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Uncertainty in the orientation of the mechanism as determined
in the MT (left) and the STC (right) approach. The distribution in
the size of the confidence regions of T are provided in red, P in
blue, and N in green for AEs recorded during the loading
experiment. The events are sorted into shear – S (top), shear-
tensile – ST (middle), and tensile – T (bottom) types.
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CONCLUSIONS
?

?

?

?

?

The three exemplary AE events illustrate a reliability of the inversion for the MT and STC source models. The

STC provides smaller confidence regions for orientation and even smaller confidence regions for

decomposition. The reliability of the MT decreases with increasing content of the non-DC component. For

tensile sources, the ambiguity between the P and N axis orientation is caused by the axial symmetry of the

radiation pattern.

Statistics of the 1,630 AE data set confirmed assumptions based on the exemplary events analysis. Application

of the STC model led to a better determination of the mechanism orientation, namely for events with a higher

non-DC component. A highly improved reliability of the decomposition components thus allowed a better

distinction between the tensile and shear AE events.

The iterative stress inversion proved to be a great tool for the retrieval of stress tensor parameters from the

focal mechanisms of shear AE events with a high DC component (> 90%). Directions of the principal stresses

and their shape ratio (R = 0.943) corresponds very well to the stress conditions of the uniaxial compressive

test. Friction on the fault planes was estimated to be 0.7.

The magnitude of AE events ranged from -9.1 to -7.2. The corresponding fault plane radii were within the

interval of 0.2-1.4 mm, being in a good agreement with the grain size distribution of the Westerly granite. The

azimuthal distribution of crack planes was determined to be approximately uniform for all three source types.

The angle, between the loading direction and the crack plane increased with increasing DC component.

Average values for the three particular source types were: 16°, 21°, and 26°, for the tensile, shear-tensile and

shear AEs, respectively.

Source types with a high non-DC component (T = 46%, ST = 42%) dominated in both the stable and unstable

microcracking region, while shearing (12%) remained in the minority. Microcracking mainly occurred within

the middle circumferential portion of the specimen, while  the AE activity missed within the upper and

bottom conical portions of specimen. Flaking at middle-height, the region of high AE activity, lead to failure of

the specimen. Both the AE locations and the manner of failure indicate a perfect confinement end-boundary

conditions between the tested specimen and the loading platens.

α,
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Examples of the three types of mechanisms selected from the series

recorded during the loading experiment

vent No. 3,043 is a S-type (shear-type mechanism)

event No. 3,289 is a ST-type (shear-tensile mechanism)

event No. 7,001 is a T-type (tensile mechanism)
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A set of 1,630 reliably retrieved AE source mechanisms were

analyzed in detail.

The set consisted of 731 tensional

694 combined

205 shear AE events
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Photographs of the tested specimen loaded up to failure.

a) the specimen under peak axial stress (226.6 MPa).

b) the specimen under an axial stress of 164 MPa.

c) the specimen at the moment of failure (92 MPa).

a) 2D location of the 1,630 AE dataset: T- blue, ST – magenta, and

S – green. b) A density map of the AE hypocenter distribution. c)

The measured crack density distribution for the perfect

confinement end-boundary conditions, upper half of the specimen

d) The idealized crack density distribution for the perfect

confinement end-boundary conditions, upper half of the specimen

.

.

a) An equal stereographic projection of the fault plane normal, T-

blue, ST – magenta, and S – green. b) The angle ( between

loading direction and the fault plane versus the percentage of the

DC component

α)

.
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Mechanism of microearthquakes from acoustic emission in a laboratory:

How to evaluate efficiently a large amount of data

ROCK MATERIAL AND

THE EXPERIMENTAL SETUP

a) Westerly Granite (WG) - a microphotograph of a thin section:

Q-quartz, Pl-plagioclase, Kfs-K feldspar, Bi-biotite; b) mineral

composition obtained from the TIMA analysis, where R stands

for grains other than the four rock forming minerals.

Due to its small grain size, homogeneity, and low anisotropy, Westerly Granite (WG) was chosen as a convenient rock material

For our experiment, the original cylindrical specimen (height 104 mm, diameter 52 mm) was ground into the shape of an almost

regular octagonal prism.

Using the MTS system, model 815, the specimen was uniaxially loaded in the compression up to peak stress. Loading was

controlled with a

Twelve of the sensors were directly attached to the surface of the specimen and two were embedded in the top and bottom

loading platens

The apparatus was set up in a triggered regime (38 dB).

The sampling rate was 10 MHz

Approximately 21,000 AE events were registered.

.

.

.

linear combination of axial stress (σ) and axial strain (ε).

Westerly Granite (WG) – grain size distribution.

a) The Westerly Granite (WG) prismatic specimen prior to

testing. b) The experimental setup: 1-14 – the AE/US sensors,

Fuji AE204A; 15 – the extensometers, MTS 632.11D-90; and

16 - the cantilever, Ergotech.

a) Estimations of crack initiation and the crack damage

thresholds. The red color is volumetric stiffness, the green

color is the acoustic emission activity, and the blue color is the

first arrival amplitude. All of the quantities were normalized. CI

– crack initiation stress, CD – crack damage stress.

SHEAR-TENSILE CRACK SOURCE MODEL

Employing of a constrained source model to enhance robustness of the inverse task

The clue:

Shear-Tensile Crack source model

Shear-Tensile Crack (STC): combination of a shear slip and opening/closing the fault

full MT: 6 parameters

STC:      5

dip, strike, rake of the shear slip

slope angle (slip vector off the fault)

scalar moment

parameters

Error analysis of resolved STC: confidence regions

small confidence region ==>    well determined solution

large ==>    poorly constrained solutionconfidence region

geometry

DC
vs. n

on-D
C

INSTITUTE OF GEOLOGY
OF THE CZECH ACADEMY OF SCIENCES

a) The orientation of the , , stress axes together with the P and T axes for the 17 selected AE source mechanisms.

b) The confidence zones for , , stress axes. c) Mohr's circle diagram with positions of the identified fault planes.

d) Confidence zones for the shape ratio, yellow circle – the best-fit value

1 2 3

1 2 3

σ and σ

σ and σ

.

a) The moment magnitude, b) source radius, c) moment magnitude for

S, ST, and T source types, and d) the grain size.

Source type distribution. The blue color indicates

tension type, the green color indicates shear type

and the magenta color indicates combined type,

shaded area corresponds to crack damage stress

The moment magnitude Mw was calculated from the scalar seismic

moment. Moment magnitudes for the AE data set were in the interval of -9.1

to -7.5. The magnitude distribution is rather independent of the source type,

with a slight shift to higher values for shear cracks. To estimate the source

radius, r, we used the Brune’s formula. The radii of registered AE events were

in the range of 0.2-1.4 mm, corresponding to the grain size distribution.

The iterative stress inversion (Vavryčuk 2014) was

applied to calculate 4 parameters of the stress

tensor: the directions of the principal stresses (

The obtained results agreed very well with the stress

condition of the uniaxial compression test.

σ , σ ,

and σ ) and the shape ratio R = (σ – σ ) / (σ – σ ).

Since the inversion serves for the processing of

earthquakes (having high DC), it is sensitive to the

presence of a non-DC component. Therefore, the 17

best shear-type events (DC > 90%, NRMS < 0.3),

located in the unstable microcracking range, served

as input for the inversion.

1 2

3 1 2 1 3

Traditional source model: full moment tensor (MT)

constrained source model is often useful in practice

?

?

describes both shear and non-shear (tensile/collapsing) sources  ==>      suitable for tectonic and induced events

in poorly constrained inverse tasks (inexact velocity model, mislocation, poor geometry of observation) may be resolved poorly

(especially the DC vs. non-DC contents)

==>

Traditional constraint in earthquake seismology - deviatoric MT

is not capable to describe a volume change   ==>    not useful in induced seismicity

MOTIVATION


