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Abstract15

Evolving preferential dissolution channels are common features formed during reac-16

tive fluid flow in carbonate rocks. Understanding these is of particular importance17

in applications involving subsurface engineered reservoirs but predicting their pro-18

gression is currently challenging and poorly understood. Here, we propose a new19

approach to predict both the spatial distribution and extent of dissolution using20

a combination of experimental work, X-ray microtomography (µCT) and machine21

learning. We have conducted experiments, under reservoir conditions of temperature22

and pressure, involving pre- and post-flooding µCT characterisations, and coupled23

the outputs with a neural network to predict locations where carbonate was most24

likely to be dissolved. Our simulations demonstrate that our new solution can iden-25

tify the key geometrical features that are important during dissolution, and can26

accurately predict the location and spread of dissolution. An important benefit of27

this approach is that it can accurately predict dissolution channels through forward28

prediction, while it does not require further chemical parameters, using instead29

common and accessible variables.30

1 Introduction31

Injection of fluid into carbonate reservoir rocks is a widely used process in-32

volved in subsurface engineered reservoirs to manage permeability and fluid flow33

(geothermal, groundwater management, carbon sequestration, enhanced oil recov-34

ery, etc.). The injected fluid creates changes in the fluid dynamic and stress state,35

leading to dissolution where the pore network, chemistry, temperature, fluid compo-36

sition and pressures all influence the location, degree, and spread of the preferential37

channelling (Hoefner & Fogler, 1988; C. N. Fredd & Fogler, 1998; Golfier et al.,38

2002; Menke et al., 2017). The reactive and heterogeneous nature of carbonates39

make predictions of fluid behaviour challenging, and much work has been done on40

channelisation and classification in a variety of fluid-mineral systems as a function41

of the fluid flow rate and the fluid properties (Hoefner & Fogler, 1988; Steefel &42

Lasaga, 1990; Frick et al., 1994; Bazin et al., 1995; C. Fredd et al., 1996; C. N. Fredd43

& Fogler, 1998; Golfier et al., 2002; Walle et al., 2015), where fluid properties have44

been identified as largely controlling dissolution and channelisation in carbonates45

(Golfier et al., 2002). Numerical modelling studies have attempted to recreate these46
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dissolution processes by including variables influencing the general shape and spread47

of the dissolution footprint, such as system pressure, permeability, velocity of the48

fluid, or diffusion rate across boundary layers. Models have been tested, from a49

conceptual approach that considered a pre-existing cylindrical wormhole (Hung et50

al., 1989; Wang et al., 1993; Buijse et al., 1997; Huang et al., 1997, 1999), to more51

complex approaches focusing on the grain scale (Hoefner & Fogler, 1988; Daccord et52

al., 1989), on the fluid mechanics (Daccord, Lenormand, & Lietard, 1993; Daccord,53

Lietard, & Lenormand, 1993), or the mass and flow transfer (Liu et al., 1997; Chen54

et al., 1997). Most of these approaches displayed reasonable qualitative results of55

channel geometry and were backed by experimental outputs, against computation-56

ally expensive treatments operating over millimetre scale volumes. Here, we have57

coupled experimental work and Artificial Neural Networks (ANNs). The benefit of58

ANNs stems from the non-linear aspect of the solving algorithms coupled with their59

ability to learn and recognise patterns (Basheer & Hajmeer, 2000). Although stud-60

ies have joined µCT imaging and machine learning as a segmentation tool for 3D61

volumes (Cortina-Januchs et al., 2011; Chauhan et al., 2016) and for rock modulus62

estimations (Sonmez et al., 2006), no work has been published on predictions of the63

spatial distribution of carbonate dissolution, purely relying on µCT images. Our64

approach has the advantage that it works as a predictive tool for channel spatial dis-65

tribution, spread, and magnitude, over centimetre large volumes, in relatively short66

computational times. We have combined experimental data with an ANN to develop67

a predictive tool for preferential flow-path development.68

The model presented in this study used datasets that were generated during exper-69

imental investigations of reactive fluid flow in carbonate samples. We investigated70

channels development through carbonate samples of heterogeneous nature by com-71

paring the ANN computed solutions to 4 experimental results. For the experimental72

fluid flows, we used a range of flow rates and these have been named High Flow73

Rate 1 and 2 (HFR 1; HFR 2), Medium Flow Rate (MFR), and Low Flow Rate74

(LFR). Our coupled numerical work included a pre-processing of pre-experimentally75

tested core samples µCT-scans followed by a training of the ANN against the post-76

experimental channels data. The pre-experimental data - referred to as Input data77

- were based on 18 + 1 variables describing the geometrical attributes of the pore78

network (steps A and B in Figure 1). The differential result between pre- and post-79
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experimental µCT-scans allowed to pinpoint dissolution channels, leading to the80

generation of the Signature dataset (steps C and D in Figure 1). We trained multi-81

ple hidden layer ANNs on six datasets (including Input and Signature datasets) and82

blindly predicted on two (including the Input dataset only), corresponding to the83

four experimental regimes (further explained in Section 2.1). By doing so, we have84

been able to favourably predict the occurrence, shape, and magnitude of the disso-85

lution pathways evolution in heterogeneous carbonate rocks using only attributes86

extracted from µCT scans, before flooding, on representative volumes. Moreover,87

the processing times of our solution were significantly smaller than the various88

computationally expensive systems models (Budek & Szymczak, 2012), with the89

non-negligible advantage of using larger cuboids inputs (Blunt et al., 2013; Bijeljic et90

al., 2004).91

Figure 1: Data acquisition workflow. The two sub-sampled cuboids (pre-flooding and

channels) are of the same size. Both stacks have been re-sliced a hundred times in two

orthogonal directions. A & B: input data acquisition; C & D: signature data (or true solu-

tion) acquisition; E & F: input and signature data as attributes for the ANN.
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2 Materials and Methods92

2.1 Experimental matrix and dissolution regimes93

The experimental dataset used to develop our methodology, and train and test94

the ANN, comprised a set of four experiments on highly heterogeneous - in porop-95

ermeability - travertine samples. Each core was 3.8 cm in diameter and differing96

in length (6.8 cm < L < 8.1 cm). The experimental procedure started with a pre-97

experimental preparation and conditioning of the core samples, followed by µCT98

acquisitions of the clean cores. The post-experimental process consisted of sonicat-99

ing the samples in distilled water, before drying them for a week at 65 °C for one100

week, followed by post-experimental µCT acquisitions. The experimental flooding101

consisted in injecting an artificially made seawater of known pH (cf. supplemen-102

tary information). The four experiments were carried under realistic geo-reservoir103

conditions of pressure and temperature (temperature T = 60 °C). The effective104

stress used in this study refers to the work of Terzaghi (1951), while the pore volume105

rate (PVrate) used in this study is described by: PVrate = Q(t)/Vp, with Q(t) the106

amount of fluid injected per minute logged (m3) and Vp the volume of pore of the107

rock sample (m3). The porosity is calculated before the experiments, using the triple108

weighing technique (Luquot et al., 2016), and displays an average value of ∼11 %109

(from ∼5 % to ∼14 %). Table 1 presents the four experimental scenarios.110

Experiment Flow rate (cm3/min) PVrate (-) Eff. stress (MPa) Conf. pressure (MPa)

HFR 1 15.58 2.6 10 50

HFR 2 14.25 2.5 40 50

MFR 6.24 1 10 50

LFR 1 0.2 40 50

Table 1: Flow rate, pore volume rate, effective pressure and confining pressure used for

the four experimental floodings. Further petrophysical and chemical data on the rock

samples are given in supplementary information.
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2.2 µCT Processing111

2.2.1 Data Acquisition112

For each core, pre- and post-experimental flooding, tomographic data were113

acquired at 130 kV, and 25 W target power loading. Each dataset consists of 2,000114

projections; each of 2 s duration, during a 360° revolution. Reconstruction by fil-115

tered back-projection used Octopus v8.7 software (Dierick et al., 2004), while post-116

processing data analysis and registrations of the pre- and post-flooding dataset of117

each rock, followed by the processing of the differences between both stacks were118

done using Fiji (Schindelin et al., 2012) and Avizo®9 functions.119

2.2.2 Channel Resolution120

The channels formed during our experimental fluid flooding can be detected121

through image processing by processing the difference between the pre- and post-122

experimental µCT volumes, while taking into account the initial porosity. The two123

types of datasets were generated. The first one represented the 3D volumes of pre-124

experimental scans - referred to as input data. These datasets were used for training125

the ANN and/or predicting the preferential pathway(s) location and magnitude.126

The second one were 3D volumes of dissolution channels - referred to as signature127

data. These datasets represent the true solution of channel(s) formation and were128

used for training the ANN.129

As a way to account for the difference in samples sizes, we sub-sampled the 3D130

stacks into cuboids of variable side lengths (550 px to 650 px large) and constant131

axial length of 710 slices (∼2.5 cm by ∼2.9 cm). Both input and signature volumes132

of a single core sample are sub-sampled at the same location: To save further com-133

putational time, the 3D sub-sampled volumes were re-sliced a hundred times in two134

orthogonal directions - each sampled direction creating a dataset which we treated135

as independent - with respect to the axial axis and the original orientation of the136

sample within the sub-sampled core. Figure 1 presents the workflow for µCT data137

acquisition. In total, we have scanned four samples, translated into eight datasets,138

which were later divided into training & validation data (six datasets) and blind test139

data (two datasets) when developing the ANN.140
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2.3 Modelling141

2.3.1 Input Data142

The input data were a set of calculated geometric, physical, and simple statis-143

tical variables for predicting material loss during experimental floodings. Extraction144

of the information involved a conversion from the 16-bit grayscale 2D slices stacks to145

normalized 1D variables that can be evaluated by the ANN.146

The formating of the input data has been done via a Visual Basic for Applications147

(VBA) batch coupled with Corel® X7 suite has been used as a quick way to apply148

the same formatting to each 2D slice. The batch automatically and sequentially149

thresholded, smoothed, vectorized, and resized each image to its original size.150

For each formatted 2D slice, a set of nineteen relevant variables were collected151

through an in-depth image analysis. Most variables can easily be explained through152

image interpretation and simple mathematics (1, 6, 7, 9, 10, 13, 14, 15, 17), as well153

as variable 18 (PVrate, cf. Section 2.1). The remaining variables (2, 3, 4, 5, 8, 11,154

12, 16, 19) have been calculated using a bespoke pre-processor which performed cal-155

culations on the equivalent elliptical shapes of each pore and the pore network (cf.156

supporting information). Figure 2 presents a simplified workflow for pore network157

generation. The rationale behind the use of a 2D network of pores rather than a 3D158

pore network skeletonization enables the network to operate on a desktop, where our159

networking software could extract a simplified set of 2D attributes which highlighted160

the key characteristics encountered during a 3D analysis. Studies have simplified the161

complex structure of the pores by the ellipse equivalent shape of a pore (Fournier162

et al., 2011), while Tsukrov (Tsukrov & Kachanov, 1993) demonstrated that elon-163

gated pores could be replaced by their ellipse-equivalent shape for DEM modelling.164

This network, generated for each scanned slice, was based on the arrangement and165

overlapping state of the 2D porosity: Each pore of a 2D slice was replaced by an166

ellipse of equivalent area, shape, and orientation. These ellipses were then enlarged167

by a constant factor. This enlarging factor, called the area of influence, was a com-168

putational way of representing the hydrogeological influence of a pore around its169

neighbourhood; or the numerical way of imaging the 3D influence of a pore on a 2D170

slice. The 2D arrangement of a set of links symbolized a pore network. A link set171

between two pores suggested the potential existence of a pathway between these two172
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pores in the rock. The analysis of this pore network allowed the calculation of the173

variables 2, 3, 4, 5, and 19, while the analysis of the ellipses defined the variables 8,174

11, 12, and 16.175

2.3.1.1 Pore network analysis (variables 2, 3, 4, 5, 19)176

Variables 2, 3, 4, 5, and 19 are determined as follows: the area of connected177

pores (2) is the sum of the 2D area of the pores which are part of a connected net-178

work. The total (3), median (4) and mean length connection (5) are basic math-179

ematical calculations using the length of every link from a 2D slice. Finally, the180

I/O connection (19) is a variable which is not part of the variables processed by the181

ANN, but rather an independent measurement used in determining the potential182

breakthrough location. A recursive function analyses the 2D network of links, and183

detects if at least one path between bottom to top of the image is found.184

2.3.1.2 Ellipse analysis (variables 8, 11, 12, 16)185

The ellipse shape of a pore can resolve the following variables: the ratio of pore186

area (8) represents the ratio between the area of the largest pore over the mean pore187

area of a 2D slice. This variable is used for excluding large outliers. Both the small188

(11) & the large (12) ellipse perimeter are calculations of both the ellipse shape of a189

pore and its enlarged version. The mean aspect ratio (16) is represented by the ratio190

of the minor axis b over the major axis a of an ellipse.191

2.3.2 Signature Data Pre-processing192

The signature data refers to the estimated channels magnitudes and locations.193

This dataset was computed from the differential result between the pre- and post-194

experimental scans. Our methodology involved a registration of both unaltered and195

altered datasets into the same 3D space, allowing us to further subtract both stacks196

in order to account for potential differences. Isolating and computing the dissolu-197

tion channels and sub-sampling has been dine under Avizo ®9. The cuboids were198

re-sliced and thresholded using the Fiji AutoTresholding function (Schindelin et199

al., 2012; Ridler et al., 1978). The percentage of black and white area was calcu-200

lated for each 2D slice using a batch code based on the Measure function under Fiji201

(Schindelin et al., 2012), and was used as the true solution of the channel shape and202

size for a set of slices of the 3D stack. The signature data were finally normalized203
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so that the maximum percentage area of white equals 1 (presence of dissolution204

channel) while the minimum was equal or close to 0 (no dissolution detected).205

2.3.3 Regression and Neural Network Modelling206

In this work, we trained both linear regressions and multiple hidden layer207

ANNs on six datasets and predicted on two, which corresponded to the four ex-208

perimental regimes as explained in Section 2.1. With this network trained, we209

then predicted the remaining two, blind datasets’ spatial channel signatures, cor-210

responding to the remaining experimental regimes. For the four combinations of211

three training experimental regimes (six datasets) and one blind test experimental212

regime (two datasets), we performed a linear regression where eighteen normalized213

features were input and fitted to minimize the least-squares misfit when compared to214

the measured spatial channel signature extracted from before and after µCT scans,215

as described in Section 2.3. We did not perform any regression or model training216

using the I/O variable (19), which was held aside for comparison, as seen in Section217

2.3.1. After the linear regression was parametrized, we performed modelling using218

an ANN based on the MATLAB’s Deep Learning Toolbox (Hudson Beale et al.,219

2018), with three hidden layers, consisting of 11, 8, and 5 neurons respectively. All220

eighteen variables were normalized, as discussed in Section 2.3.1, before inputting221

into the network. All transfer functions between the input and all hidden layers in222

the ANN were hyperbolic tangent functions. The transfer function between the last223

hidden layer and the output layer was linear. Our experimental aim was to train the224

ANN on three experimental regimes (six datasets; three rocks), and predict channel225

formation on a fourth experimental regime (two datasets; one rock).226

We have randomly partitioned the data from six training datasets into 74% training227

data and 26% validation data. We trained an ANN given this random partitioning228

of training and validation data and forward-modelled the spatial channel signature229

on the remaining two blind test datasets. This workflow has been repeated 3,000230

times independently, each time training a new network given a different random par-231

titioning of training and validation data from the same six datasets, and produced232

3,000 predictions of the two blind datasets’ spatial channel signatures. This amount233

of iteration allowed to obtain large enough outputs in reasonably short computing234

times (half a day for ANN training over 3,000 iterations, while predicting processing235
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was done within minutes). These 3,000 predictions have been made into a density236

plot which shows the most likely spatial channel signature, as well as the sensitivity237

of the network to the partitioning of input data into test and validation datasets.238

We performed this workflow for all four combinations of three training experimen-239

tal regimes (six datasets) and one prediction experimental regime (two datasets),240

allowing us to simulate four, independent experiments.241

A

B

C

Figure 2: Steps for the detection of a link between two pores (black shapes), virtually

representing a suspected connection between two pores in a rock. The step (A) represents

the area of influence applied around a pore through a multiplier of the original pore area.

Case (B) shows two non-overlapping pores. Case (C) displays a case of overlapping el-

lipses.

3 Results242

3.1 Example of Post-experimental µCT Results243

Figure 3 presents an example of signature from two datasets (blue curve; cf.244

steps C and D in Figure 1) plotted under their corresponding channel. The back-245

ground greyscale images are the last image from the image stack in the Y-axis (left)246

and X-axis (right), and are displayed in a way to contextualize the channels in their247
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volumes. The cross-plotting of the thresholded percentage area of black to white of a248

channel offers a good insight into the location, the spread, and the magnitude of the249

created pore space. The values of the signature data were cross-normalized between250

datasets.251

Figure 3: Example of signatures plotted under their respective cross-sectional direction

for the HFR 1 experiment. Left: XZ direction; Right: YZ direction. The blue volumes

represent the material removed after fluid flow through the core sample, while the plot

underneath each graph represents the intensity of this material removal, per direction.

3.2 ANN Outputs252

The predicted spatial channel signatures from the fitted linear regression mod-253

els, as seen in Figure 5, are displayed as white curves, with the signatures measured254

from µCT scans displayed as red curves. Table 3 shows the percentage decrease in255

RMS error when predicting channel location and magnitude with the ANN over256

a linear regression, with values ranging from 26.5% to over 90% decrease in error.257

Moreover, the linear regressions model was generally ineffective at predicting spatial258

channel signatures. A ranking of the linear regression weights for all features is given259

in Table 2 and Figure 4 over all four training scenarios. In Figure 4, we show the260

–11–



manuscript submitted to Water Resources Research

linear regression weights for all features. The last feature shown (19) is the size of261

the constant term or bias in the linear regression.262

Figure 4: Linear regression weights for all features. The outlying weight on feature 12 is

-6.22.

As all features were normalized before performing linear regression, we propose that263

features that ended with small weights were related to physical attributes which had264

little effect on a channel’s formation. By this reasoning, we interpret that features265

2, 4, 6, 8, 16, and 18 all correspond to physical properties which had little influence.266

These features are the area of connected pores, the median length of connections,267

the median pore area, the ratio of pore area, the mean ellipse aspect ratio, and the268

mean distance between pores. By the same reasoning as above, we interpret fea-269

tures with larger weights as proxies for the rocks’ physical attributes which broadly270

exerted a stronger influence on channel formation. These features include numbers271

9 to 12, which correspond to the number of pores, the mean pore perimeter, the272

small ellipse perimeter, and the large ellipse perimeter respectively. Of course, this273

reasoning of inferring feature influence on enhanced permeability of pre-existing274

pathway from linear regression weights is flawed as normalized features with large275

outliers may require large scaling to minimize their fitting residuals. Also, as we see276

in many cases, linear regression is not an effective predictor of channel formation on277

blind test data. Nevertheless, this analysis offers a crude, qualitative first estimate278
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of which features may or may not be important in channel formation prediction279

processes within heterogeneous carbonate rocks featuring macropores.280

# Key parameters Influence

1 Total pore area Medium

2 Area of connected pores Low

3 Total length connection Low

4 Median length connection Low

5 Mean length connection Low

6 Median pore area Low

7 Mean pore area Medium

8 Ratio pore area Low

9 Number of pores High

10 Mean pore perimeter High

11 Small ellipse perimeter High

12 Large ellipse perimeter High

13 Porosity Medium

14 Number of pore greater than mean size Low

15 Number of pore greater than median size Medium

16 Mean ellipse aspect ratio Low

17 Mean distance between pores Medium

18 Pore volume rate Low

19 I/O connection -

Table 2: Summary of the key parameters used in this study and their apparent relative

influence on preferential channel formation.

4 Discussion281

The background density plots (Figure 5) show the distribution of blind predic-282

tions generated by the 3,000 neural network simulations, given each combination of283

three training experimental regimes (six datasets) and one blind test experimental284

regime (two datasets). Intensity ranges from low (blue) to high (yellow) number of285
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HFR 2 - XZ HFR 2 - YZ

HFR 1 - XZ HFR 1 - YZ

MFR - XZ MFR - YZ

LFR - XZ LFR - YZ

Figure 5: Measured data (red) overlain on density plot of 3,000 trained neural networks’

blind test predictions for the four experiments. The white lines show the fitted linear

regression models. The black lines represent the best fit for the network blind test pre-

dictions. The diamonds are the non-neural network solutions for regions of likelihood for

breakthrough independently computed using variable 19 (not included in the neural net-

work predictions).
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Core name ANN RMSE Linear Reg. RMSE Difference in RMSE (%)

LFR XZ 0.04 0.45 -90.6

LFR YZ 0.04 0.43 -90.2

HFR 2 YZ 0.13 0.23 -42.5

HFR 2 XZ 0.18 0.27 -35.9

HFR 1 YZ 0.11 0.66 -83.4

HFR 1 XZ 0.20 0.59 -65.7

MFR YZ 0.09 0.19 -51.3

MFR XZ 0.07 0.09 -26.5

Table 3: Percentage of the decrease in root-mean-square-error between linear regression

and our ANN solution (respectively white and black lines in Figure 5). Our solution

shows an increase in prediction quality of up to ∼90%.

solutions in the bins histogram. The black lines represent the averaged best solu-286

tions from our predictions. The “true” solutions (signatures) have been plotted in287

red on top of each result. We observed a generally effective prediction of dissolution288

channel location and magnitude by our approach for all four training and prediction289

experiments. There was a notable improvement of accuracy over the linear regres-290

sion modelling. The spread in the density plot at locations with a large spatial chan-291

nel signature indicated the sensitivity of neural network training to the particular,292

random segmentation of validation and training data. The red diamonds on Figure293

5 indicate where the feature 19 has found an existing pore space connection from294

sample input to output in the pre-flooded rock. This single feature was an effec-295

tive predictor for breakthrough and principal channel(s) location. This implied that296

dissolution channels are likely to occur where there is a pre-existing input/output297

connection in the rock before flooding. We note this feature only predicted the lo-298

cation, rather than the magnitude. For this reason, the use of our neural network299

method was beneficial over using only feature 19.300

The influence of the key parameters has been assessed through an analysis of the301

linear regression weights for all the features processed by the ANN (Figure 4). We302

attributed a rank to a feature by summing, per feature, the weights of each of the303
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four experiments. A feature was ranked “Low” if the sum S was ≤ 1; “Medium” if304

1 ≤ S ≤ 2, and “High” if S < 2. The parameters ranked as “High” in Table 2 were305

assumed important as they reflected how physical (eg. fluid dynamic) and chemical306

variables (such as reactive transport, the acidity of the fluid, chemical interaction,307

etc.) could have been influenced by the surface of the pores so that the larger a pore308

perimeter was, the more important the wall surface in contact with the flooding fluid309

should have been. These effects were positively impacted by the amount of pores310

present. This also validated the ellipse shape assigned to each pore as a correct311

simplification of the general shape of a pore (Tsukrov & Kachanov, 1993; Fournier312

et al., 2011). We noted that the variables linked to the area of the pores were not313

ranking higher than “Medium” (and most often “Low”). We explained this by the314

relatively small importance of the area of the pores. While large pores should have315

driven more fluid, the large perimeter (likely associated with a large area) guar-316

anteed more wall-fluid interaction that could have been associated with a higher317

degree of alteration. This was consistent with Darcy’s law, where the flow will tend318

to be slower and residence time longer. This was possibly accentuated in the case of319

travertine rocks by the initial high surface roughness caused by calcite overgrowth320

in the pores, leading to the very high initial perimeter (although not measurable at321

the scale of our scans). We also believe that the ANN has made a clear distinction322

between porosity and number of pores, for reasons similar to that which have been323

explained above: a large effective porosity could have been associated with large324

pore areas, while the number of pores remained largely uncorrelated to the area of325

the pores.326

5 Conclusions327

This study offers a new way to accurately predict the location and shape of328

channels formed during water flooding in carbonates, by coupling Artificial Neu-329

ral Networks (ANNs) and µCT images. A limited number of studies have already330

successfully linked these two tools as a segmentation method, and for rock modulus331

estimation, but none used ANNs for dissolution prediction. While it is commonly332

stated that the velocity of flow at the inlet of a core sample is the main factor for333

rock dissolution and/or material removal, this is only part of the story. The find-334

ings of our work showed that spatial distribution of the porosity evolution can be335
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predicted using only the pore network information held by the rock sample; where336

the micro- or macro-heterogeneities of the porous medium drive the flow instabili-337

ties to direct the fluid flow and, as such, chemical removal, towards zones of highest338

permeability leading to material loss. Our results showed that specific variables339

stand-out of the ANN analysis, and validate that geometric factors linked to the340

porosity and pore shape of a rock contain, most of the time, the necessary data for341

predicting material loss during rock-water flooding. If a linear combination of these342

µCT-extracted attributes can successfully predict a rock’s spatial channel signature,343

the weights from the linear regression could be considered indicators of the influence344

of µCT-extracted feature in channel formation. While this statement is valid in het-345

erogeneous travertine rocks, we remain careful with other types of carbonate, or even346

other types of lithology which have not been tested in this study.347
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