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Introduction. This document summarizes technical details and previously published

validation for MERRA-2 (Text S1; Table S1) and other reanalysis and forecast products

(Text S2) as discussed in the main text. Nine supplementary figures are also included,

mainly focusing on the species distributions in MERRA-2 and other products (Figs. S1–

S5). Two alternative approaches to the calculation of ATAL radiative effects are also

included (Figs. S6 and S7), along with two figures summarizing the magnitude of the

ATAL effect relative to other factors as represented by MERRA-2 (Figs. S8 and S9).
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Text S1: Additional details on MERRA-2. MERRA-2 is a state-of-the-art atmo-

spheric reanalysis of the satellite era (1980–present) produced by the National Aeronautics

and Space Administration (NASA) Global Modeling and Assimilation Office (GMAO).

The model is run using version 5.12.4 of the Goddard Earth Observing System atmo-

spheric model (GEOS-5) on a ∼50-km cubed sphere grid (data grid: 0.5°lat×0.625°lon)

with 72 vertical levels and a model top at 0.01 hPa. The data assimilation takes place in

two steps, with an incremental analysis update (Bloom et al., 1996) to apply adjustments

calculated during an initial 3D-variational assimilation (additional details in Wright et

al., 2022). Optical properties are largely taken from the Optical Properties of Aerosols

and Clouds (OPAC) dataset (Hess et al., 1998) with some modifications. In particu-

lar, organic carbon from biomass burning is now partitioned directly to ‘brown carbon’

and dust optical properties are calculated assuming ellipsoid rather than spherical shapes

(M. Chin, personal communication, 18 July 2020). With the exception of dust, aerosol

hygroscopic growth is parameterized using separate functions of ambient relative humid-

ity for each aerosol type (Chin et al., 2002; Colarco et al., 2014). Aerosol extinction

coefficients increase with increasing relative humidity.

Aerosol data assimilation in MERRA-2 is restricted to measurements of vertically-

integrated aerosol optical depth (AOD), and does not affect the composition and applies

to all vertical levels simultaneously (Randles et al., 2017). Dust and sea salt emissions

are wind-driven. Volcanic emissions are limited to an annually-repeating climatology of

outgassing volcanoes, and do not account for volcanic eruptions that occurred after 2010.

Anthropogenic aerosol emissions are taken from prescriptions developed for the AeroCom

Phase II model intercomparison activity (Diehl et al., 2012), along with SO2 from aircraft
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and outgassing volcanoes. Emissions sources from AeroCom during our analyis period are

fixed to values from 2006 (anthropogenic aerosols and aircraft SO2) or 2007 (aerosol emis-

sions from international shipping). Anthropogenic emissions of SO2 from other sources are

taken from the EDGARv4 database (Janssens-Maenhout, 2010, 2011). Emissions sources

from EDGAR are fixed to values from 2005 (SO2 from shipping; EDGARv4.1) or 2008 (an-

thropogenic SO2; EDGARv4.2). Emissions of biogenic terpene are taken from the monthly

climatology developed by Guenther et al. (1995), while emissions of dimethyl sulfide and

methanesulfonic acid are taken from the monthly climatologies reported by Randerson et

al. (2006).

Randles et al. (2017) evaluated the MERRA-2 aerosol analysis in terms of AOD and

the aerosol direct radiative effects on clear-sky shortwave fluxes at the nominal top-of-

atmosphere, surface, and net atmospheric convergence. Their results showed good agree-

ment in both AOD and radiative effects validated against independent (i.e., unassimi-

lated) measurements. Buchard et al. (2017) extended this validation to include aerosol

absorption optical depth, ultraviolet aerosol index, and vertical aerosol profiles. Aerosol

absorption optical depths and ultraviolet indices were in good agreement with values re-

trieved by the Ozone Monitoring Instrument (OMI), with evident improvement relative

to aerosol analyses conducted using an earlier version of the GEOS-5 system (Buchard et

al., 2015). Values of ultraviolet aerosol index tend to be biased low in areas with large

values of brown carbon, which is not included in the MERRA-2 aerosol model and is also

neglected in this study. MERRA-2 was also judged to perform well with respect to aerosol

vertical profiles, although vertical gradients were often weaker than observed. Buchard et

al. (2017) recommended that nearest-neighbor weighted combinations be used to improve
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agreement with measured profiles. Since our analysis does not include direct comparison

to measured profiles, we adopt a rough analogue to this approach by downgrading the

spatial grid to 2.5°×2.5°, so that each profile is averaged across twenty grid cells (four in

longitude by five in latitude).

Among available analysis and forecast products with an interactive ATAL (see sec-

tion 4.2 in main text for examples), we choose to focus on MERRA-2 for two reasons.

First, the MERRA-2 aerosol analysis is one of the few available aerosol analysis prod-

ucts to cover the entire period 2011–2020 using a consistent model and data assimilation

system. This advantage in coverage provides a fuller characterization of the climatol-

ogy and variability of the ATAL at interannual and intraseasonal scales, with the caveat

that, as outlined above, most emissions sources do not vary from year to year during the

2011–2020 period. MERRA-2 for this period is thus not suitable for studying trends or

variability linked to emissions (e.g., COVID-19), but is well suited to evaluating interan-

nual variability driven by variations in the monsoon circulation and convective activity.

Second, MERRA-2 is one of the few products to publish clear-sky radiative heating rate

diagnostics along with interactive aerosol fields, which provide useful context for the of-

fline radiative transfer calculations. These heating rates are calculated with reference to

the aerosol fields during the incremental analysis update and are therefore consistent with

ATAL composition and vertical structure as represented by the MERRA-2 products listed

in Table S1.

Text S2: Other reanalysis products Several other recent reanalyses and operational

forecasts of atmospheric composition are used to approximate uncertainty bounds for

ATAL effects on clear-sky shortwave radiative heating (Table 2 in main text).
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The first additional product, GEOS-FP (Forward Processing), is produced using a

newer version of the same atmospheric model and data assimilation system as MERRA-

2 (Lucchesi, 2018). Key developments relative to MERRA-2 include a finer horizontal

model grid and the inclusion of nitrate and ammonium aerosols in the aerosol analysis.

GEOS-FP uses the same emissions sources as MERRA-2: anthropogenic aerosol emissions

and SO2 from outgassing volcanoes are taken from the AeroCom Phase II archive (Diehl

et al., 2012), while anthropogenic emissions of SO2 and nitrate precursors from non-

aircraft sources are taken from EDGARv4 (Janssens-Maenhout, 2010, 2011). We use the

GEOS-FP analysis aerosol product on model levels for July–August 2020.

Two products from the Copernicus Atmosphere Monitoring Service (CAMS) and the

European Centre for Medium-range Weather Forecasts (ECMWF) are considered, the

CAMS ECMWF Atmospheric Composition Reanalysis 4 (CAMS-EAC4; Inness et al.,

2019) for the full period 2011–2020 and the CAMS atmospheric composition forecast

product (CAMS-FC; Rémy et al., 2019) for July–September 2020. Both CAMS-EAC4

and CAMS-FC use the Integrated Forecast System chemistry (IFS-CB05; Flemming et al.,

2015) and aerosol (IFS-AER; Rémy et al., 2019) models. The CAMS-EAC4 product uses

emissions from Monitoring Atmospheric Composition and Climate–CityZen (MACCity;

Granier et al., 2011; Stein et al., 2014) for anthropogenic sources, Global Fire Assim-

ilation System (GFAS) version 1.2 (Kaiser et al., 2012) for biomass burning, Model

of Emissions of Gases and Aerosols from Nature (MEGAN) simulations for biogenic

emissions (Sindelarova et al., 2014), and a climatology of volcanic outgassing. Unlike

GEOS-FP and CAMS-EAC4, we use forecast rather than analysis products from CAMS-

FC. CAMS-FC has a finer horizontal resolution and additional vertical levels relative to
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CAMS-EAC4, includes nitrate and ammonium aerosols where CAMS-EAC4 does not,

and implements a more realistic relationship between sulfur dioxide (from the chemistry

scheme) and sulfate aerosols (from the aerosol scheme). Emissions sources are similar,

but with version 1.2 of GFAS replaced by version 1.4. This and other differences between

CAMS-EAC4 and CAMS-FC have been documented in detail by Rémy et al. (2019).

The final additional dataset is a set of 10-day forecast products generated by the

National Center for Atmospheric Research (NCAR) Atmospheric Chemistry Observa-

tions & Modeling group using version 6 of the Whole Atmosphere Community Climate

Model (WACCM; Gettelman et al., 2019). Interactive chemistry is based on the Model

for OZone and Related chemical Tracers for the Troposphere, Stratosphere, Mesosphere,

and Lower Thermosphere (MOZART-TSLMT; Emmons et al., 2020) and aerosols are

simulated using the Modal Aerosol Module (MAM4; Liu et al., 2016; Tilmes et al., 2019).

Anthropogenic emissions are the same as in the CAMS products (MACCity), while fire

emissions are taken from the Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011).

Volcanic emissions are based on a time-mean climatology for 1850–2014 that includes both

outgassing and eruptive emissions (Neely III & Schmidt, 2016). No observations are as-

similated in the WACCM forecasts; however, the model is driven by meteorological fields

taken from the GEOS-FP product described above. WACCM forecasts are used for July–

September 2020.

Given data availability limitations and model version changes, the forecast and analysis

products GEOS-FP, CAMS 46r1FC, and WACCM are used only for comparison with

MERRA-2 during the year 2020 (section 4.2 in main text).
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Table S1. MERRA-2 data collections used in this work.
Name Variables Time Citation
M2I3NVAER BC, OC, SO4, dust daily Global Modeling and Assimilation Office (2015a)
M2I3NVASM T , q, O3, z, p daily Global Modeling and Assimilation Office (2015b)
M2T3NVRAD SWHR, SWHRCLR daily, 06Z Global Modeling and Assimilation Office (2015d)
M2T1NXRAD surface albedo hourly Global Modeling and Assimilation Office (2015c)
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Figure S1. Distributions of mineral dust mass mixing ratios based on the MERRA-2 aerosol

reanalysis (a) as a function of latitude and longitude on the 100 hPa isobaric surface, (b) as

a function of latitude and pressure along the 87.5°E–90°E longitude band, (c) as a function of

longitude and pressure along the 22.5°N–25°N latitude band, and (d) as an area-average profile

within 87.5°E–90°E and 22.5°N–25°N for July, August, and September 2011–2020. (e) Mean

evolution of dust profile (lower panel) and partial column (vertically-integrated over 180–60 hPa;

upper panel) within 87.5°E–90°E and 22.5°N–25°N from 1 May to 30 September 2011–2020.

Streamlines in (a) show the upper-level anticyclone at 100 hPa based on MERRA-2. Contours in

(b), (c), and (e) show potential temperature surfaces spanning the upper troposphere and lower

stratosphere. Shaded regions in (d) and (e) illustrate the relative abundances of different size

bins of dust, listed from small (DU1, < 1 µm) to large (DU5; 6–10 µm).
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Figure S2. Vertical profiles of (a) total black carbon, (b) total organic carbon, (c) sulfate

aerosol, (d) hydrophilic black carbon, (e) hydrophilic organic carbon, (f) sulfate + nitrate +

ammonium aerosol, (g) hydrophobic black carbon, (h) hydrophobic organic carbon, and (i) min-

eral dust from all size bins based on the MERRA-2 (pink), GEOS-FP (grey), WACCM (blue),

CAMS-EAC4 (purple), CAMS-FC (yellow) aerosol analysis (MERRA-2, GEOS-FP, and CAMS-

EAC4) and forecast (WACCM and CAMS-FC) products. Grey shading indicates the bounds of

the ATAL layer (60–180 hPa).
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Figure S3. As in Fig. S1, but for black carbon (BC).
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Figure S4. As in Fig. S1, but for organic carbon (OC).
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Figure S5. As in Fig. S1, but for sulfate.
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Figure S6. Variations in (a) longitude, (b) latitude, and (c) day-of-year for the simulated ATAL

effect relative to an invariant representative winter-mean (December 2007 –January 2008) aerosol

profile from MERRA-2 for the core region (22.5°N–25°N, 87.5°E–90°N). Panel c corresponds to

Fig. 4b in the main text but with the winter-mean profile used as the reference state in place

of the no-aerosol profile. Other radiatively active species are specified for both the winter-mean

and ATAL simulations as July–August 2011–2020 means for each location in panels a–b and

for each day of year averaged over 2011–2020 in the core region in panel c. Heating rates have

been divided by the Exner function to convert ∂T/∂t to θ̇ for ease of comparison to potential

temperature contours.
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Figure S7. Variations in (a) top-of-atmosphere upward shortwave flux anomalies, (b) sur-

face downward shortwave flux anomalies, (c) vertical profiles of aerosol mass mixing ratio, (d)

shortwave radiative heating, and (e) aerosol effects on shortwave radiative heating relative to the

no-aerosol case as a function of the height of the peak ATAL aerosol concentration. The vertically

integrated mass and composition of ATAL aerosol are held fixed in all simulations while peak

heights are varied from 100 hPa to 180 hPa. Heating rate profiles are calculated assuming a solar

zenith angle of zero and a surface albedo of 0.15; TOA and surface fluxes are daily-mean values

for solar parameters valid on 15 August at Dhaka.
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Figure S8. The mean ATAL shortwave heating effect as a function of (a) longitude (50°E–120°E

meridionally averaged over 22.5°N–25°N) and latitude (18°N–42°N zonally averaged over 87.5°E–

90°E). Lower panels show the ratio of the ATAL effects relative to (c)–(d) clear-sky shortwave

heating from libRadtran. Inputs to libRadtran are based on July–September 2011–2020 means

assuming a solar zenith angle of 0° and a surface albedo of 0.15. Heating rates in panels a–b have

been divided by the Exner function to convert ∂T/∂t to θ̇ for ease of comparison to potential

temperature contours.
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Figure S9. Vertical profiles of effects on clear-sky shortwave heating from ozone (yellow), water

vapor (magenta), and aerosol (green) based on the July–August 2011–2020 mean for the core

analysis region (22.5°N–25°N, 87.5°E–90°E) in MERRA-2. All effects are calculated by offline

radiative transfer calculations assuming a solar zenith angle of 0° and a surface albedo of 0.15.

The aerosol effect is calculated relative to the no-aerosol baseline; the ozone and water vapor

effects are calculated for monsoon anomalies relative to zonal means within the 22.5°N–25°N

latitude band. Heating rates are given as temperature tendency (∂T/∂t).
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