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Abstract

Margins of old continental lithosphere are likely prone to ongoing modification processes. Therefore,
constraining detailed structures beneath the margin can be essential in understanding the evolution of the
continental lithosphere. . The eastern margin of the Eurasian plate is a natural laboratory that allows us to
study the strong effects from multiple episodes of continental collision and subduction of different oceanic
plates since their formation. To reveal the detailed evolution of cratons at their margins, we describe, for
the first time in detail, 3-D upper mantle velocity structure beneath the southern Korean Peninsula (SKP)
by teleseismic traveltime tomography. We used seismic data recorded by 254 permanent stations
deployed in and around SKP, which allowed us to obtain high-resolution P and S wave velocity structures
from the uppermost mantle to a depth of ~¥360 km. We found a prominent velocity contrast within the
peninsula showing relatively low velocity in the east and northeast while relatively high velocity in the
west and southwest. We imaged a thick (~¥150 km) high-velocity anomaly mainly beneath the Proterozoic
Yeongnam massif with large velocity contrasts (dinVp = 4.0% and dInVs = 6.0%) at its boundaries,
suggesting the presence of a long-lasting cratonic root in the southwestern SKP. On the other hand, low-
velocity anomalies were found beneath the Proterozoic Gyeonggi Massif, Gyeongsang arc-back-arc basin,
and along the eastern margin of the SKP, indicating significantly modified regions. The possible existence
of a remnant cratonic root beneath the SKP and contrasting lithospheric structures across the different
Precambrian massifs suggests the highly heterogeneous modification of cratonic lithosphere at the
eastern Eurasian plate margin. Strong velocity reductions, which indicate a thermally elevated upper
mantle with potential partial melts, clearly correspond to areas of Cenozoic basalts, high surface heat flow,

Tectonic setting Resolution tests
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the current setting since the late Paleozoic to early Triassic.
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