

IPSL-CM5B-LR r1i1p1 -0.10

MIROC-ESM r1i1p1 0.09

MPI-ESM-LR r1i1p1 -0.06

NorESM1-ME r1i1p1 0.17

Table B2. Mean preindustrial compatible emissions from the CMIP6 piControl experiment.

Emissions (PgC)

Model name Member

ACCESS-ESM1-5 r1i1p1f1 -0.21

CESM2 r1i1p1f1 -0.06

CESM2-FV2 r1i1p1f1 -0.07

CESM2-WACCM r1i1p1f1 -0.09

CNRM-ESM2-1 r1i1p1f2 -0.71

CanESM5 r1i1p1f1 -0.09

CanESM5-CanOE r1i1p2f1 -0.07

INM-CM4-8 r1i1p1f1 1.12

INM-CM5-0 r1i1p1f1 1.15

IPSL-CM6A-LR r1i1p1f1 -0.01

MIROC-ES2L r1i1p1f2 0.11

MPI-ESM1-2-LR r1i1p1f1 -0.03

MPI-ESM1-2-LR r2i1p1f1 0.15

MRI-ESM2-0 r1i2p1f1 0.41

UKESM1-0-LL r1i1p1f2 -0.09
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Open Research614

Compatible emissions, probabilistic emissions, scenario emissions and observations615

used in this paper are available at the Federated Research Data Repository at https://616

doi.org/10.20383/102.0549, along with code to compute the likelihood, create graph-617

ics and tables.618

CMIP data was downloaded from the Earth System Grid Federation using Synda.619

SSP scenario emissions shown in figures 2 to 9 are based on data from the SSP database620

hosted by the IIASA Energy Program at https://tntcat.iiasa.ac.at/SspDb621

Time series of CO2 concentrations for RCP and SSP scenarios were obtained from622

International Institute for Applied Systems Analysis (IIASA) RCP and SSP databases.623

Observed CO2 time series from the Global Carbon Budget where obtained from624

the Integrated Carbon Observing System (https://www.icos-cp.eu/).625

Probabilistic emissions from FM15 are available at https://github.com/JeremyFyke/626

CEPM/blob/results/results/carbon_emissions.h5627

Code to generate probabilistic emissions from R17 can be found at https://github628

.com/PPgp/CO2projections.629

Code to generate probabilistic emissions from LR21 can be found at https://github630

.com/PPgp/BayesianClimateProjections.631
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