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Abstract 21 

Real-time control (RTC) helps the combined sewer system to adapt its response 22 

to individual rainfall and enhance the performance of combined sewer overflow (CSO) 23 

reduction. Recently, an RTC approach based on reinforcement learning (RL) is 24 

developed for flooding control in a stormwater system. However, the safety and the 25 

performance of this AI algorithm still need further improvement. In this paper, a new 26 

RTC method based on multiple RLs, system optimization, and model predictive 27 

control (MPC) is developed for the improvement of both safety and CSO reduction. 28 

First, five RL agents are trained by five individual RL algorithms. Then, an 29 

optimization model is used to optimize the advantage function of all the agents for 30 

control effect improvement. After that, an MPC-based security system is established 31 

to check the safety of control strategy before the implementation. Finally, our new 32 

RTC model, called voting system, is developed through the combination of these five 33 

agents and the security system. This method is evaluated in the combined sewer 34 

system model of a city in eastern China. According to the results: (i) All the five 35 

trained RLs are able to show promise in overflow reduction. (ii) The AFI improves 36 

the CSO reduction of all the agents with the maximum improvement rate of 44.5%. 37 

(iii) The security system selects a safe control strategy through a small scale MPC, 38 

thus it provides a guarantee of safety. Still, our method faces the challenges of 39 

computing time, local optimization, and the limitation of system capacity. 40 

 41 

Key words: safety, reinforcement learning, combined sewer system, real-time control, 42 

model predictive control, combined sewer overflow. 43 

 44 

1. Introduction 45 

The combined sewer system is widely used in many cities around the world. 46 

However, the combined sewer overflow (CSO) cannot be easily avoided during 47 

application (Mailhot et al., 2015; Suarez and Puertas, 2005; Wan and Lemmon, 2007; 48 

Xu and Liao, 2013; Xie et al., 2017; Gu et al., 2017). A primary solution to this 49 

problem is to enhance the infrastructure for optimized system-scale performance. But 50 

the cost and viability of this solution is highly variable in different cases (Abhiram et 51 

al., 2020). 52 



Another solution is real-time control (RTC), which uses sensor data to infer the 53 

real-time state of a combined sewer system and responds via control of distributed 54 

control assets, such as valves, gates, and pumps (Rauch and Harremoes, 1999. Kerkez 55 

et al., 2016; Lund et al., 2018; Lund et al., 2020). By achieving system-level 56 

coordination between many distributed control elements, only a small set of 57 

infrastructures are needed to optimize system operation for lower overflow and 58 

flooding (Schütze et al., 2002; Kerkez et al., 2016). 59 

Recently, some researchers provided a new type of RTC methods based on 60 

reinforcement learning (RL) and proved that it is capable of control a stormwater 61 

system in real-time for flow control and flooding reduction (Ochoa et al., 2019; 62 

Abhiram et al., 2020). However, challenged by the risk of handing over the control 63 

process to a computer, it presently shows that an independent security system is 64 

strongly demanded to guarantee the safety of the RL method in real-world operation. 65 

Meanwhile, it is still necessary to further improve the control effect of the RL method 66 

in the combined sewer system. 67 

Considering the improvement of both the safety and the control effect of the 68 

existing RL system, a new RTC method based on multi-RL, system optimization, and 69 

model predictive control (MPC) is developed in this study. First, five RL algorithms 70 

are used to train five individual agents. Then an optimization model of combined 71 

sewer system is employed to optimize the advantage function of these RL agents, thus 72 

further improves their control effect. After that, an independent security system, 73 

which is based on a small scale MPC, is established to check the safety of control 74 

strategy before implementing it. Finally, our new RTC method, called voting system, 75 

is established through the combination of these five RL agents and the security system. 76 

Accordingly, the contributions of this paper include: 1. Using multiple RL methods, 77 

including both value-based and policy-based, to illustrate the effectiveness of 78 

different RL models on CSO reduction; 2. Improving the control effect of RL models 79 

through an optimization model based on the combined sewer system; 3. Designing an 80 

independent security system based on MPC to provide a guarantee of safety. 81 

The remainder of this paper is organized as follows: In Section 2, we briefly 82 

introduce some related works, including the RTC in the urban drainage systems, the 83 

RL, and the concept of safe RL. In Section 3, we describe the details of our method. 84 

The case study is introduced in Section 4. And the use of our method in the case study 85 



is given in Section 5. For comparison, the use of other RL methods is also provided. 86 

Considering the risk to property and public safety, the evaluation of these methods is 87 

established across a series of simulations, which span various rainfall events with a 88 

mathematical model (SWMM). In Section 6, the effect of CSO reduction, the safety 89 

of the voting system, and some remaining challenges are discussed. Finally, our 90 

conclusions are shown in Section 7. 91 

2. Preliminaries and related works 92 

2.1. RTC of urban drainage system and model predictive control 93 

A combined sewer system is controlled in real time if process variables are 94 

monitored and used to operate actuators of the system (Schütze et al., 2002). In a 95 

control loop of an RTC system, the sensors monitor process variables and send it to 96 

controllers. The controllers operate actuators according to control strategy. Then, the 97 

actuators influence the process to optimize system operation (Schütze, et al., 2002). 98 

A control strategy or “control procedure” is defined as the time sequence of 99 

set-points given by controller (Schütze, et al., 2002). To generate the control strategy, 100 

one of the efficient ways is the model predictive control (MPC, Fig.1), which 101 

recursively repeats the optimization of the control strategy based on a rainfall 102 

prediction within a finite time horizon and move forward according to the receding 103 

horizon principle (Fu et al., 2008; Joseph et al., 2015; Lund et al., 2018). Although 104 

MPC faces the problems of high computation load and uncertainty prediction, it is 105 

still widely used in many cases (Sebastian and Stefan, 2019; Lund et al., 2020; 106 

Congcong et al., 2020). 107 



 108 

Fig.1. The schematic MPC 109 

2.2. Multi-reinforcement learning 110 

2.2.1. Brief review of reinforcement learning 111 

Reinforcement learning (RL) is a kind of model used for control and planning 112 

(Sutton and Barto, 2018). The goal of RL is to learn an optimal control strategy from 113 

experimental trials and relatively simple feedback. For now, the RL has emerged as a 114 

state-of-the-art methodology for many autonomous control systems, such as 115 

autonomous driving (Pan et al., 2017), stock trading (Tan et al., 2011), AI gaming 116 

(Wu et al., 2018; Shao et al., 2018; Silver et al., 2017), reservoir scheduling systems 117 

(Madani and Hooshyar, 2014, Castelletti et al., 2013), flow control (Ochoa et al., 118 

2019), in-line storage control (Labadie, 2014) and watershed flooding control 119 

(Abhiram et al.,2020). 120 

Usually, an RL model includes an agent with a behavior function (policy) and an 121 

environment that is controlled by the agent. The environment provides state (𝑠𝑡) of 122 

current time point 𝑡, and the agent choose to take an action (𝑎𝑡) of next time step 123 

according to the given state and its policy. Once an action is taken, the environment 124 

delivers a reward (𝑟𝑡) as feedback. With the help from the state, action, reward, the 125 

agent is able to master the control process and adapt to the environment actively to 126 

maximize expected future rewards (called value function, or Q value). 127 



2.2.2. Multi-RL methods 128 

Many RL models have been developed in recent years, including deep Q learning 129 

and dueling deep Q learning (Minh et al., 2015), proximal policy optimization 130 

(Schulman et al., 2017), and advance Actor-Critic (Sutton et al., 1999; Minh et al., 131 

2016). These methods are classified as policy-based and value-based. 132 

(1) Deep Q learning and dueling deep Q learning 133 

Deep Q neural network learning (DQN) and dueling deep Q neural network 134 

learning (DDQN) are two methods belonging to value-based family. DQN is based on 135 

the theory of Q learning, but take advantage from deep neural network to maximum 136 

the Q value (Eq. (1), where 𝑎𝑡, 𝑠𝑡, 𝑟𝑡 are action, state, and reward according to 137 

above, 𝜃 is the parameters of neural network, 𝛾 is a hyperparameter called the 138 

discount factor), to find the parameters enlarging the total expected reward during 139 

control process (Minh et al., 2015; Sutton and Barto, 2018).  140 

 
𝑞(𝑎𝑡 , 𝑠𝑡 , 𝜃) = 𝔼𝑡 [∑[𝛾𝑘𝑟𝑡+𝑘+1|𝑎𝑡 , 𝑠𝑡 , 𝜃]

∞

𝑘=0

] 
(1) 

DDQN uses two deep neural networks to approximate the optimal Q value (Van 141 

2010), one of them is to determine the optimal policy and the other is to determine the 142 

Q value (Van et al., 2016; Wang et al., 2016). In this way, DDQN avoids 143 

overoptimistic value estimates problem of DQN. 144 

(2) Proximal policy optimization 145 

Proximal policy optimization models, including PPO1 and PPO2, are the 146 

policy-based reinforcement learning models (Schulman et al., 2015; Schulman et al., 147 

2017). PPO1 tries to find the best policy function (input state, and output action) by 148 

computing an estimator of the policy gradient (Eq. (2), where 𝜋𝜃(𝑎𝑡|𝑠𝑡) is policy 149 

with parameter 𝜃, 𝑞 is the Q value given by policy) and plugging it into a stochastic 150 

gradient ascent algorithm (Schulman et al., 2017).  151 

 𝑔 = 𝔼𝑡[∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑞] (2) 

However, randomly changing happens during policy update of PPO1. To avoid 152 

this, PPO2 imports a penalty on Kullback-Leibler (KL) divergence to the clipped 153 

surrogate objective, thus it has a more stable policy updating (Schulman et al., 2017). 154 

(3) Advance Actor-Critic 155 

Advance Actor-Critic (A2C) combines the ingredient of both policy-based and 156 

value-based to simultaneously upgrade both policy function and maximum Q value 157 



(Minh et al., 2016). It uses two deep neural networks, actor-learner and critic-learner 158 

to represent policy function and maximum Q value. The Actor is a reference to the 159 

learned policy function, and Critic refers to the learned Q value function. The training 160 

process of A2C aims to upgrade both Actor and Critic for a better control procedure. 161 

2.2.3. Advantage function 162 

According to above, the Q value (Eq. (1)) is mainly used as an evaluation of 163 

system control. In many researches, it is replaced by the advantage function 𝐴𝑡 (Eq. 164 

(3)). 165 

 𝐴𝑡(𝑠𝑡 , 𝑎𝑡 , 𝜃) = 𝑞(𝑠𝑡 , 𝑎𝑡 , 𝜃) − max
𝑎𝑡

𝑞(𝑠𝑡 , 𝑎𝑡 , 𝜃) (3) 

The advantage function is used to measure the difference between Q value and the 166 

estimation of maximum Q value (or value function), which represents ‘how much we 167 

earn closer to the top’ (Minh et al., 2016). Therefore, it provides information about 168 

the best control process. However, this information is estimated by sampled Q value, 169 

rather than an actual maximum Q value. It may be strongly influenced by the 170 

randomness of the sampling process. Thus, the advantage function can be improved 171 

when a more reliable estimation is given. 172 

2.3.Safety and safe reinforcement learning 173 

The safety in the RL field means to ensure reasonable system performance and 174 

respect safety constraints (Garcia and Fernandez, 2015). This definition does not 175 

necessarily refer to physical issues, as the detailed safety requirement is 176 

problem-dependent. Usually, a stable water level of the structures and the safe 177 

operation of the facilities are two reasonable safety requirements of the combined 178 

sewer system. 179 

In the RL literature, achieving safety usually means minimizing the variance of 180 

the total expected reward (Moldovan & Abbeel, 2012), reducing the temporal 181 

differences (Gehring & Precup, 2013), and avoiding the error state (Geibel and 182 

Wysotzki, 2005). Two main types of methods have been developed to achieve the 183 

above requirements: the optimization criterion-based method, and the exploration 184 

process-based method. The first one modifies the total expected reward by taking the 185 

safety as one aspect of the reward during the training process (Garcia and Fernandez, 186 

2015; Castro, et al., 2012; Geibel and Wysotzki, 2005). The second one uses prior 187 

knowledge to force the agent to select safe actions with higher probability in the 188 

training process (Garcia and Fernandez, 2015; Yong et al., 2012; Pablo et al., 2013). 189 



Although these two types of methods achieved significant improvement in the RL 190 

safety, they only focus on the training process to help the agent learn to behave safely. 191 

It means that both the security and control systems are coupled in one black-box 192 

model. However, handing over the control process and safety check to a single 193 

black-box model is not a wise choice in the real-world application, especially in civil 194 

engineering (Abhiram et al., 2020). Accordingly, a security system that is independent 195 

of the control system is necessary for real-world operation. 196 

3. Methodology 197 

A new RTC method is established through the combination of multi-RL, MPC, 198 

and system optimization in this section for the improvement of safety and efficiency. 199 

First, five RL agents are trained individually through five RL models with an 200 

environment (a combined sewer system model). Then, a new advantage function 201 

based on an optimization model is given to optimize all the RL agents for a better 202 

control effect. Meanwhile, an independent MPC-based security system is designed for 203 

safety check. Finally, the new RTC method is established through the combination of 204 

these trained agents and the independent security system. This given RTC method is 205 

used for CSO reduction in the combined sewer system. The route map is given as 206 

Fig.2. 207 



 208 

Fig.2 Route map 209 

3.1. Multi-RLs based RTC for CSO reduction 210 

We use multi-RL models to develop RTC systems for CSO reduction in the 211 

combined sewer system. Similar to previous research (Abhiram et al., 2020), the RL 212 

control systems can be described by an agent and environment. The environment 213 

represents a combined sewer system and the agent represents the entity controlling the 214 

system (Abhiram et al., 2020). During a rainfall event, an RL agent, or controller 215 

observes the state of the environment and coordinates the actions of the control assets 216 

in real-time to achieve benefits, or reward, which is the reduction of CSO in this case. 217 

The state 𝑠𝑡 can be set as an array variable which represents useful information of 218 

sewer system at time point 𝑡. The action 𝑎𝑡 is the control strategy of next time step 219 

given by agent with respect to the state. It can be set as a variable which indicates the 220 

operation of control assets (such as pumps, valves, gates) from time point 𝑡 to time 221 

point 𝑡 + 1. The reward 𝑟𝑡 is a variable which represents the training target. For 222 

instance, the agent could receive positive reward for preventing CSO or a negative 223 

reward for causing CSO. 224 



After establishing the agent-environment system, five RL models (including DQN, 225 

DDQN, PPO1, PPO2, and A2C) are used to train five agents separately. Although the 226 

training algorithms of each RL model are different, their basic steps are similar and 227 

can be described as follow. First, we need to collect the data of states, rewards, and 228 

actions by running the agent-environment system. It means using the agent (maybe 229 

un-trained) to control the combined sewer system model under some given rainfall 230 

events, and then collecting the state-reward-action during the process. This step is 231 

called sampling. After several rounds of sampling, the collected data is used to 232 

upgrade the agent via one of the above RL models. This step is called upgrading. The 233 

collected data contains information about the environment and our expectation of 234 

control, thus the upgrading is capable of improving the agent. The system keeps 235 

running the loop of sampling-upgrading with different rainfall events until the agent 236 

achieves a good enough control effect. Repeat these steps for five RL models, then we 237 

have five trained RL agents. This training process is shown in Fig.3. 238 

 239 

Fig.3 Training process of multi-RL models 240 

It is impossible to hand over the control of a real-world combined sewer system 241 

directly to an untrained agent. Therefore, a simulation-based scenario is strongly 242 

needed for training (Abhiram et al., 2020). We use a well-calibrated combined sewer 243 

system model (such as an SWMM model) and some rainfall events data as a prepared 244 

virtual environment. 245 



3.2. Advantage function improvement 246 

According to section 2.2.3, a better estimation of the maximum Q value can be 247 

achieved when we take advantage of the environment information, which is the 248 

combined sewer system in this case. Thus, we optimize the advantage function 249 

through an optimization model based on the combined sewer system to further 250 

improve the control effect of all the RL agents. 251 

During sampling process, we use some given rainfall data and the combined 252 

sewer system model to find the almost best action sequence by an optimization 253 

problem. We take the objective of reducing total CSO as an example (Eq. (4)). 254 

 
min ∑ 𝐶𝑆𝑂𝑡

𝑡∈{0,1,…,𝑇}

 

(4) 
s.t. 𝐶𝑆𝑂𝑡 , 𝑠𝑡 = 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑚𝑜𝑑𝑒𝑙(𝑟𝑢𝑛𝑜𝑓𝑓𝑡, 𝑎𝑡 , 𝜃) 

 𝑟𝑢𝑛𝑜𝑓𝑓𝑡 = 𝑟𝑢𝑛𝑜𝑓𝑓_𝑚𝑜𝑑𝑒𝑙(𝑟𝑎𝑖𝑛𝑡 , 𝜇) 

Where 𝐶𝑆𝑂𝑡  is the CSO volume in the time interval from 𝑡  to 𝑡 + 1 , the 255 

𝑟𝑢𝑛𝑜𝑓𝑓_𝑚𝑜𝑑𝑒𝑙 and 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑚𝑜𝑑𝑒𝑙 are the models of combined sewer system 256 

with parameters 𝜃 and 𝜇. The 𝑟𝑎𝑖𝑛𝑡 is the rain intensity in the time interval from 𝑡 257 

to 𝑡 + 1, the time span has totally 𝑇 time interval. The {𝑎𝑡}, 𝑡 ∈ {0,1, … , 𝑇} is the 258 

action sequence. The {𝑠𝑡}, 𝑡 ∈ {0,1, … , 𝑇} is the corresponding system state. 259 

The optimal action {𝑎𝑡̂}, 𝑡 ∈ {0,1, … , 𝑇} and its corresponding state {𝑠𝑡̂}, 𝑡 ∈260 

{0,1, … , 𝑇}  can be obtained by solving this optimization model. Any solving 261 

algorithm can be applied. In this study, a basic genetic algorithm (GA) is used to 262 

solve Eq. (4). These optimal actions and states can be used to estimate a new 263 

maximum Q value (Eq. (5)), and then generate a new advantage function (Eq. (6)). 264 

Finally, we use this new advantage function to replace the original one in each RL 265 

models (including DQN, DDQN, PPO1, PPO2, A2C). This process of the advantage 266 

function improvement (AFI) is shown in Fig.4. 267 

 
max

𝑎𝑡

𝑞(𝑠𝑡 , 𝑎𝑡 , 𝜃) ≈ 𝑞(𝑠𝑡̂ , 𝑎𝑡̂ , 𝜃) = 𝔼𝑡 [∑[𝛾𝑘𝑟𝑡+𝑘+1|𝑎𝑡̂ , 𝑠𝑡̂ , 𝜃]

∞

𝑘=0

] 
(5) 

 𝐴𝑡
̅̅ ̅(𝑠𝑡 , 𝑎𝑡 , 𝜃) = 𝑞(𝑠𝑡 , 𝑎𝑡 , 𝜃) − 𝑞(𝑠𝑡̂ , 𝑎𝑡̂ , 𝜃) (6) 



 268 

Fig.4 Advantage function improvement 269 

These optimal actions and states give an estimation that is much closer to the 270 

maximum Q value of a given rainfall event, thus they are able to lead a better training 271 

effect. Also, the solving process of the optimization problem is decoupled from RL 272 

training, the only thing it provided is the estimation of the maximum Q value. Thus, 273 

the optimization problem can be computing on a parallel CPU. 274 

We use the improvement rate (IR, Eq. (7)) as the indices of AFI performance. 275 

Where 𝐶𝑆𝑂𝐴𝐹𝐼,𝑡 is the CSO volume of the RL models with AFI in the time interval 276 

from 𝑡 to 𝑡 + 1, 𝐶𝑆𝑂𝑛𝑜𝑛_𝐴𝐹𝐼,𝑡 is the CSO volume of RL models without AFI in the 277 

time interval from 𝑡 to 𝑡 + 1. The 𝐵𝐿 is the baseline of total COS volume, which 278 

can be provided through other RTC method or uncontrolled process. Thus, the 279 

𝐵𝐿 − ∑ 𝐶𝑆𝑂𝐴𝐹𝐼,𝑡𝑡∈{0,1,…,𝑇}  and 𝐵𝐿 − ∑ 𝐶𝑆𝑂𝑛𝑜𝑛_𝐴𝐹𝐼,𝑡𝑡∈{0,1,…,𝑇}  mean the CSO 280 

reduction of AFI model and non AFI model compared to baseline. A large IR 281 

indicates a better performance of AFI. 282 

 
𝐼𝑅 =

(𝐵𝐿 − ∑ 𝐶𝑆𝑂𝐴𝐹𝐼,𝑡𝑡∈{0,1,…,𝑇} ) − (𝐵𝐿 − ∑ 𝐶𝑆𝑂𝑛𝑜𝑛_𝐴𝐹𝐼,𝑡𝑡∈{0,1,…,𝑇} )

(𝐵𝐿 − ∑ 𝐶𝑆𝑂𝑛𝑜𝑛_𝐴𝐹𝐼,𝑡𝑡∈{0,1,…,𝑇} )
 

(7) 

3.3. Independent security system and the voting system 283 

After training process, these five trained agents together with an MPC based 284 

security system are used to formulate our RTC system for safe control (Fig.5). In each 285 



time step, all the five trained agents give their action reference to the same state of 286 

environment. Then, the security system predicts the rainfall of the next time-step, and 287 

test all of these five actions through an MPC model. After that, the action that satisfies 288 

the safety requirement and achieves the highest reward will be chosen as the control 289 

strategy of the next time-step. For easy understanding, this combined system, 290 

including the multi-RLs and the security system, is called as voting system in the rest 291 

of the paper, as it is similar to a voting process. 292 

The safety requirements in the security system are problem-dependent. For 293 

instance, some drainage systems need a low water level in some of their nodes, or a 294 

reasonable load for pumps. Therefore, the requirements should be designed 295 

individually based on the system situations. In this case, the low water level of some 296 

nodes in the pipeline network is used as the safety requirements. 297 

With this one-step checking, it is possible to choose a safe action, thus provide a 298 

guarantee of safety. Also, if all the actions given by these five agents are not safe 299 

enough, the system will provide a backup choice as the output action, such as 300 

water-level based action. Because the security system is decoupled from the RL 301 

framework, it offers an objective judgment on the given actions without influence 302 

from any of the agents, thus further ensure the reliability. 303 

 304 

Fig.5 Security system and voting system 305 



4. Case study 306 

4.1. Combined sewer system of study area 307 

The case study is the combined sewer system in a city in eastern China. It contains 308 

211 nodes, 210 pipelines, and three pump stations, which includes C-pump station, 309 

K-pump station and R-pump station. C-pump station and K-pump station have one 310 

forebay and two pumps while the R-pump station has one forebay and four pumps. 311 

Considering the risk to property and public safety, a SWMM model of this combined 312 

sewer system is used as the environment. The schematic diagram of the model is 313 

shown in Fig.6. More details of this model can be found in our previous researches 314 

(Liao et al., 2019; Zhi et al., 2019). 315 

According to Zhi et al. (2020), the areas that are vulnerable to flooding and 316 

overflow in this city (called high-risk areas) are located in the sub-catchments closed 317 

to the C and K pump station (red circles in Fig.6). Therefore, in this case, a reasonable 318 

safety requirement of the system operation can be defined as follow: The C, 319 

K-forebay, and the nodes in the high-risk sub-catchments (such as N1 and N2 in Fig.6) 320 

should keep a low water level during operation. 321 

Currently, this combined sewer system has its own designed RTC system, which 322 

is water-level based. It sets a sequence of water-level threshold values, or set-points, 323 

to operate the pumps. The pump starts working if the water level of the forebay 324 

reaches its onset threshold and shuts down when the water level falls down to the 325 

shutoff threshold. The detailed onset/shutoff threshold values are given in Table 1. As 326 

the pumps drain water when the water level is high, this RTC system has the 327 

capability of reducing CSO at some level. 328 



 329 

Fig.6. The schematic representation of the combined sewer system model. The 330 

SCs represent the sub-catchments. The high-risk areas are highlighted by red circles 331 

(Zhi et al., 2020). The N1 and N2 are two pipeline nodes in the high-risk area. 332 

Table 1. The onset/shutoff threshold values of the water level based RTC. 333 

 Onset threshold (m) Shutoff threshold (m) 

C-pump-1 4.56 3.26 

C-pump-2 4.87 4.56 

K-pump-1 4.56 3.26 

K-pump-2 4.87 4.56 

R-pump-1 5.00 4.71 

R-pump-2 6.31 5.00 

R-pump-3 7.00 6.31 

R-pump-4 7.78 7.00 

4.2. Rainfall events for training 334 

As numerous rainfall events are required for RL systems training, a rain pattern 335 

formula (Eq. (8)) is employed to generate rainfall events. 336 



 
𝑞 =

𝐴(1 + 𝐶𝑙𝑜𝑔(𝑃))

|𝑡𝐾 − 𝑖|𝑛
 

(8) 

Where 𝑞 is the rainfall intensity, 𝑖 is a designed rainfall intensity, 𝐴 is the rainfall 337 

intensity with the recurrence period of one year, 𝐶 is an experience parameter, 𝑃 is 338 

the rainstorm return period, 𝑡 is the time, 𝐾 is the peak intensity position coefficient 339 

and the 𝑛 is a constant. To generate enough rainfall events for RL training, these 340 

parameters are randomly chosen within a range (Table 2) based on the historical 341 

research of the rainstorm intensity formula in the study area (Wang and Xu, 2016). A 342 

total of 1,200 rainfall events were generated and used for the agent training. Each 343 

rainfall event has a four-hour duration. 344 

Table 2. The range of parameters in Eq. (8) 345 

𝐴 (mm) 𝐶 𝑃 (year) 𝑛 𝑖 (mm/min) 𝐾 

21~35 0.939~1.20 1~5 0.86~0.96 16~22 0.3~0.8 

 346 

5. Results 347 

5.1. Configuration of the RL models 348 

All the five RL models (DQN, DDQN, PPO1, PPO2, A2C) and the voting system 349 

are employed to establish RTC systems. As the control target is to reduce the total 350 

CSO during rainfall event, the state includes the current rainfall intensity, water level 351 

and water flow of forebays and volume of current total CSO. The action is an 352 

eight-dimensional vector which represents the control strategy of 8 pumps in the 353 

study area. The reward (Eq. (9)) is designed based on current CSO volume. The 354 

training process of each agent follows the steps in Section 3.1 with the rainfall data 355 

given in Section 4.2. 356 

 
𝑟𝑡 = {

−1        𝑖𝑓 𝐶𝑆𝑂 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 [𝑡 − 1, 𝑡] 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 0
0                                                                                        𝑒𝑙𝑠𝑒

 
(9) 

After training, these five agents (named as DQN, DDQN, PPO1, PPO2, A2C) and 357 

the voting system are applied for the RTC of the case study during four designed 358 

rainfall events. The rainfall intensity of these four rainfall events are given in Fig.7. 359 

Moreover, the designed rainfall events are directly used as the rainfall prediction of 360 

the voting system in all the tests to eliminate the influence of inaccuracy of rainfall 361 

predictions. Considering the risk to property and public safety, all the tests are 362 

running on the combined sewer system model mentioned above. The control interval 363 



is 10 min, which means the pumps are controlled every 10 min, thus all the computing 364 

processes in one time-step, including RL agents and the MPC of the security system, 365 

should be finished within this time limit. 366 

 367 

Fig.7 Four designed rainfall events used for the testing 368 

According to the Section 4.1, the safety requirement of the voting system is 369 

defined as follow: the water level of C-forebay, K-forebay, N1, and N2 should lower 370 

than their safe line as much time as possible. The safe line of water level is set as 70% 371 

of the node depth. The depths and the safe line of each node are given in Table3. If 372 

the system is running under such a condition, we confirm that the controlling process 373 

is safe. 374 

Table 3. The depth and the safe line of each node in the case study 375 

 C-forebay K-forebay N1 N2 

Depth (m) 5.63 5.8 2.21 1.957 

Safe line (m) 3.941 4.06 1.547 1.3699 

 376 

5.2. Efficiencies of the CSO reduction 377 

The result about total overflow volume of these agents are given in Table 4. Their 378 

overflow volume at each time step during control process are given in Fig.8. For 379 

comparison, the CSO volume of the water-level based RTC system (given in Section 380 



4.1) is also given. For easy understanding, we call it water level system in the rest of 381 

the paper. According to the results, all the RL models are able to show promise in 382 

CSO reduction compared to the water level system. 383 

Table 4. Total overflow volume (10^3 m
3
) of all the RL models during four rainfalls 384 

 DQN DDQN PPO1 PPO2 A2C Voting Water level 

system 

Rain1 4.926 4.807 4.876 4.878 4.847 4.631 5.503 

Rain2 5.946 5.729 5.920 5.809 5.741 5.676 6.570 

Rain3 15.076 14.628 14.724 14.973 14.570 14.588 16.294 

Rain4 8.997 8.915 8.737 8.944 8.852 8.822 9.725 

 385 

Fig.8 Total overflow volume of all the RL models at each time point during four 386 

rainfalls. 387 

5.3. Advantage function improvement (AFI) on multi-RL models 388 

We also employ the advantage function improvement to all the above methods for 389 

comparison. The corresponding results about total CSO volume and the improvement 390 

rate (IR, Eq. (7)) of them are given in Table 5. The baseline (𝐵𝐿 in Eq. (7)) are 391 

provided by the CSO volume of the water level system. Their overflow volume at 392 



each time step during control process are given in Fig.9. The IR is in the range from 393 

0.0% to 44.5%, which indicates that the AFI improves the CSO reduction for all the 394 

RL agents, except the DDQN in Rain2. 395 

Table 5. Total CSO volume (10^3 m
3
) and improvement rate (IR) of all the RL 396 

models with AFI in four rainfalls. 397 

  
Rain1 Rain2 Rain3 Rain4 

DQN 
CSO 4.776 5.771 14.534 8.719 

IR 26.0% 28.0% 44.5% 38.2% 

DDQN 
CSO 4.776 5.729 14.531 8.717 

IR 4.5% 0.0% 5.8% 24.4% 

PPO1 
CSO 4.805 5.82 14.707 8.73 

IR 11.3% 15.4% 1.2% 0.7% 

PPO2 
CSO 4.778 5.741 14.881 8.839 

IR 16.0% 8.9% 7.0% 13.4% 

A2C 
CSO 4.806 5.727 14.547 8.505 

IR 6.3% 1.7% 1.3% 39.7% 

Voting 
CSO 4.629 5.642 14.505 8.508 

IR 0.2% 3.8% 4.9% 34.8% 

 398 



 399 

Fig.9 Total overflow volume of all the RL models (with AFI) at each time point 400 

during four rainfalls. 401 

5.4. Safety of the voting system 402 

To prove the safety of the voting system, the water level results of C forebay, K 403 

forebay, N1, and N2 during the rainfall duration of all the tests are given. If the water 404 

level of each node is lower than its safe line as much time as possible, then we 405 

confirm that the controlling process is safe. For each method, there are total of 480 406 

water level data points for each node (C forebay, K forebay, N1, and N2) during an 407 

eight hours rainfall event (from 8:00 to 16:00). All of these data are presented through 408 

box plot in Fig.10 (the tests without AFI) and 11 (the tests with AFI). 409 

Accordingly, the water level of DQN and PPO2 in the C forebay and K forebay 410 

surpass the safe line in Table 3 (3.941 m and 4.06 m), which means that the control 411 

process given by these two methods maybe unsafe for practically application. The 412 

water level of the voting system may not be the lowest all the time, it is more likely to 413 

stay at a low rank and satisfy the safety requirements in Table 3. 414 



 415 

Fig.10 The water level of the C-forebay (1), K-forebay (2), N1 (3), and N2 (number 4) 416 

during Rain1 (A), Rain2 (B), Rain3 (C), and Rain4 (D). Without AFI. 417 



 418 

Fig.11 The water level of the C-forebay (1), K-forebay (2), N1 (3), and N2 (4) during 419 

Rain1 (A), Rain2 (B), Rain3 (C), and Rain4 (D). With AFI. 420 

5.5. Computational cost 421 

All the trainings and testing were run on a Windows Server (Intel ® Xeon® Gold 422 

5117 CPU @2.00 GHz, RAM 32.0 GB). The training process of a single RL model 423 

took approximately 2-3 hours (with AFI) and 1-2 hour (without AFI). After training, 424 

each RL agent only needs around 0.01 s to generate action. The computing process of 425 

the security system at each time step took around 3 min, which is less than the 10 min 426 

used as control interval. 427 

6. Discussion 428 

6.1. CSO reduction and system optimization 429 

6.1.1. The AFI efficiency and the limitation of CSO reduction 430 

From the above results, all the RL models reduce the overflow, which indicates 431 

that different types of RL models, policy-based or value-based, are effective in the 432 



CSO control of the combined sewer systems. Also, the AFI achieves improvement of 433 

CSO reduction with the IR in the range from 0.0% to 44.5%, thus shows its efficient 434 

performance. 435 

Meanwhile, according to Fig.8 and Fig.9, the difference among the RL agents in 436 

terms of CSO volume is getting smaller after the AFI technique is employed. The 437 

reason is that the AFI helps the RL agents reach the limits of CSO reduction. In fact, 438 

if the entire rainfall event can be accurately predicted and the optimization method is 439 

used to search for the optimal control strategy sequence, the obtained control strategy 440 

should be the global optimal solution and represents the limits of CSO reduction. 441 

From this perspective, the introduction of AFI is to provide information about the 442 

optimal solution may appear during the control process. Therefore, AFI helps all the 443 

RL systems improve their control effect, in other words, helps them to get closer to 444 

the limits of CSO reduction, which then leads to less difference among them. 445 

6.1.2. Local optimization 446 

The "optimal solution may appear" here indicates the local optimal solution which 447 

is close to, rather than equal to, the limitation of CSO reduction. In practical RTC 448 

applications, we can neither accurately predict rainfall nor solve a complex 449 

optimization problem under the time constraints. Indeed, some researches sacrifice 450 

the accuracy to achieve a faster simulation (Xu et al., 2013; Lund et al., 2020). It 451 

means that if we want to plug the AFI into an online training process, it may lead to a 452 

local optimal control strategy, rather than the global optimal one. Therefore, the AFI 453 

can only be considered under off-line condition. How to ensure better optimality of 454 

AFI needs to be further explored and studied in the future. 455 

6.1.3. Optimization of voting system 456 

According to the results, the voting system considers the optimal control strategy 457 

in each step of decision making, thus lead to a relatively better performance in the 458 

above examples. However, it is not necessarily optimal. For instance, in the Rain4 of 459 

the second test, the control effect of the voting system is relatively poor compared to 460 

A2C. The main reason is that the voting system can only guarantee the optimal of the 461 

selected action in each time step, rather than the optimization of the whole control 462 

process, as the optimal choice in each step may not definitely lead to the optimal of 463 

final results. 464 

6.2. The safety of the voting system 465 



Since the control process depends on the agent, which is a black-box model, its 466 

output is essentially probability-oriented and lacks the interpretability. Due to this, the 467 

safety of the RLC application is naturally questioned. For instance, based on the (C1) 468 

and (C2) of Fig.10, it may cause an unsafe situation if we only use DQN agent and 469 

PPO2 agent, as their water level is likely to stay at a high rank. In fact, both of these 470 

methods do not meet the safety requirement (given in Table 3) very well. 471 

Compared to these RL models, the voting system is more likely to stay at a lower 472 

water level and satisfies the safety requirements in Table 3 as much time as possible. 473 

The main reason is that the voting system is able to avoid the risk caused by any one 474 

of the agents by selecting a safe action from all the given choices, therefore, it is safer 475 

than any single RL system during application. Although the causality between the 476 

control strategy and the system state cannot be explained in principle, the voting 477 

system provides a guarantee of safe operation to the control system. 478 

6.3.Challenges 479 

Although the computing time of each RL agent is very short (0.01 s), their 480 

training process is computationally expensive, especially after adding the AFI, as each 481 

step of training needs to solve an optimization problem synchronously. At present, the 482 

method to speed up the training process requires the use of more powerful computing 483 

equipment and parallel computing technology. According to the calculation process, 484 

the consumption of computing power mainly depends on two steps: environment 485 

simulation (SWMM model in this article) and RL training. How to optimize the 486 

calculation speed from these two aspects is what we are considering. 487 

In addition, it needs to explain that the control strategy provided by RL agents 488 

only aims to minimize the overflow under the premise of a given rainfall event and a 489 

combined sewer system. If the entire sewer system is overloaded, simply relying on 490 

the RL control to adjust the hydrodynamics of the pipeline network cannot 491 

fundamentally reduce the overflow. This is one of the drawbacks faced by all the RTC 492 

methods. 493 

7. Conclusion 494 

Considering the safety and control effect improvement, a new RTC method based 495 

on multi-reinforcement learning, MPC, and an optimization model is introduced in 496 

this study. First, five individual agents are trained individually via five RL models. 497 

Then, an optimization model is applied to improve the advantage function of all the 498 



RL agents. After that, an independent MPC based security system is established to 499 

ensure the safety of control strategy. Finally, our RTC method is established through 500 

the combination of these five agents and the independent security system. 501 

The methodology and the case study show that: (i) Different RL methods are able 502 

to show promise in CSO reduction. (ii) The AFI technique imports the information of 503 

the optimal control strategy given by a corresponding optimization model, thus 504 

provide an improvement of CSO reduction with the maximum improvement rate of 505 

44.5%. (iii) The security system is able to select a relatively better control strategy (or 506 

action) among all the actions given by agents and check its safety before use it. (iv) 507 

The voting system may lead to a relatively better control effect, but it is not 508 

necessarily optimal, because the optimal choice in each step may not definitely lead to 509 

the optimal of final results. 510 

Meanwhile, our method is not a perfect solution. The AFI is suffered from the 511 

problem of local optimization. The training process of all the RL models are 512 

computationally expensive. Moreover, the control effect of RL control may be limited 513 

when the combined sewer system is overloaded, as it only provides a solution under 514 

the premise of a given rainfall event rather than extends the capacity of combined 515 

sewer system. 516 
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