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Key Points:

• Remotely-sensed water color is indicative of functional lake connectivity
in high-sediment Arctic deltas

• Functional connectivity is related to temporal variations in discharge and
spatial variations in lake surface elevation

• Differences in functional connectivity drive lake ice phenology, which is
likely important for photochemical processes

•

Abstract

Within Arctic deltas, surficial hydrologic connectivity of lakes to nearby river
channels influences physical processes like sediment transport and ice phenology
as well as biogeochemical processes such as photochemistry. As the Arctic hydro-
logic cycle is impacted by climate change, it is important to quantify temporal
variability in connectivity. However, current connectivity detection methods are
either spatially limited due to data availability constraints or have been applied
at only a single time step. Additionally, the relationship between connectivity
and lake ice is still poorly quantified. In this study, we present a multitemporal
classification and validation of lake connectivity in the Colville River Delta, AK.
We introduce a connectivity detection algorithm based on remote sensing of wa-
ter color that is expandable to other high-sediment Arctic deltas. Comparison
to validation datasets suggests that detection of high vs. low connectivity lakes
is accurate in 69.5–85.5% of cases. Connectivity temporally varies in about
20% of studied lakes and correlates strongly with discharge and lake elevation,
supporting the idea that future changes in discharge will be drivers of future
changes in connectivity. Lakes that are always highly connected start and end
ice break up an average of 26 and 16 days earlier, respectively, compared to
lakes that are never connected. Because spring and summer ice conditions drive
Arctic lake photochemistry processes, our research suggests that surface connec-
tivity is an important parameter to consider when studying biogeochemistry of
Arctic delta lakes.

Plain language summary

Arctic deltas contain a complex tapestry of channels and lakes. Lakes can be
isoloated from channels or connected to channels—either by feeder channels,
other lakes, or by water movement over land during flooding. This connectivity
is important because it impacts the movement of sediment and animals, light
penetration through water, and when lake ice forms and disappears. While
we anticipate future changes in connectivity due to climate change, our ability

1

mailto:whyana@live.unc.edu


to monitor connectivity is limited to individual deltas or single instances in
time. Additionally, the relationship between lake ice and connectivity is poorly
understood. In this study, we used a method based on satellite observations
of water color to examine lake connectivity variations within the Colville River
Delta, AK. We found that most lakes stay connected or disconnected, but that
about 20% of lakes have variable connectivity. These lakes are more likely to be
connected when river discharge is high. Additionally, lake ice tends to break up
earlier and last for a shorter period of time in connected lakes. Because lake ice
conditions drive chemical interaction between sunlight and organic compounds
in the water, connectivity is important to consider when studying the biology
and chemistry of Arctic delta lakes.

1. Introduction

Arctic deltaic floodplains consist of complex river and lake systems that trans-
port and store both inorganic and organic materials. The connectivity of Arctic
floodplain lakes to nearby channels determines how much river water these lakes
receive each year (Marsh & Hey, 1989; Lesack et al., 1998; Lesack & Marsh, 2010;
Piliouras & Rowland, 2020). This interaction, in turn, influences carbon storage
and ecological productivity and diversity (Wiklund et al., 2012; Lesack & Marsh,
2010). As the Arctic hydrological cycle intensifies due to climate change (Dai
et al., 2009; Bring et al., 2017), it is important to quantify the impact of these
changes on connectivity so that we can better understand patterns of carbon
transport, carbon emission, and biological diversity in these deltaic ecosystems.
These relationships are particularly vital because deltas are the interface be-
tween changing river systems and changing oceans, mediating the amount of
terrestrial sediment and carbon exported into the coastal ocean (Emmerton et
al., 2008; Piliouras & Rowland, 2020).

While there are many types of hydrologic connectivity (e.g. Covino, 2017), delta
lakes are functionally connected to river channels when they are recharged with
high sediment river water, which changes their physical, ecological, and biogeo-
chemical properties. Within deltas, variations in functional lake connectivity
lead to noticeable changes in lake biogeochemistry. High functional connectiv-
ity lakes, by definition, receive more river water each year, leading to shorter
water residence times (Coops et al., 1999; Coops et al., 2008) and increased sus-
pended sediment concentrations (SSC, Lesack & Marsh, 2010; Long & Pavelsky,
2013). The higher level of SSC leads to decreased light penetration, predom-
inantly inorganic lake sediments, and low macrophyte productivity (Lesack et
al., 1998; Lesack & Marsh, 2010). Arctic lakes are a significant contributor of
greenhouse gases to the atmosphere (e.g. Phelps et al., 1998; Walter Anthony et
al., 2010; Boereboom et al., 2012; Karlsson et al., 2013), so these connectivity-
driven differences are also important from a carbon cycle perspective. Poorly or
sporadically connected lakes have higher organic material and macrophyte pro-
ductivity, resulting in increased dissolved organic carbon (DOC) compared to
their high functional connectivity counterparts (Amoros & Bornette, 2002; Tank
et al., 2009; Lesack & Marsh, 2010). However, this same macrophyte productiv-
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ity can reduce CO2 emission to the atmosphere due to increased photosynthesis
(Tank et al., 2009).

Functional connectivity also impacts the properties of lake ice. While research
on the relationship between lake ice and connectivity is in its early stages, several
observations suggest that connectivity may be a driving factor in intraregional
lake ice timing. First, as observed in Canada’s Mackenzie River Delta during
the Fall freeze-up period, connected lakes are more likely to be impacted by
water movement from lakes to channels. This water movement results in lower
water levels, increased likelihood of bottom-fast ice, and decreased lake bottom
temperatures during the winter (Ensom et al., 2012). Additionally, Howell et
al. (2009) demonstrate that riverine input to Great Slave Lake in Canada acts
as a thermal and mechanical trigger for earlier lake ice breakup near the river
input site. In a study of Alaskan lakes, Arp et al. (2013) found that while
air temperature and lake area explained 80% of the variance in ice-out timing,
they hypothesize that connectivity may be a driving force behind additional
variability in ice-out timing within regions, but emphasize the need for further
studies focusing directly on investigating the topic.

Lake ice is particularly important from a biogeochemical standpoint because
it is an effective blocker of light (Vione & Scozzaro, 2019). Earlier ice-out
timing is very effective at increasing light availability to the lacustrine water
column because it usually occurs during the late spring/early summer maxi-
mum in solar radiation (Vione & Scozzaro, 2019). A relationship between ice
timing and connectivity would thus drive differences in aquatic photochemistry
based on lake connectivity. The relationship between connectivity and lake ice
is also potentially important from a methane standpoint. Within ice-covered
lakes, greenhouse gasses, particularly methane, accumulate under and within
ice and are released to the atmosphere as a large pulse during breakup (Phelps
et al., 1998; Karlsson et al., 2013; Denfeld et al., 2018). Connectivity-impacted
changes in ice timing could influence the timing of this pulse. Also, analysis
of four lakes in Sweden (Boereboom et al., 2012) found that a lake connected
via channel to the river network had almost no methane bubbles trapped in
the ice. This contrasted with the other three lakes that were rich in methane
bubbles and that were either completely isolated or only connected via chan-
nel to another lake. Thus, understanding a delta lake’s functional connectivity
is essential to understanding its physical characteristics, and, by extension, its
biogeochemistry.

Despite the importance of connectivity in deltaic ecosystems, previous studies
have focused largely on either relatively small scales, a single time step, or
both. Prior research has used in situ data (e.g. Remmer et al., 2020), remote
sensing (e.g. Piliouras & Rowland, 2020), or a combination of the two (e.g.
Marsh & Hey, 1989; Lesack & Marsh, 2010; Long & Pavelsky, 2013) to identify
lake connectivity. One common method of connectivity identification involves
pairing discharge records with lake sill elevations calculated via aerial imagery
(e.g. Marsh & Hey, 1989; Lesack & Marsh, 2010). While this method effectively
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combines current lake sill elevations and historical discharge records to study
past connectivity, it assumes that sill elevations are stable over time, which
may not hold true given increased erosion and deposition due to permafrost
loss in Arctic deltas (e.g. Lauzon et al., 2019). Additionally, because this
method requires high resolution aerial surveys or fieldwork to determine lake sill
elevations, it is challenging to apply on large scales across multiple deltas. In
contrast, Piliouras & Rowland (2020) used Landsat (30m resolution) imagery to
detect the presence of channel connections between lakes and the main channel
network. While this works very well for lakes connected with large channels,
and is scalable across deltas and time periods, it is unable to detect connectivity
driven by channels narrower than 30m or connectivity driven by flood-induced
overland flow.

In this paper, we seek to understand the variability of lake-to-channel connectiv-
ity over decadal scales, including both channel and overland flow connectivity.
We develop and test our algorithm within the Colville Delta, AK because there
is ample validation data available there. Our work is organized into four research
questions and corresponding experiments:

Q1: How well can Landsat-derived observations of water color detect
functional connectivity in the Colville Delta, even when channels are
sub-pixel in width?

In this experiment, we compare Landsat-derived lake connectivity classifications
(high functional connectivity vs low functional connectivity) to three validation
datasets and assess classification accuracy.

Q2: How many lakes in the Colville Delta have static connectivity
versus variable connectivity over the twenty-year study period?

In this experiment, we classify functional lake connectivity within 5-year periods
(2000-2004, 2005-2009, 2010-2014, 2015-2019).

Q3: How much of an impact do elevation and discharge have on
functional lake connectivity in the Colville Delta?

In this experiment, we classify and then compare functional lake connectivity
within five high maximum discharge years and five low maximum discharge years.
Additionally, we compare lake connectivity during a five-year time period to lake
surface elevations.

Q4: What are the impacts of connectivity on lake ice?

In this experiment, we compare 20-year lake ice climatology records to our con-
nectivity classifications and discuss the implications of ice cover and connectivity
on biogeochemistry.

2. Study area

The Colville River originates in the Brooks Range, flows west to east across
the North Slope, and then about 20 km downstream of Umiat, AK, takes a
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northward turn and proceeds ~140 km into the Beaufort Sea. The entire Colville
River Basin is underlain by continuous permafrost (Walker, 1998; Mikhailova,
2009), except for a few taliks under deep lakes and deeper parts of distributary
channels within the delta (Walker et al., 1987). The delta itself is lake-rich
and estimates of its size range from 550–665 km2 (Mikhailova, 2009). While
recent estimates of sediment concentrations are limited, observations from the
late 1990s indicate that the Colville River Delta has one of the highest annual
suspended sediment loads compared to other large Arctic rivers, with a 1998
estimate of 97 tkm-2y-1, compared, for example, to the Yukon (70 tkm-2y-1)
and the Mackenzie (24 tkm-2y-1) river deltas (Walker, 1998). The delta channels
and delta lakes remain frozen from approximately late September/early October
to late May/mid-June, when the spring discharge maximum drives river ice
breakup (Mikhailova, 2009). While the delta itself only receives 300–400mm
of precipitation each year (Mikhailova, 2009), historical records show that river
water level can increase by 3–5m during breakup, inundating at least 65% of
the delta’s total area (Walker, 1975).

We acknowledge that, first and foremost, the Colville River Delta is home to
the village of Nuiqsut, an Iñupiat, or, more specifically, a Kuukpikmiut (people
of the Colville River) community (population 492 as of 2020; Department of
Commerce, Community, and Economic Development, 2021). Subsistence activ-
ities are one of the primary industries of the village, including fishing, hunting,
and whaling (Brubaker et al., 2014). Both traditional knowledge and quantita-
tive climate data paint a picture of a changing delta, with temperatures rapidly
increasing (Brubaker et al., 2014; Applied Climate Information System). For
example, during the study period for this analysis (2000–2019), mean annual air
temperature in Nuiqsut increased by an average 0.15℃ per year (same results
using both a linear model and Sen’s slope, p<0.05 for both), with larger tempera-
ture changes in the late winter months such as February (Sen’s Slope: 0.42℃/yr,
Linear Slope: 0.37℃/yr) (Applied Climate Information System). Residents
share that thaw of permafrost below lakes has led to lake draining and drying
(Brubaker et al., 2014). This change in permafrost, in combination with later
ice freeze-up, earlier ice breakup, and prolonged active layer thaw have report-
edly led to dangerous travel conditions both on land (mushy conditions that
are bad for snowmobiles) and over water (shorter and less stable ice season)
(Brubaker et al., 2014). Residents also express concern with loss of habitat due
to lake draining as well as loss of accessibility to certain fishing locations due to
channels drying up and reducing connectivity (Brubaker et al., 2014). However,
more frequent extreme events, such as elevated flood water levels (Brubaker et
al., 2014), could potentially result in increased short-duration connectivity.
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Figure 1. Location of the Colville River Delta on the North Slope of Alaska.
Black lines are river reaches wider than 150m contained in the GRWL sum-
mary database (Allen & Pavelsky, 2018). Delta shown in inset, highlighting the
channel apex polygon, and the village of Nuiqsut, AK.

3. Methods

3.1. Datasets

3.1.1. Development of Landsat Water Masks

To create water masks based on Landsat imagery, we use summertime (June–
September) Landsat 5/7/8 Tier 1 Surface Reflectance imagery from 2000–2019.
Landsat 7 imagery is only used prior to scan line corrector failure (5/31/2003).
To reduce noise from clouds and snow/ice, we use only those Landsat scenes
that are less than 75% cloudy overall. We further remove pixel-level cloud and
cloud shadow influence using bits 3 (cloud shadow) and 5 (cloud) of the quality
band (‘pixel_qa’), and we use bit 4 to remove snow/ice. Additionally, we use
the DSWE algorithm to select only high confidence water pixels in each image
(Jones, 2019). Lastly, we remove pixels with unreasonable reflectance values
(values > 10,000 or values < 0). We refer to images that have gone through this
process as ‘filtered Landsat images.’

3.1.2. Lake boundaries

To select initial lakes for analysis, we use lakes from the Alaskan Lakes Database
(Wang et al., 2011) that contain at least 100 pixels classified as water 90% of
the time and are within the bounds of the Colville Delta (Pekel et al., 2016,
n=120 lakes). Note that we have split up several large lake complexes that were
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originally grouped into one polygon into single lake polygons. After splitting,
these lakes are referred to as the ‘study lakes.’

3.1.3. Validation datasets

We compare lake connectivity classification results against three different lake
connectivity datasets to assess accuracy. First, we use the high resolution
(<10m) Google Earth Composite Image (GECI) (a composite of 2013–2016 im-
agery) to manually identify those lakes that have a visible channel connection.
Lakes whose channel connection is unclear (e.g. lakes that look like they have a
dry channel that perhaps could fill up during floods) are marked as ‘uncertain
channel connection.’

Second, we compare connectivity classifications against a 1992 survey of the
Colville Delta (Jorgenson et al., 1997). This dataset was contained in an image
in the manuscript and we digitized each lake’s classification by hand. Lakes in
this dataset that correspond with our study lakes are classified into the following
categories (full descriptions can be found in Table 4 of Jorgenson et al., 1997):

Medium-High connectivity

• Deep connected lake: Lakes � 1.5m in depth that commonly have long,
narrow, and persistent connections to the delta channel network.

• Deep tapped lake w/ high-water connection: Lakes �1.5m in depth that have
been ‘tapped’ by erosion of adjacent river banks. Connecting channels are
dry unless discharge is high.

• Deep tapped lake w/ low-water connection: Same as prior, but connection
channels are filled with water, even at low discharge.

• Shallow tapped lake w/ high-water connection: Lakes < 1.5m in depth
that have been ‘tapped’ by erosion of adjacent river banks. Connecting
channels are dry unless discharge is high.

• Shallow tapped lake w/ low-water connection: Same as prior, but connec-
tion channels are filled with water even at low discharge.

No connectivity

• Deep isolated lake: Lakes �1.5m in depth that have no distinct outlets and
are not connected to the channel network.

• Shallow isolated pond: Lakes <1.5m in depth with no distinct outlets or
channel connections.

No connectivity data available

• Brackish ponds: Shallow ponds near the delta toe that may be impacted
by very high tides or storm surges. May or may not have connections to
the channel network.
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Lastly, we compare connectivity classifications to the channel presence/absence
classification by Piliouras & Rowland (2020) based on summer Landsat images
in 2014. This dataset is stored in an image in which waterbodies that are
connected to the channel network have values of 1 and waterbodies that are
not connected are masked out of the image. Data was initially contained in a
MATLAB Data File and was converted to TIF using R. We then uploaded the
TIF to Google Earth Engine. In Google Earth Engine, we negatively buffered
the study lake polygons by one Landsat pixel (30m), and then counted how
many connected water body pixels were inside each buffered lake polygon. If
more than or equal to 10 connected waterbody pixels fell within the lake polygon,
the lake was considered connected in the validation data set. If there were fewer
than 10 connected pixels, the lake was considered not connected. A threshold
of 10 was used to further account for any differences in lake shorelines between
our study lake polygons and the validation dataset

3.1.4. ArcticDEM

We investigate patterns between connectivity and lake surface elevation using
2m-resolution ArcticDEM strip data (Porter et al., 2018). ArcticDEM data
is only available when there is sunlight, eliminating data availability in winter
months. In contrast, the ArcticDEM processing method is not effective over
open water. As a result, there is a small window of time each year in which
lake elevation data from ArcticDEM is regularly available in this region—the
month of April. Therefore, the lake surface elevation in this study represents the
elevation of the top of the snow/ice on the lake as opposed to the water surface.
There are two years of ArcticDEM data that have complete April observations
of the delta: 2015 and 2017. For each of these years, we create an April mean
elevation image composite from the ArcticDEM strips. Next, to remove non-
water pixels from lake surfaces, we negatively buffer each lake polygon by two
Landsat pixels (60m). This removes a lake from analysis that is less than two
Landsat pixels wide and reduce the potential contamination of land elevation
from mixed water-land pixels.

3.1.5. River discharge data

To analyze the impact of discharge on connectivity, we use daily discharge data
from the USGS Gage No. 15875000 at Umiat, AK to identify the top five maxi-
mum summer discharge years and the bottom five maximum summer discharge
years between 2003, when the station began collecting data, and summer 2019.
Maximum summer discharge each year is defined as the highest daily summer
(June–September) discharge. While this station is ~125 km upstream from the
delta, the Colville River has already drained approximately 67% of its catch-
ment area (U.S. Geological Survey; Walker & Hadden, 1998) by the time the
river waters reach the station. We assume that these extreme discharge years
are likely the same at Umiat, AK and within the delta itself.

3.2. Detection of connectivity

In this study, we differentiate functionally connected and functionally discon-
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nected lakes based on their colors relative to the color of the river entering the
delta. We start by extracting Landsat reflectance measurements for lakes and
river channels (Section 3.2.1.), then calculate the water color for each obser-
vation (Section 3.2.2.). Finally, using density distribution of the ratio between
lake and channel color (Section 3.2.3.), we calculate clusters of observations that
correspond to connected and disconnected lakes (Section 3.2.4.).

3.2.1. Extraction of paired lake and channel water color observations

The first step in this analysis is to match up same day filtered Landsat obser-
vations of each lake to filtered Landsat observations of the channel at the apex
of the delta (Figure 1, inset). For each filtered Landsat observation of each
study lake, we calculate the mean value of each visible RGB band. We do the
same thing for the river channel polygon at the apex of the delta (Figure 1).
To ensure that there are enough pixels to accurately complete our analysis, we
then remove daily observations if the mean RGB values were calculated using
fewer than 100 cloud-free water pixels. Lastly, we temporally match up same-
day channel and lake observations, and we remove observations that do not have
a same-day match. If there is more than one-same day match, which commonly
occurs at the edge of Landsat tiles, we only keep the match with the smallest
difference in time between lake and channel observations.

3.2.2. Calculation of water color

To differentiate functionally connected and disconnected lakes, we take advan-
tage of the difference in color between high sediment river water and lower
sediment lake water to identify high sediment river water recharge of deltaic
lakes. We use the algorithm by Wang et al. (2015) to convert remotely sensed
RGB values to dominant wavelength (𝜆𝑑) values within the visible range of 380
to 700 nm. This method was developed to study lake water color using MODIS
imagery and has also been used to study river color using Landsat imagery
(Gardner et al., 2021) and lake color using Sentinel-2 imagery (Giardino et al.,
2019).

To calculate 𝜆𝑑, we first calculate tristimulus values using the RGB reflectance
values:

𝑋 = 2.7689𝑅 + 1.7517𝐺 + 1.1302𝐵

𝑌 = 1.0000𝑅 + 4.5907𝐺 + 0.0601𝐵

𝑍 = 0.0565𝐺 + 5.5943𝐵

Next, we convert these tristimulus values to chromaticity coordinates (x,y,z).
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𝑥 = 𝑋
𝑋 + 𝑌 + 𝑍

𝑦 = 𝑌
𝑋 + 𝑌 + 𝑍

𝑧 = 𝑍
𝑋 + 𝑌 + 𝑍

However, to display the color data in two dimensions, x and y are often plotted
on chromaticity diagrams (e.g. Wang et al., 2015: Figure 4), and a separate
value, the hue angle(𝛼), is calculated using the following equation to identify 𝜆𝑑
on the chromaticity diagram:

𝛼 = (𝑎𝑟𝑐𝑡𝑎𝑛2 ⋅ 𝑥 − 0.3333
𝑦 − 0.3333 )180

𝜋

For our purposes, using the hue angle (𝛼) and the chromaticity coordinates
(x,y), we use a reference lookup table developed by Wang et al. (2015) to find
the dominant wavelength (𝜆𝑑) that represents the wavelength that the human
eye would see given the RGB values observed by the satellite.

3.2.3. Calculation of dominant wavelength ratios

For each paired observation of lake and channel, we calculate the ratio between
𝜆𝑑 of the lake and 𝜆𝑑 of the channel, which we refer to as the dominant wave-
length ratio. If the ratio is larger than 1, the lake is more yellow/brown than
the channel, whereas if it is less than 1, the lake is more blue/green than the
channel.

In Figure 2a and 2b, which cover the same geographic extent on two different
days, we show examples of two lakes, one with no channel connecting the lake
and the river (A) and one with an obvious connection channel (B). The lake
with clear channel presence frequently has a dominant wavelength of close to
1, indicating that the color of the lake and the color of the channel are similar
though time (Figure 2a & 2c). The lake with no visible channel presence has
a much wider distribution of dominant wavelength ratio values (Figure 2d).
When the river is transporting little sediment, the low connectivity lake and
the channel look quite similar, but when the river water is high in sediment,
the low-sediment lake looks very different from the channel (Figure 2b). As
a result, we find that it is more effective to study distributions of dominant
wavelength ratio within a time period as opposed to single instances in time in
order to identify patterns of functional connectivity. The different time periods
used in this study are described in Sections 3.3., 3.4., and 3.5.
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Figure 2. Sentinel-2 images from 7/14/2017-low discharge (a.) and 7/27/2017-
high discharge (b.) showing lake color variability at different discharge levels.
Example density plots using data from 2013-2016 for a lake A-visible channel
(c.) and lake B-no visible channel (d.). Note the narrower shape of the density
plot for the lake that has a channel present. Discharge values from USGS Gage
15875000 at Umiat, AK.

3.2.4. K-means clustering

Based on these distributions of dominant wavelength ratios, we group lakes
into high functional connectivity and low functional connectivity groups. This
method uses an unsupervised k-means approach developed specifically for clus-
tering histograms (Irpino & Verde, 2015). We find that using three clusters
best differentiates between lakes that do not routinely receive high sediment
river water (classes 1 and 2) and those that do (class 3). Classes 1 and 2 are
combined to form the ‘low functional connectivity’ class. An example of this
clustering can be found in Figure 3. We tested our clustering algorithm using
as many as ten clusters. Classifications using more than three clusters do not
significantly increase classification accuracy and may result in overfitting. All
dominant wavelength ratio distributions described in Sections 3.3., 3.4., and 3.5.
are classified at the same time using the described algorithm.
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Figure 3. Dominant wavelength ratio distributions and resulting classifications
for lakes during the 2013–2016 time period. Classes 1 and 2 represent low func-
tional connectivity lakes, whereas class 3 represents high functional connectivity
lakes. Thick lines represent the centroid of each cluster.

3.3. Validation experiments (Q1)

To evaluate the accuracy of our classification algorithm, we compare the three
validation datasets against functional lake connectivity based on classifications
of dominant wavelength ratio distributions during corresponding time periods
(Table 1). Distributions are only analyzed for a given lake if there are at
least ten dominant wavelength ratio values within that period and the lake is
contained in both our lake classification and the validation data set (see number
of lakes validated in Table 1).

Table 1. Description of validation datasets, corresponding periods of functional
connectivity analysis, and number of lakes validated.

Validation dataset Validation data year Functional connectivity time period Number of lakes analyzed
Jorgenson et al. (1997) 1992 2000-2004 82
Piliouras & Rowland (2020) 2014 2013-2016 97
GECI 2013-2016 2013-2016 83

3.4. Examination of temporal patterns in connectivity (Q2)

To better understand the variability of functional lake connectivity in the
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Colville River Delta, we calculate dominant wavelength ratio values for each
lake in four time periods: 2000-2004 (same distribution used in Section 3.3. for
the Jorgenson et al., 1997 validation), 2005-2009, 2010-2014, and 2015-2019. We
only analyze lakes that have at least 10 dominant wavelength ratio observations
within all four periods (n=89 lakes). Each lake in each period is represented by
a distribution of dominant wavelength ratios, all of which are included in the
k-means clustering algorithm described in Section 3.2.4. This process results
in a connectivity classification for each lake within each period. We use these
classifications to better understand which lakes have static versus variable
functional connectivity through time.

3.5. The impact of elevation and discharge on functional lake connectivity in
the Colville Delta (Q3)

In this section we seek to better understand drivers of functional connectivity,
starting with discharge. Using the USGS discharge data, we select the five years
with the highest maximum summer discharge (2003, 2007, 2010, 2013, 2014)
and the lowest maximum summer discharge (2006, 2008, 2015, 2017, 2019). We
create two dominant wavelength ratio distributions for each lake, one for the
low discharge years and one for the high discharge years. Only lakes with at
least ten good dominant wavelength ratio observations in both the low and
high discharge distributions are retained in the analysis (n= 95 lakes). These
distributions are then included in the k-means clustering algorithm described in
Section 3.2.4. This analysis helps better constrain how many and which lakes
have connectivities that are influenced by discharge.

We also investigate patterns between connectivity and lake surface elevation us-
ing 2m-resolution ArcticDEM strip data described in Section 3.1.4. We compare
lake surface elevations in 2015 and 2017 to connectivity in the 2015-2019 time
period (n=88) and test for significance using a Mann-Whitney U-test.

3.6. Relationship between connectivity and lake ice (Q4)

To better understand the influence of connectivity on the deltaic environment,
we compare functional connectivity to Landsat-derived lake ice climatology. The
lake ice dataset was developed using a logistic regression based on a series of
2000–2019 Landsat 5/7/8 lake ice fraction observations, which was developed
using a Landsat lake ice detection algorithm (Yang et al., 2021). For each lake,
we pooled together all ice fraction data between 2000–2019 and divided the
them into two subsets—one for freeze-up period (day of the year 230–365 and
1–58 of the following year) and one for the breakup period (day of the year
59–229). Then two separate logistic regressions were fitted to the two subsets of
data to model the freeze-up and breakup ice fraction dynamics. These models
together classify each day of the calendar year (DOY) as likely ice covered (typ-
ical ice fraction >80%), transitional (typical ice fraction 20-80%), or likely ice
free (typical ice fraction <20%). We compare our functional connectivity results
against ice phenology events including date of breakup transition start, date of
breakup transition end, breakup transition duration, ice covered duration, ice
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free duration, date of freeze-up start, date of freeze-up end, and freeze-up tran-
sition duration. Based on the temporal lake connectivity data from 3.4., lakes
are divided into three groups for analysis: always high functional connectivity,
always low functional connectivity, and variable functional connectivity. We
use a Mann-Whitney U-test to compare ice climatology between high and low
connectivity groups.

4. Results

4.1. Validation results (Q1)

Compared against channel absence/presence classifications from the GECI, func-
tional connectivity classification matches with the channel presence classifica-
tion in 85.5% of lakes (n=71/83). Of the incorrect classifications, only one lake
with a visible channel is classified as low functional connectivity, whereas 11
lakes without channels are classified as high functional connectivity (Figure
4a). Amongst these lakes, over half (~7-8) are near the delta toe and may be
brackish or experience non-channelized flooding due to their low elevations.

Next, we compared our 2013-2016 results to the 2014 classification of the Colville
River Delta by Piliouras & Rowland (2020) (Figure 4b). This validation data
set is similar to the Google Earth image-derived validation dataset because it
defines connectivity via channel presence. In this case, channel presence was
determined using 30m Landsat imagery. Our overall accuracy compared to this
classification is 73.2%. Nearly all (n=24) of the 26 differently classified lakes
are classified as high functional connectivity in our dataset but low functional
connectivity by Piliouras & Rowland (2020). Most commonly, these are lakes
with very narrow channels (less than one Landsat pixel wide) or dry channels at
low discharge or are lakes near the delta toe that may easily experience overbank
flooding.

Comparison of the 2000-2004 connectivity classification to the 1992 Colville
Delta survey (Jorgenson et al., 1997, Figure 4c), yields an overall agreement of
69.5%, in which the classifications of 57 out of 82 lakes agree. Of the differently
classified lakes, 4 lakes are classified as low functional connectivity in the vali-
dation dataset but high connectivity using our algorithm, and 21 are classified
as high connectivity in the validation dataset but low functional connectivity
using our algorithm. Nearly all of these 21 lakes are either within the ‘deep
tapped lake w/ high water connection’ group (e.g. only receives river water at
high discharge, n=13) or are connected to the channel network year-round but
have channels that are either relatively narrow and long (n=6) or are indirectly
connected to the main channel network via another lake (n=1). So, while these
lakes may fall within the high connectivity validation group, they may not be
functionally connected to the river network using our definition of connectivity.
Additionally, the 1992 survey was 8 years prior to our first observation, and
both lake tapping and lake or channel infilling are possible within this period.
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Figure 4. (a.) Comparison between manual channel identification in Google
Earth Engine composite imagery and functional connectivity from the 2013-
2016 period. (b.) Comparison between the 2014 (Piliouras & Rowland, 2020)
classification and functional connectivity from the 2013-2016 validation period.
(c.) Comparison between 1992 manual lake classification by Jorgenson et al.
(1997) and functional connectivity from the 2000-2004 period.

4.2. Connectivity variability with time, discharge, and elevation (Q2-3)

Within the Colville Delta, functional connectivity remains consistent in the
majority of lakes among the four five-year study periods between 2000 and 2019
(Figure 5). Of the observable lakes in the delta that had stable connectivity
through time, more lakes were classified as always low functional connectivity
(n=44) than always high connectivity (n=29). Of those that change connectivity
through time (n=16), 2 transition from high to low connectivity over time, 5
go from low to high connectivity over time, and 9 lakes transition between one
state and the other and back. These results help us to address Q2, regarding
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temporal variability in functional connectivity.

Figure 5. Landsat-derived connectivity classifications within four five-year
study time periods. Lakes with variable connectivity across the four time periods
are outlined in red on the maps.

When we compared lake functional connectivity during periods of high and low
discharge, we identified 12 lakes that shift from high connectivity in high dis-
charge periods to low connectivity in low discharge periods; there are no lakes
with the opposing pattern (Figure 6). These two groups of lakes, those that
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vary connectivity over time and those that vary connectivity through changes in
discharge, often overlap (n=10 lakes are in both groupings), indicating that tem-
poral changes in connectivity may be driven by discharge. The group of lakes
experiencing the most variability in connectivity both over the whole study pe-
riod and during the differing discharge periods are lakes that are either indirectly
connected to the channel network via a long narrow channel or via other lakes,
or are at very low elevation near the delta toe and may have more brackish
influence or are more prone to non-channelized flooding. These results address
the first part of Q3, on discharge impacts on connectivity.

Figure 6. (a.) Lake connectivity classifications during the five years with the
highest maximum summer (June-September) discharge. (b.) Lake connectivity
classifications during the five years with lowest maximum summer discharge.
(c.) Maximum summer discharge from 2003-2019 at USGS gage no. 15875000.
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High (red) and low (blue) discharge years are indicated with colored circles.

As expected, high functional connectivity is also associated with significantly (p
<0.05) lower wintertime lake surface elevation in both 2015 and 2017, compared
to low functional connectivity lakes (Figure 7, 1.5m lower, on average, in both
years). This makes sense from a definitional standpoint, as low elevation lakes
are more likely to be flooded during periods of elevated river water level. Addi-
tionally, because the measured lake surface elevation reflects wintertime snow
or ice cover elevation, the lower elevations of connected lakes may also reflect
riverine drawdown of water from during the fall freeze-up process. These results
address the second part of Q3, focused on elevation and connectivity.

Figure 7. Lake surface elevation in the month of April from ArcticDEM. *
indicates significant difference at p<0.05 between high and low functional con-
nectivity lakes, as classified during the 2015-2019 period.

4.3. The relationship between connectivity and lake ice (Q4)

Within the Colville Delta, functional connectivity strongly correlates to lake ice
climatology (Figure 8). In terms of breakup, results show statistically signifi-
cant (p < 0.05) differences between always connected and always disconnected
lakes in breakup transition start (always high functional connectivity lakes start
breakup an average of 26 days earlier), breakup transition end (same, but 16
days earlier), and breakup transition duration (same, but 10 days longer). Re-
garding ice freeze-up, results show statistically significant differences in freeze-
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up start day of year (always high functional connectivity lakes start freeze-up
8 days earlier), and freeze-up end (same, but 5 days earlier), but not freeze-up
transition duration (same, but 4 days longer). Total ice duration (always high
functional connectivity lake ice duration is 23 days shorter than always low func-
tional connectivity lakes) and ice-free duration (same, but 21 days longer) are
also significantly different. The ice phenology of lakes with variable functional
connectivity nearly always falls between the average ice phenology for low and
high connectivity lake groupings. Our analysis related to Q4 supports the hy-
pothesis that ice duration and the ice breakup transition period are strongly
influenced by connectivity.

Figure 8. (a.) Lake ice breakup and freeze-up start and end dates for 89 lakes
in the Colville River Delta. (b.) Lake ice durations (breakup transition, freeze-
up transition, total ice, ice-free). *significant at p <0.05. Note the much earlier
breakup start and end timing for high functional connectivity lakes.

5. Errors and Uncertainties

Functional connectivity detection via water color has certain limitations and
potential sources of error. First, this method exclusively works when there is
a visible difference in color between river water and lake water during at least
some portion of the open water period. While this is true in the Colville Delta,
deltas that export higher sediment overall, but have lower sediment concentra-
tions, like the Lena Delta (Walker, 1998), would be difficult to analyze using
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this method because of indistinct color difference between river water and lake
water. In terms of potential sources of error, lakes can also experience non-
SSC-driven changes in color, for example via high chlorophyll concentrations
(Bukata et al., 1983; Jerome et al., 1994). While the DSWE algorithm used
in this analysis to identify water pixels also filters out vegetated land pixels
as well as submerged vegetation, it may not filter out other high chlorophyll
water pixels. However, based on visible inspection of imagery, this seems to be
a limited issue in the Colville Delta (no. of lakes possibly impacted ~2). Lakes
near the delta toe present challenges in validation because they are likely both
low elevation and brackish. These lakes commonly don’t have clearly visible
channels, so are not classified as connected in the Google Earth and Piliouras
& Rowland (2020) validations, and are simply labeled as ‘brackish’, with no
connectivity information, in the land survey validation dataset (Jorgenson et
al., 1997). However, due to their low elevations, we expect that these lakes may
still be functionally connected at high discharge because they can receive river
water via overbank flooding. They are also close enough to the delta toe that
seawater may impact the color of these lakes. Despite the potential for seawater
influence, these delta toe lakes experience expected relationships with discharge,
with high discharge periods leading to higher functional connectivity, and vice
versa, leading to increased confidence in our classifications for these lakes.

Another potential source of error is in ice climatology calculations. While in-
dividual Landsat-derived ice fraction observations that go into creating the ice
climatology model are dense during the breakup period, they are much less fre-
quent during the freeze-up period due to low light and cloud conditions (Figure
9). Therefore, there is higher uncertainty/inaccuracy in climatological freeze-up
dates compared to breakup dates. More specifically, for one week prior to the
breakup start day of year through one week after the breakup end day of year,
there are an average of 23 ice fraction observations used in the model, compared
to an average of 8 for the freeze-up encompassing period. Also, because we are
using a climatological timeseries constructed based on twenty years of data,
distinguishing between a longer freeze-up/breakup period and a more variable
freeze-up/breakup period is challenging.
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Figure 9. Number of Landsat ice observations used in the ice climatology
model from one week prior to ice breakup/freeze-up start day of year to one
week after breakup/freeze-up end day of year.

6. Discussion

The primary takeaways of this paper are threefold. First, we have demonstrated
the efficacy of a widely applicable algorithm for detecting multi-temporal varia-
tions in functional connectivity in a high-sediment Arctic delta. Second, we find
that over a twenty-year period connectivity in the Colville is variable through
time in 20% of the lakes and is related to discharge as well lake elevation.
Third, we find that functional connectivity may control ice timing, especially ice
breakup, which has implications for photochemistry and methane production.

6.1. Efficacy of the functional connectivity algorithm

This functional connectivity algorithm provides a new alternative to other pub-
lished deltaic connectivity detection methods. Each method is useful in specific
situations and has unique pros and cons. Firstly, the ‘Sill Elevation Method’
used by Marsh & Hey (1989) and Lesack & Marsh (2010) uses lake sill eleva-
tions in combination with historical discharge observations to assess functional
connectivity (by channel or overland flow) duration through time. This method
is excellent in situations in which lake sill elevation data, collected via aerial
or field survey, is available, and in situations when lake sill elevations are not
assumed to change over the study period. While the reliance on aerial imagery
or field data limits the wider spatial and temporal applicability, this method
allows for the most temporally fine-grained analysis of functional connectivity
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duration and allows calculation of connectivity prior to Landsat observations,
if discharge data is available. Second, Piliouras & Rowland (2020) developed a
method that uses Landsat imagery to detect direct connections between lakes
and channels. While this algorithm was applied only within one year, it would
be simple to expand temporally and has been expanded to multiple deltas and
does not rely on the presence of high sediment river water. The challenge with
this method is that it only detects connectivity via channels that are detectable
within Landsat imagery, which excludes lakes connected by sub-pixel channels
or by overland flow. The dominant wavelength ratio method described in our
analysis builds on work by Long & Pavelsky (2013) that suggested the usefulness
of suspended sediment as a tracer for river water recharge within six floodplain
lakes in the Peace-Athabasca-Delta. In our dominant wavelength ratio method,
similar to the Sill Elevation Method, we are able to detect functional connec-
tivity either via channels or overland flow. Contrastingly, this method does
not require aerial or field surveys to define sill elevation, and therefore is easier
to expand to multiple deltas. However, unlike the Sill Elevation Method, this
method doesn’t allow detection of specific connectivity durations (e.g. ‘whether
a lake is connected for 4 or 40 days per year’). Compared to the Piliouras &
Rowland (2020) method, our method allows for sub-pixel channel or overland
flow-derived connectivity. However, the method described in this paper relies
on river water with high sediment concentrations, limiting application to high
sediment deltas. Additionally, our method results in connectivity classifications
within coarser five-year periods. However, going forward, high temporal and
spatial resolution optical satellites such as Sentinel-2 and Planet may be used
to increase the temporal resolution of these connectivity classifications.

6.2. Discharge and connectivity

Our results highlight discharge as a major control on changes in functional con-
nectivity, with high discharge corresponding to increased functional connectivity
in the delta, and low discharge corresponding to reduced connectivity. These
shifts are concentrated within two groups of lakes: those at low elevation near
the delta toe and those that are connected to the main channel network in-
directly via large lake complexes, long and narrow channels, or channels that
are only water-filled at high discharge. While the North Slope region has not
experienced a statistically significant trend in discharge over the past 41 years
(1975-2015) (Durocher et al., 2019), future changes in precipitation type, tim-
ing, and amount, along with warmer air temperatures, are predicted to increase
discharge on the North Slope over the next hundred years (Bring et al., 2017).
Based on the pattern we have observed, projected increases in discharge could
result in increased functional connectivity either via increased overland flow,
higher sediment river water being transported further into lake complexes via
channels, or lake tapping (Walker & McGraw, 2015). This increase in con-
nectivity, particularly near the delta toe, will take place in conjunction with
sea level rise, which will likely increase intrusion of saltwater into these low-
elevation lakes, impacting the ecology and color of those systems (Jorgenson
et al., 1997). Alternatively, increased SSC associated with elevated discharge
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will also result in faster infilling of highly connected lakes (Walker & McGraw,
2015), leading to decreased connectivity. Any future changes in discharge will
also be concurrent with degradation of permafrost (Hinzman et al., 2005). Per-
mafrost degradation impacts Arctic lakes in several ways, including increased
erosion rates (Piliouras et al., 2021), increased subsurface connectivity due to
active layer thickening (Connon et al., 2014; Walvoord & Kurylyk, 2016), and
resulting lake area loss and drainage (Smith et al., 2005; Marsh et al., 2009;
Brubaker et al., 2014; Nitze et al., 2017) or expansion (Smith et al., 2005; Nitze
et al., 2017). Residents of Nuiqsut are already reporting drying tributaries and
loss of connectivity due to increased infilling and drainage as well as resulting
concerns about fish migration and travel hazards (Brubaker et al., 2014).

6.3. Connectivity and lake ice

Air temperature is one of the dominant controls of lake ice phenology in con-
junction with, to a lesser extent, lake morphometry, latitude, and elevation
(Williams et al., 2004; Arp et al., 2013; Šmejkalová et al., 2016; Sharma et al.,
2019; Warne et al., 2020). However, this work demonstrates the importance of
functional connectivity as a driving factor of lake ice timing. This result fits well
with initial findings by Arp et al. (2013) that suggests hydrologic connectivity
may be responsible for intraregional lake ice variability in Alaska not explained
by temperature or morphometric controls. Additionally, this corroborates re-
sults from Howell et al. (2009) that indicate river water acts as a mechanical
and thermal instigator of ice breakup in Great Slave Lake, Canada. As lake ice
continues to be modeled and interpreted both as a proxy for historical climate
change (Robertson et al., 1992; Assel & Robertson, 1995; Magnuson et al., 2000;
Prowse et al., 2011a; Šmejkalová et al., 2016 ; Warne et al., 2020) and as a signal
of and response to current and future climate change (Arp et al., 2018; Sharma
et al., 2019; Prowse et al., 2011a), and as we seek to quantify the impact of
climate change on Arctic transportation (Prowse et al., 2009; Stephenson et al.,
2011; Prowse et al., 2011b), it is important to consider functional connectivity
as an input to lake ice models.

6.4. Potential impacts of connectivity on photochemistry and methane

Changes in connectivity, both through time and during differing discharge peri-
ods, are important from a carbon-cycle perspective. High functional connectiv-
ity lakes, by definition, receive increased levels of suspended sediment (Lesack
& Marsh, 2010; Long & Pavelsky, 2013) and also have shorter water residence
times (Coops et al., 1999, 2008; Lesack & Marsh, 2010). Suspended sediment is
an extremely effective blocker of light (Vachon et al., 2017; Vione & Scozzaro,
2019). Increased levels of SSC result in less photosynthesis (Tank et al., 2009),
lower macrophyte productivity (Lesack et al., 1998; Lesack & Marsh, 2010),
less photomineralization. All of these differences result in less sequestration of
CO2 in high-SSC environments. Contrastingly, shorter residence times in these
highly connected lakes means that any riverine DOC that arrives in these lakes
will likely have relatively high photolability, similar to that of the river channel
(Cory et al., 2014), leading to increased likelihood of full photomineralization
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if there is enough UV radiation to penetrate more turbid waters. Poorly con-
nected lakes lack riverine DOM input, but have been found to have increased
macrophyte-derived DOM (Tank et al., 2009). As such, there are clear links
between connectivity and the aquatic chemistry of Arctic lakes. The method
developed in this paper to detect connectivity thus has potential application to
understanding spatial and temporal variability in these processes.

7. Conclusions and future work

This research demonstrates the efficacy of using remotely sensed water color
to detect spatial and temporal variations in functional lake connectivity in the
Colville River Delta, Alaska. Results suggest that connectivity is variable in
about 20% of delta lakes. Discharge is an important control of connectivity,
particularly within those lakes that have indirect channel connections or are low
elevation. Additionally, our results suggest a strong relationship between func-
tional connectivity and lake ice phenology, especially observed earlier breakup
timing in connected lakes. More fieldwork is needed to quantify the impact of
this relationship on photochemistry and carbon processing in these lakes. In the
future, we can use methods described in this paper to track connectivity in the
Colville and other Arctic deltas and to understand how patterns of connectiv-
ity interact with the changing physical and biogeochemical environment of the
Arctic.
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