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3CONACyT-Servicio de Clima Espacial México-Laboratorio Nacional de Clima Espacial,8

SCiESMEX-LANCE, Morelia, Michoacán, México9
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Abstract27

This article aims to obtain a new analytical solution of a specific form of the Grad-Shafranov28

(GS) equation using Walker’s formula. The new solution has magnetic field lines with29

X-type neutral points, magnetic islands and singular points. The singular points are lo-30

cated on the x-axis. The X-points and the center of the magnetic islands do not appear31

on the x-axis an island appears at z > 0 and the other two at z < 0. The aforemen-32

tioned property allows us to use this solution as an initial condition at t = 0 s in an33

magnetohydrodynamic (MHD) numerical simulation by excluding the singular points of34

the solution, i.e., the x-axis, and maintaining the magnetic structure of the islands, as35

well as the X-type neutral points. For this, we numerically solve the equations of the clas-36

sical ideal MHD in two dimensions using the Newtonian CAFE code. The code is based37

on high resolution shock capturing methods using the Harten-Lax-van Leer-Einfeldt (HLLE)38

flux formula combined with MINMOD reconstructor. The MHD simulation shows a very39

fast dissipation in less than one second of the magnetic islands present in the initial con-40

figuration. Almost all structures left the integration region at 13.2 s, and the magnetic41

field vector reverses its polarity very quickly. In addition, our simulation allows us to ob-42

serve the fast temporal evolution of the magnetic islands turning into elongated current43

sheets. As a limitation of the model, the difficulty in relating it to a physical system be-44

cause of fast temporal evolution is considered.45

1 Introduction46

The Grad-Shafranov (GS) equation is written in function of Cartesian coordinates47

in the plane as follows:48

∂2Ay
∂x2

+
∂2Ay
∂z2

= −µ0
d

dAy

(
p(Ay) +

B2
y(Ay)

2µ0

)
, (1)49

where Ay is the y−component of the magnetic vector potential, µ0 is the permeability50

of free space, p is the kinetic plasma pressure, and By is the y−component of the mag-51

netic field (Grad & Rubin, 1958; Shafranov, 1966).52

From the physical point of view, this equation characterizes a plasma as a single53

collisionless fluid, with high conductivity, immersed in a magnetostatic field. It is im-54

portant to consider an invariant axis (∂/∂y = 0) when deducing the GS equation, which55

makes the geometry of the problem 2.5-D (Ojeda-González et al., 2016). The detailed56

development of the whole physical formulation can be found, for example, in Sonnerup57

et al. (2006); Ojeda-González et al. (2015); Hu (2017); Teh (2018).58

The GS equation can also be written in the axially symmetric configurations in the59

cylindrical coordinate system (Ambrosino & Albanese, 2005). This notation is most com-60

monly used in the application of this equation to study the confined magnetic field in61

a Tokamak (Atanasiu et al., 2004). In its original form, equation (1) is a second order62

partial differential equation that does not have an analytical solution but can be numer-63

ically solved as a Cauchy problem or an initial value problem (Sonnerup & Guo, 1996).64

The authors Sonnerup and Guo (1996) and Hau and Sonnerup (1999) have developed65

a numerical method for solving (1). The method consists of making a second order ap-66

proximation in terms of a Taylor series around a generic point x = x0. A rectangular67

grid XZ must be constructed during the development of the numerical method. This prob-68

lem is very convenient because the data collected by a satellite, when it crosses a plasma69

structure in the interplanetary medium or in the magnetosphere, can be used as initial70

conditions for implementing the solution numerically.71

The physical parameters of the plasma that the satellite will need to measure are72

the following: the speeds, density and temperature of protons and electrons. In addition,73

the three magnetic field components will be required. In this way, it is possible to sim-74
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ulate the plasma behavior in regions neighboring the satellite where no measurements75

were taken. This method is known as Grad-Shafranov reconstruction (GSR), and in the76

literature several successful studies can be found, for example Hu et al. (2004); Lui et77

al. (2008); Ojeda-González et al. (2017a).78

There is another solution method explained by Lackner (1976); Mc Carthy (1999)79

that basically consists of an algorithm that makes a least squares fitting, considering only80

one eigenvalue as a nonlinear parameter in the GS equation numerical solution.81

In (1), the right hand side term in the derivative argument is related to the plasma82

transverse pressure (Pt), where83

Pt(Ay(x, z)) = p(Ay(x, z)) +
By

2(Ay(x, z))

2µ0
. (2)84

Depending on the expression that Pt may assume, equation (1) will have an analytical85

solution. Several examples such as Tokamak’s solution, can be found in the literature86

(Zheng et al., 1996; Mc Carthy, 1999; Atanasiu et al., 2004).87

From a physical point of view, however, one must justify the choice of the math-88

ematical expression of Pt. Using plasma kinetic theory, Kan (1973) solved the set of Vlasov-89

Maxwell equations by considering a velocity distribution expression as a function of the90

Boltzmann factor from Maxwell-Boltzmann statistics. As a result of using the Boltzmann91

factor, the Pt parameter is expressed as an exponential function as follows:92

Pt(x, z) = Pt0 exp (−2Ψ), (3)93

where Ψ is the normalized magnetic vector potential and Pt0 is the transverse pressure94

when Ay = 0 (Schindler, 2006).95

The Pt0 parameter exists as a consequence of a drift velocity in the y-direction (even96

though Ay be zero). In the deduction of the distribution function, this drift velocity was97

considered by Kan (1973); Kan (1979); Yoon and Lui (2005); Ojeda-González et al. (2015).98

The physical parameters Ψ and Pt0 are expressed as a function of the character-99

istic length scale L0 and the magnitude of the asymptotic magnetic field strength B0,100

where101

Ψ(x, z) =
−2

L0B0
Ay(x, z), (4)102

and103

Pt0 =
B0

2

2µ0
. (5)104

The previous expressions are replaced inside (1) to obtain a specific form of the GS105

equation as follows:106

∂2Ψ

∂X2
+
∂2Ψ

∂Z2
= exp (−2Ψ), (6)107

where a change of variables, X = x/L0, Z = z/L0, is performed to normalize x and108

z, transforming X and Z into dimensionless quantities. In the mathematical formula-109

tion adopted here, the y−component of the current density Jy is as follows:110

Jy(x, z) =
B0

L0µ0
exp (−2Ψ). (7)111

The mathematical expression given by (6) has the form of a Poisson’s equation. In the112

specific case where the inhomogeneous term adopts an exponential form, however, the113

equation is now called the two-dimensional Liouville equation, which in its original form114

is written Φxx + Φyy = c exp (dΦ) with c and d being real constants (Biskamp, 1986;115

Schindler, 2006).116
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By considering complex variables ζ = x+ιy and ζ = x−ιy, the problem goes to117

the complex plane where the equivalent function Φζζ = (c/4) exp (dΦ) must be solved118

as explained by Crowdy (1997). In the development of the solution presented by Stuart119

(1967); Biskamp (1986); Schindler (2006), the general solution of the Liouville equation120

has been parameterized by an analytical function, g(ζ) = u(x, y)+iv(x, y), where g(ζ)g(ζ) =121

u2(x, y) + v2(x, y) and g′(ζ)g′(ζ) = u2
x(x, y) + u2

y(x, y) with d = −2 e c = 1/4, obtain-122

ing the Liouville solution:123

Φ(x, y) = ln

1 + |g(ζ)|2

2
∣∣∣dgdζ ∣∣∣

. (8)124

Adapting this generic solution to the initial problem given by (6), a wide variety of gen-125

erating functions g(ξ) (with ξ = X + ιZ as a dimensionless complex quantity) could126

be obtained, with a domain in the set of complex numbers that can offer Ψ solutions in127

the set of real numbers. The formula to obtain general solutions is written as follows:128

Ψ(X,Z) = ln

[
1 + |g(ξ)|2

2|g′(ξ)|

]
, (9)129

with g′(ξ) = dg(ξ)/dξ.130

It is also important to note that some authors in the area of space physics (A. V. Man-131

ankova & Pudovkin, 1996, 1999; A. Manankova et al., 2000; A. V. Manankova, 2003; Yoon132

& Lui, 2005; Korovinskiy et al., 2018) called (9) Walker’s formula (Walker, 1915). Fol-133

lowing the previous convention in the rest of this article, equation (9) will also be called134

Walker’s formula.135

It is worth highlighting the suggestion of Génot (2005) and rewriting (6) as136

∆Ψ = −∆ln[|g′(ξ)|] +
4|g′(ξ)|2

[1 + |g(ξ)|2]2
, (10)137

where ∆ represents the Laplacian operator.138

The importance of equation (10) is that it allows determining the singular points139

(X,Z) of Ψ(X,Z) calculating poles and zeros of g′(ζ) (Génot, 2005). That is, singular-140

ities can be directly determined from Ψ or from the zeros and poles of g′(ζ) (Yoon & Lui,141

2005b).142

The usefulness of having analytical solutions is that, for example, (1) does not have143

an analytical solution but can be numerically solved as a Cauchy problem, and the dif-144

ferential equation is subject to certain initial conditions (Sonnerup & Guo, 1996; Hau145

& Sonnerup, 1999; Hu & Sonnerup, 2001; Ojeda-González et al., 2015). In the work of Hau146

and Sonnerup (1999), an analytical solution of (6) proposed by Fadeev et al. (1965) was147

used to create a contour plot that allowed the visualization of the percentile error, use-148

ful in quantifying the quality during the numerical solution development. New analyt-149

ical solutions from (6) obtained from (9) may also be important for validating future im-150

provements in the numerical solution.151

Analytical solutions are also important for understanding the coexistence between152

the X-type (where magnetic reconnection can happen), O-type (magnetic island), and153

S-type points (S for singular) which appear for example in the Kan model (Kan, 1979).154

Furthermore, the analytical solution was found by Laurindo-Sousa et al. (2018).155

Another application of analytical solutions may be their use as initial conditions156

in magnetohydrodynamic (MHD) and electromagnetic particle in cell (PIC) simulations157

(Birn & Hesse, 2001). These simulations were intended to study the Hall effect on the158

generalized Ohm’s law and the effect of resistivity on the diffusion region of electrons and159

ions at an X-type neutral point. For example, the Harris solution (Harris, 1962) was used160

as an initial condition in several articles (Birn & Hesse, 2001; Hesse et al., 2001; Otto,161
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2001; Shay et al., 2001; Ma & Bhattacharjee, 2001; Pritchett, 2001; Kuznetsova et al.,162

2001; Becker et al., 2001; Arzner & Scholer, 2001; J. González-Avilés & Guzmán, 2018),163

whose challenge was to study the two-dimensional magnetic reconnection in the envi-164

ronmental geospace by doing several simulations with different models, performed with165

the same input parameters.166

This article aims to propose a new generating function deduced from the combi-167

nation of two existing functions in the literature. With the generating function in hand,168

Walker’s formula is used to find a new solution of Ψ(X,Z). Subsequently, by entering169

this new solution as an initial condition in an MHD model, the plasma evolution in this170

magnetic configuration is studied.171

The article has been structured in such a way as to propose an explicit construc-172

tion of all theory and arguments that will be approached that give the reader a better173

understanding. In Section 2, the mathematical equation of Fadeev’s solution (Fadeev et174

al., 1965) is presented. Section 3 presents a transformation of the original solution pro-175

posed by Laurindo-Sousa et al. (2018). Section 4 provides a new solution as a result of176

merging the solutions presented in Sections 2 and 3. Section 5 compares the three afore-177

mentioned analytical solutions. In Section 6, the behavior of the new solution has been178

studied when it is inserted as an initial condition to an MHD model. In Section 7, we179

discuss the results, and Section 8 shows the summary and conclusions of the article.180

2 Fadeev Solution181

One of the best known and most used solutions in the literature was proposed by182

Fadeev in 1965 (Fadeev et al., 1965). Considered a generating function183

g(ξ) = fp +

√
(1 + fp

2) exp (ιbξ), (11)184

it obtains the following solution:185

Ψ(X,Z) = ln
[
fp cos(bX) +

√
1 + f2

p cosh(bZ)
]
, (12)186

where b is a scale parameter. The fp ∈ R parameter has the ability to change the size187

of the magnetic islands observed in the solution graph. Equation (12) has no singular188

points; this facilitates its usefulness in numerical models by supplying the input param-189

eters (Hau & Sonnerup, 1999; Ojeda-González et al., 2016).190

3 NAVAL solution191

For the NAVAL1 solution proposed by Laurindo-Sousa et al. (2018), which trans-192

forms the generating function by using a hyperbolic sine (g(ξ) = sinh (ibξ)) instead of193

hyperbolic cosine, the solution is given by194

Ψ(X,Z) = ln
cosh2(bZ) + sin2(bX)

2b
√

cosh2(bZ)− sin2(bX)
. (13)195

The imaginary unit i in the argument of the hyperbolic sine has been used to rotate the196

solution to an angle of π/2.197

Equation (13) has X-type neutral points, magnetic islands and singular points, re-198

spectively. Another solution with similar characteristics regarding the existence of X-199

points and singular points was proposed by Kan in 1973 (Kan, 1973) and which has been200

1 Nilson-Arian-Virǵınia-Alan-Lucas
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extensively studied by many authors who also include magnetic islands (A. V. Manankova201

& Pudovkin, 1996, 1999; A. Manankova et al., 2000; A. V. Manankova, 2003; Yoon &202

Lui, 2005; Korovinskiy et al., 2018).203

4 Proposed solution204

One of the aims of this paper is to obtain a new analytical solution by combining205

the generating functions of Fadeev and NAVAL. The idea is to replace the NAVAL gen-206

erating function instead of the exponential function of Fadeev’s generating function, re-207

sulting in208

g(ξ) = fp +
√

1 + f2
p sinh (ibξ). (14)209

With the generating function defined, the modulus of the function (14) and first210

derivative are calculated as follows:211

|g(ξ)|2=f2
p−2fp

√
1+f2

p cos(bX) sinh(bZ)+(1+f2
p )[− cos2(bX)+cosh2(bZ)], (15)212

and213

|g′(ξ)| =
√

(1 + f2
p )b2[cosh2(bZ)− sin2(bX)]. (16)214

Therefore, by replacing (16) and (15) in Walker’s formula (9) and developing some215

algebraic steps, the new solution is216

Ψ(X, Z)=ln

 (1+f2
p)(cosh2(bZ)+sin2(bX))−2fp

√
1+f2

p cos(bX) sinh(bZ)

2b

√
(1+f2

p)(cosh2(bZ)−sin2(bX))

. (17)217

By setting fp = 0, the NAVAL solution (13) is recovered.218

Using Génov’s method cited in the introduction of this article, it is found that (17)219

has singular points. Génov found a simple method for locating singularities without nec-220

essarily solving the equation: without having to calculate derivatives and creating all al-221

gebraic manipulations. To do so, singularities can be determined only by222

|g′(ξ)| = 0. (18)223

The first derivative of the generating function (14) is g′(ξ) = ib
√

1 + f2
p cos (bξ),224

and by considering (18), the following expression is found:225

|g′(ξ)| = b
√

(1 + f2
p ) cos (bξ) cos (bξ) = 0. (19)226

Note that (19) must be zero, but b and (1+f2
p ) are not null. Therefore as it is a227

product, cos(bξ) or cos (bξ) must be null. Singularity points should appear where the co-228

sine nulls: the real part of bξ must equal to π
2 +kπ, where k ∈ Z and π is given in ra-229

dians.230

5 Relationship between the aforementioned solutions231

Figure 1 shows the stream plot of the magnetic field vector at xz-plane superim-232

posed on a background density plot of Jy. The three panels show the following solutions:233

(a) Fadeev (as in (12)), (b) NAVAL (as in (13)), and (c) our proposal (as in (17)).234

Panel (a) is characterized by having an X-type neutral point at the origin of the235

coordinate system, and in nearby x > 0 there is a magnetic island, then an X-point,236

again an island and so on. This setting repeats itself periodically to infinity. For x <237
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(a)

(b)

(c)

Figure 1. Stream plot of the magnetic field vector ~Bxz = Bx î + Bz k̂ as a function of x and

z, superimposed on a background density plot of the scalar field Jy. Panel (a) shows Fadeev’s

solution from (12). Two magnetic islands are observed and one X-point. Panel (b) shows the

NAVAL solution from (13). Panel (c) shows the proposed solution from (17). In both panels (b)

and (c), three magnetic islands are observed, as well as two singular points and four X-points,

respectively.
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0, the setting is exactly the same: there is a symmetry of the solution with respect to238

the z-axis. The direction of magnetic field rotation in the magnetic islands is clockwise.239

In panel (b), three O-type points appear on the x-axis, and two S-type singular points240

are observed between them. There are also four X-type neutral points at the top and241

bottom of the singular points. Panel (c) shows a configuration similar to panel (b); how-242

ever, in this case, the center of the magnetic islands does not appear on the x-axis. An243

island appears at z > 0 and the other two at z < 0, respectively. Another important244

detail shown in panels (b) and (c) is the direction of the magnetic field rotation in the245

magnetic islands (clockwise) relative to the singular points (counterclockwise). The ma-246

jor advantage of the new solution compared with the NAVAL solution is the displace-247

ment of the center of the x-axis magnetic islands. This allows us to use this solution in248

a numerical simulation by excluding the singular points of the solution, i.e., the x-axis,249

and maintaining the magnetic structure of the islands, as well as the X-type neutral points.250

At the moment, no real physical system has been found in which magnetic config-251

urations exist, as shown in Figures 1b and 1c. Therefore, the importance of this study252

is the mathematical proposal of this new solution and our curiosity about how it evolves253

in an MHD model as presented in the next section. The motivation for studying the tem-254

poral evolution of this system is that the initial configuration (as in Figure 1c) shows a255

complex structure where magnetic islands and X-type neutral points are present. Re-256

garding the new solution, there are four questions that will be answered in the next sec-257

tions: (i) How will this configuration evolve in a numerical and dynamic environment?258

(ii) Will this configuration be temporally stable enough to be observed in any real phys-259

ical system? (iii) As with the Harris and Fadeev model, can this model be used to study260

a two-dimensional magnetic reconnection and current sheets? (iv) In addition, how im-261

portant are the singular points in this model?262

6 MHD simulation263

In this section, we mention the system of equations and the numerical methods used264

to perform the simulation of the initial conditions defined in terms of (17). We numer-265

ically solve the equations of classical ideal MHD in two dimensions using the Newtonian266

CAFE code (J. J. González-Avilés et al., 2015; J. González-Avilés & Guzmán, 2018). In267

particular, the ideal MHD equations are solved on a single uniform cell-centered grid us-268

ing the method of lines with a third-order Runge-Kutta time integrator. In order to use269

the method of lines, the MHD equations are discretized using a finite volume approx-270

imation with high resolution shock capturing methods. For this, we first reconstruct the271

variables at cell interfaces using the MINMOD limiter (Harten et al., 1997). On the other272

hand, the numerical fluxes are built with the Harten-Lax-van Leer-Einfeld (HLLE) ap-273

proximate Riemann solver formula (Harten et al., 1983; Einfeldt, 1988).274

The numerical evolution of initial data involving Maxwell equations leads to the275

violation of the divergence free constraint equation, developing as a consequence unphys-276

ical results like the presence of a magnetic net charge. Among the several methods avail-277

able for controlling the growth of the constraint violation (Tóth, 2000), in our simula-278

tion we use the extended generalized lagrange multiplier (EGLM) method (Dedner et279

al., 2002).280

6.1 Initial conditions281

The MHD equations are solved as an initial value problem. For this reason we de-282

fine the set of initial conditions corresponding to the variables derived from (17). Fol-283

lowing Ojeda-González et al. (2015), the expressions for the magnetic field components284
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Bx, By, and Bz in terms of Ψ are285

Bx = B0
∂Ψ

∂Z
, (20)286

By = B0

√
exp (−2Ψ)

3
, (21)287

Bz = −B0
∂Ψ

∂X
. (22)288

The plasma pressure is also defined in terms of Ψ as follows:289

p =
B0

2

3µ0
exp (−2Ψ). (23)290

For this simulation, the mass density ρ is obtained through the equation of state291

of an ideal gas:292

p =
kBρT

m̄
, (24)293

where kB is Boltzmann’s constant, T is the temperature, m̄ is the mean particle mass294

defined in terms of the mean atomic weight µ through µ = m̄/mp, where mp is the pro-295

ton’s mass. For this article, we fixed the value of temperature to T = 107 K, which is296

a typical value of the magnetospheric conditions. In addition µ =0.6, this is a value for297

a fully ionized plasma. Therefore, mass density is defined as follows:298

ρ =
m̄p

kBT
=

m̄B2
0

3kBTµ0
exp (−2Ψ). (25)299

In this case we consider at initial time the velocity components vx, vy and vz equal300

to zero.301

To perform the numerical simulation, the set of MHD equations are rescaled i.e.,302

the equations become dimensionless, which helps to avoid the appearance of dominant303

numerical factors during the solution. In this article, we follow the conventions used in304

J. J. González-Avilés and Guzmán (2015) and fix the scale factors to the typical values305

observed in regions of the magnetospheric current sheet, i.e., the length-scale L0 = 105
306

m, the plasma density ρ0 = 8.360×10−22 g/m3 and the magnetic field scale B0 = 4.915×307

10−8 T (Kan, 1973). With the previous values, the unit of time is fixed in terms of Alfvén308

speed (v0 = vA,0 = B0√
µ0ρ0

=1.5×106 m/s), which implies t0 = L0/v0 =0.066 s. The309

factor p0 = ρv2
0=1.9×10−9 Pa, and it is used to normalize the initial condition for gas310

pressure.311

6.2 MHD results312

In this section, we analyze the results of the numerical simulations. In particular313

we show the results of the evolution of the initial conditions defined in the previous sec-314

tion. To perform the numerical simulation of the proposed solution given by the config-315

uration described in panel (c) of Figure 1, we separate the full domain into two parts:316

i) (z > 0), x ∈[-8.0, 8.0] and z ∈[0.1, 8.1], ii) (z < 0), x ∈[-8.0, 8.0] and z ∈[-8.1, 0.1].317

The separation is done to avoid the singularity in zero of the magnetic field components318

Bx (equation (20)) and Bz (equation (22)).319

For the first part of the domain (z > 0), we perform the simulation of i) that we320

cover with 200×100 cells. We use a constant Courant factor CFL=0.001, and impose open321

boundary conditions on all sides.322

In Figure 2, we show snapshots of the y-component of the current density Jy with323

magnetic field vectors at different times. For example, at the initial time we can see a324
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Snapshots of the evolution of the y-component of the current density Jy(A/m2)

with the magnetic vector field for the case of the positive domain z > 0 at different times.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Snapshots of the evolution of the y-component of the current density Jy(A/m2)

with magnetic vector field for the case of the negative domain z < 0 at different times.
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magnetic island exactly at in the middle of the domain in the x−axis. In addition, we325

can identify two X-type neutral points at the top of the singularity. At times t =0.264326

s and t =0.528 s, we can appreciate the fast evolution of the system, especially near the327

neutral points, which produce structures of high current density. At time t =1.056 s,328

we can see that the structures of the high current reach the top of the domain. At times329

t =2.112 s and t =4.224 s, we can identify the formation of a symmetric structure, which330

is caused by the evolution of the two X-type points. At time t =8.448 s, we can see that331

the structure practically disappears at the top of the domain. Finally, at time t =13.200332

s, we can see that the polarity of the magnetic field is completely reversed, which may333

be due to the evolution of the two X-type neutral points.334

For the second part of the domain (z < 0), we perform the simulation with ii) that335

we cover with 200×100 cells. We also use a constant Courant factor CFL=0.001 and im-336

pose open boundary conditions in all sides.337

The results of this case are shown in Figure 3. For example, at the initial time, we338

can see two magnetic islands and X-type neutral points at the bottom of the singular339

points. At times t =0.264 s and t =0.528 s, we can see the fast evolution of the sys-340

tem, especially near the neutral points, which produce two structures of high current den-341

sity that extended up to the middle of the domain. At time t =1.056 s, we can see that342

the two high current structures show fluctuations. At time t =2.112 s, we identify a high343

current structure that reaches the bottom of the domain. In addition, we notice the preva-344

lence of the two initial high current structures forming a symmetric configuration near345

the initial position of the X-type points. In addition, at this time, we can observe that346

the polarity of the magnetic field starts to invert. At time t =4.224 s, we can see that347

the previous structure begins to dissipate. Finally, at the times t =8.448 s and t =13.200348

s, the high current structures reach the bottom of the domain. In addition, in the same349

way as in the previous case, we can also observe that the polarity of the magnetic field350

was completely reversed.351

7 Discussion352

The specific form of the GS equation and its solutionphysically represents a mag-353

netostatic problem. This could lead to the idea that the solution would be in magneto-354

static equilibrium when set to evolve in a numerical and dynamic environment. Figures355

2b and 3b, however, show very fast dissipation in less than one second of the magnetic356

islands of the initial configuration. Almost all structures left the integration region at357

13.200 s. In addition, the magnetic field vector reverses its polarity very quickly. Con-358

sequently, if this structure exists in a real physical system, we barely have enough data359

to observe its evolution.360

At the initial configuration, the structure found in the magnetic island is proba-361

bly the signature of a twisted flux tube (Dasso et al., 2005; Démoulin & Dasso, 2009).362

Therefore, the model shows a fast way of transforming a flux-rope into an elongated cur-363

rent sheet, and the latter is the only structure, specifically a sample of it, which could364

be locally observed in any real physical system throughout its temporal evolution. By365

definition, a two-dimensional current sheet is related to a tangential discontinuity at a366

non-propagating boundary between two plasmas (Parnell, 2000). Current sheets have367

been found in the solar atmosphere, in the interplanetary medium, in the magnetosphere,368

as well as in comets (Yoon & Lui, 2005).369

What makes this model important is the spatial location of the X-type neutral points,370

magnetic islands and singular points, respectively. The initial configuration is important371

because as shown in Figure 1c, the currents are well concentrated on the three magnetic372

islands, the two singular points are on the line z = 0, and the four X-type neutral points373

are localized between the islands and the singular points, far from the x-axis. Similarly374
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(a) (b)

(c) (d)

Figure 4. The physical behavior of the magnetic field (black dashed lines) and the current

density (blue thin lines). Their respective point types (X- O- and S-types) are also shown.The

left panels (a and c) correspond to the solutions behaviors for z = ±0.1 and the right panels (b

and d) for z = ±1.8.

to Fadeev’s model (Figure 1a), this configuration will be repeated periodically from mi-375

nus infinity to plus infinity on the x-axis.376

Fadeev’s model in an MHD simulation shows that initially the only place where377

particles could diffuse is the X-type point through magnetic reconnection (Makwana et378

al., 2018). On the other hand, excluding the x-axis from our model, in each region (z <379

0 and z > 0) there are two X-points instead of one. The aforementioned is one of the380

first facts that helps us to understand why our model is evolving so rapidly in the MHD381

environment because in a diffusion process two X-points are more efficient than one.382

A second fact that helps us to understand the rapid evolution of the model is the383

magnetic field near the singular points. Figure 4 shows a schematic representation of the384

magnetic field magnitude (black dashed lines) and current density (blue thin lines) af-385

ter making four horizontal cuts in Figure 1c as follows: (a) z = 0.1; (b) z = 0.8; (c)386

z = −0.1; and (d) z = −0.8. The location of each point type (X-, O-, and S-types) is387

also shown. All panels show the maximum of Jy at 0-type points and the null magnetic388

field at X-type points. Panels (a) and (c) show two amplitude peaks of the magnetic field389

near the singular points. The Figure 1c shows that the direction of the magnetic field390

within the islands is clockwise, while within the singular points the direction is the op-391

posite. Therefore, this field will force a rapid evolution of the system to the opposite bound-392

ary. The interaction with the initially opposite field will force the creation of an elon-393

gated current sheet. Panels (b) and (d) show two X-points each. The two X-points on394

panel (d) are closer to the origin than the X-points on panel (b). Panel (b) shows the395

presence of a magnetic island, while panel (d) shows two.396

In summary, the direction and amplitude of the magnetic field near the singular397

points and the existence of the X-points are the main cause forcing the model to have398
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a fast diffusion. The magnetic islands disappear quickly, forming elongated current sheets399

that will leave the integration grid domain.400

8 Summary and Conclusions401

In this work, we introduce a new solution of the special form of the Grad-Shafranov402

equation (Grad & Rubin, 1958; Shafranov, 1966) using a combination of Fadeev (Fadeev403

et al., 1965) and NAVAL solutions (Laurindo-Sousa et al., 2018). The proposed solution404

defined in (17) shows singularity points where the cosine is zero. In particular, the two405

singular points are on the z = 0 and the four X-type neutral points are in between the406

islands and the singular points. The solutions are repeated periodically from minus in-407

finity to plus infinity on the x-axis.408

In addition, we used an MHD code (Newtonian CAFE) to study the time evolu-409

tion of the proposed solution. We use the equation (17) to construct the initial condi-410

tions for a 2D MHD domain with open boundaries. The results of numerical simulations411

indicate that the evolution of the proposed solution shows increases in current density412

near the X-type points. An interesting property of the system is that it reverses the po-413

larity of the magnetic field, which may be due to the direction as well as amplitude peaks414

of the magnetic field near the singular points, and the presence of X-type neutral points.415

The main results of this article can be summarized as bellow.416

(i) The generating functions of Fadeev and NAVAL have been grouped in a new way to417

obtain another solution given by (17).418

(ii) The characteristics of the new solution have been described in detail, such as419

the location and the importance of the X-, O- and S-types points.420

(iii) The singular points of the new solution have been excluded from the integra-421

tion grid domain to perform an MHD simulation of the dynamic evolution of the initial422

condition defined in terms of (17).423

(iv) In the MHD simulation it has been possible to observe the fast evolution of424

magnetic islands into current sheets;425

(v) The importance of the strong magnetic field at the edge of the singular points426

has also been explained for understanding the polarity inversion and the fast evolution427

of the model.428

(vi) As a limitation linked to the magnetic morphology of the new solution in a nu-429

meric and dynamic environment, the difficulty in finding a real physical system because430

of its fast temporal evolution is considered.431
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