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Abstract18

The recently developed Micromagnetic Tomography (MMT) technique combines advances19

in high resolution scanning magnetometry and micro X-ray computed tomography. This20

allows precise recovery of magnetizations of individual magnetic grains in a sample us-21

ing a least-squares inversion approach. Here we show that at least five factors are gov-22

erning the mathematical validity of MMT solutions: grain concentration, thickness of23

the sample, size of the sample’s surface, noise level in the magnetic scan, and sampling24

interval of the magnetic scan. To compute the influence of these parameters, we set up25

series of numerical models in which we assign dipole magnetizations to randomly placed26

grains. Then we assess how well their magnetizations are resolved as function of these27

parameters. We expanded the MMT inversion to also produce the covariance and stan-28

dard deviations of the solutions, and use these to define a statistical uncertainty ratio29

and signal strength ratio for each solution. We show that the magnetizations of a ma-30

jority of grains under realistic conditions are solved with very small uncertainties. How-31

ever, increasing the grain density and sample thickness carry major challenges for the32

MMT inversions, demonstrated by uncertainties larger than 100% for some grains. For-33

tunately, we can use the signal strength ratio to extract grains with the most accurate34

solutions, even from these challenging models. Hereby we have developed a quick and35

objective routine to individually select the most reliable grains from MMT results. This36

will ultimately enable determining paleodirections and paleointensities from large sub-37

sets of grains in a sample using MMT.38

Plain Language Summary39

Iron-bearing rocks have the ability to capture and store the direction and strength40

of Earth’s magnetic field. This information is used to unravel the behavior of the mag-41

netic field that protects us from harmful solar radiation. However, obtaining a reliable42

signal from these rocks is difficult using existing methods because many iron-oxide grains43

exhibit complex magnetic behavior and obscure the magnetic information in them. To44

determine magnetizations from individual grains, a new method known as Micromag-45

netic Tomography has been developed. This method works similarly to imaging tech-46

niques in hospitals, but now a thin slice of rock containing magnetic grains is scanned.47

By using computer models we discovered that Micromagnetic Tomography is able to re-48

liably extract magnetic signals from a majority of grains in many rock samples. Addi-49
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tionally, we have developed two new parameters that help us to easily select the mag-50

netizations of the most reliable grains in a sample. In this way the signal of those grains51

can be effectively used to provide accurate information on the present and past state of52

the Earth’s magnetic field.53
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1 Introduction54

Obtaining a reliable characteristic remanent magnetization (ChRM) from volcanic55

rock samples is an important challenge in paleomagnetism. Volcanic rocks acquire a ther-56

moremanent magnetization (TRM) when they cool in the Earth’s magnetic field that57

is proporational to the direction and strength of the magnetic field at the time of cool-58

ing. TRMs of natural rocks are often regarded to be the most reliable data source for59

geomagnetic field models because of their ability to store information on the paleomag-60

netic field for thousands to millions of years (e.g. Panovska et al., 2019; Pavón-Carrasco61

et al., 2021). Full vector ChRMs consist of both directional and intensity information62

on the past geomagnetic field, but they can generally only be obtained for 10% to 20%63

of volcanic samples carrying TRMs (e.g. Tauxe & Yamazaki, 2015; Nagy et al., 2017).64

One of the reasons for the low success rates is that only single domain (SD) or pseudo-65

single domain (PSD) iron oxide grains, typically with diameters < 1 µm, are reliable recorders66

of the Earth’s magnetic field. Larger multidomain (MD) grains are typically prone to67

more unstable magnetizations (Néel, 1955; Fabian, 2000, 2001). Natural rocks commonly68

contain a wide range of iron-oxide particle sizes. Magnetically adverse behaved MD grains69

are therefore often present. When measuring bulk rock samples the measured magnetic70

moment is a statistical summation of all the magnetic grains in the sample. The pres-71

ence of MD grains therefore often explains the low success rate of extracting a reliable72

full vector bulk ChRM.73

A solution to this problem would be to differentiate between signals stored in small74

and large grains by determining the magnetization of each iron-oxide grain in a sample75

separately. To obtain all individual magnetic moments, the magnetic flux above a thin76

sample produced by all grains inside is measured on a micrometer scale. Such a map of77

the magnetic flux with the necessary resolution in space and magnetization can be ob-78

tained from a scanning superconducting quantum interference device (SQUID; e.g. Egli79

& Heller, 2000; Weiss et al., 2007; de Groot et al., 2018) or a quantum diamond mag-80

netometer (QDM; e.g. Glenn et al., 2017; Farchi et al., 2017; de Groot et al., 2021). Un-81

fortunately, this is not sufficient to reconstruct the magnetic moments of individual grains82

inside the sample. To reduce the number of unknown variables in the inversion, the po-83

sition of the magnetic grains must be constrained further. Weiss et al. (2007), for exam-84

ple, applied a constraint related to the dipolar magnetization of all grains, by assuming85

that the magnetization for all grains is uniform in intensity and direction. The magnetic86
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signal of grains close to the sensors that detect the surface magnetic field, however, is87

better modeled using multipoles than dipoles (Cortés-Ortuño et al., 2021). Additionally,88

since shapes and volumes of grains can vary, it appears unlikely that the magnetization89

of all grains are uniform in intensity and direction (Dunlop & Özdemir, 1997). To avoid90

further assumptions on the positions of grains, de Groot et al. (2018) employed micro91

X-Ray Computed Tomography (microCT) to exactly determine these positions. By com-92

bining microCT with the surface magnetic field obtained by magnetometry the result-93

ing mathematical inversion problem becomes well posed (Fabian & De Groot, 2019), and94

it is possible to compute the individual magnetic moments of every grain in the sample.95

It was recently shown that not only the dipole component of the grain’s magnetic mo-96

ments can be recovered, but also higher order multipole components can be determined97

(Cortés-Ortuño et al., 2021). This technique of combining scanning magnetometry data98

with microCT analyses to constrain the mathematical inversion and obtain magnetic mo-99

ments of individual grains in a sample is now known as Micromagnetic Tomography (MMT).100

de Groot et al. (2018) and de Groot et al. (2021) obtained solutions for the mag-101

netizations of each grain in a synthetically fabricated magnetite sample containing 128102

grains with an imposed laboratory magnetization, but did not analyze the validity of their103

solutions under the experimental conditions. Here, we assess the validity of MMT so-104

lutions by determining the relative size of the standard deviation of the magnetic mo-105

ment, which can be produced by the inversion scheme. This is an important addition106

to the magnetic moment itself, because a relatively large standard deviation implies that107

the obtained magnetic moment is not very well resolved; while a relatively low standard108

deviation indicates a higher precision associated with the estimate of the magnetic mo-109

ment.110

We considered five different factors involved in the calculation of the individual mag-111

netic moments that may substantially affect the uncertainty of MMT solutions: (1) the112

thickness of the sample, (2) the area covered by the surface magnetic scan, (3) the grain113

density of the rock sample, (4) the distance between adjacent measurement points on114

the surface, and (5) the instrumental noise level of the surface magnetometry. The aim115

of our study is to investigate the quality of individual grain magnetic moments obtained116

with MMT as a function of these five factors. There are undoubtedly more factors in-117

fluencing the solution, such as grains not recognized by MicroCT, or co-registration er-118

rors related to spatial distortions between microCT data and magnetic field data. These119
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factors are challenging to model and depend primarily on the technical details and con-120

figurations of the instruments involved and are better and easier solved by a technical121

assessment than by mathematical corrections. For this reason we limit ourselves to the122

above five direct factors which either need to be taken into account in all inversion ap-123

proaches, or directly help to optimize the general measurement setup. We design numer-124

ical models to cover all combinations of these five factors. Another limitation of our study125

is that we assign dipolar magnetic moments to all grains in our models; although mul-126

tipole moments may be more realistic for the larger grains included (Cortés-Ortuño et127

al., 2021). Because higher multipole moments are only detectable at shallow depths (Cortés-128

Ortuño et al., 2021; de Groot et al., 2021), they appear to be too specific for this first129

study into the mathematical uncertainties and limitations of the new MMT technique.130

To determine the quality of the magnetic moments as determined by MMT in a spher-131

ical coordinate frame we define a 95% confidence interval that we obtain from bootstrap-132

ping the standard deviations in the x, y, and z−directions. We choose this because stan-133

dard deviations in the three orthogonal directions are difficult to directly convert to a134

spherical coordinate frame; while our 95% confidence interval gives a quantitative indi-135

cation of the mathematical accuracy of the solution in a single parameter. Additionally,136

we evolve the V/R3-ratio (Cortés-Ortuño et al., 2021) that relates the depth and vol-137

ume of a grain to the strength of the magnetic signal that the grain can potentially pro-138

duce on the surface of the sample, into the ‘signal strength ratio’. We then use this sig-139

nal strength ratio (SSR) to quickly discern which grains are solved with high confidence.140

Finally, we discuss the implications of our results on obtaining highly accurate ChRM141

measurements.142

2 Methods143

2.1 Model design144

The inversion routine we use here closely follows the procedure as described in de145

Groot et al. (2018, 2021), but we first define synthetic models given the five parameters146

that we consider in this study. This requires populating ‘sample volumes’ with grains147

in random locations and assign them a somewhat realistic magnetic moment. Then we148

calculate the map of the magnetic flux on the surface of the sample and perturb these149

maps with realistic noise. Once the sample volumes and magnetic flux map are deter-150

mined we apply the inversion routine but also produce the standard deviations associ-151
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Figure 1. The MMT workflow of one of our models containing 75,000 grains per mm3 with a

dipolar magnetization. a) Geometric overview of the model with a 200×200 µm2 sample surface

size. Each grain is assigned a color for clarity, the colors do not have further meaning. The sensor

grid is located on top of the model at z = 0. b) Original magnetic field created by the signal of

the grains and after adding noise with a level of 100 nT. c) Magnetic field produced by the signal

of grains with the inverted magnetization values. The unit of field strength in b) and c) is µT. d)

Residual field obtained by subtracting the original field in b) from the forward field based on the

inversion result in c). The unit of field strength in d) is nT.
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Table 1. Parameters changed between models. Every possible combination of parameters is

assessed in this study, resulting in 448 models. Each model is then ran 15 times to ensure statis-

tically robust results.

Parameter Unit Modeled values

Sample surface size µm2 200×200, 500×500

Sample thickness µm 50, 75

Grain density 103 grains per mm3 2.5, 5.0, 10.0, 25.0

50.0, 75.0, 100.0

Sampling interval µm 1, 2, 4, 5

Noise level nT 5, 20, 50, 100

ated with the individual magnetic moments. Lastly, we define the 95% confidence inter-152

val of magnetic moments to assess the performance of MMT as a function of the five in-153

put parameters for the models.154

2.1.1 Populating sample volumes155

To define the input of the inversions we start with a rectangular sample volume with156

a predefined, rectangular, surface size and a set sample thickness. Inside this volume a157

number of modeled iron-oxide grains are randomly placed such that they do not inter-158

sect. The number and average volume of these grains determine the modeled iron-oxide159

grain density. We modeled samples with an area of 200 × 200 and 500 × 500 µm2. The160

maximum thickness of the models was either 50 or 75 µm (Table 1). The individual grains161

used to populate the models with were taken from the actual geometries obtained from162

a microCT scan of a volcanic sample prepared from a sister sample of HW03 (de Groot163

et al., 2013; ter Maat et al., 2018; de Groot et al., 2021). This sample was obtained from164

a lava flow active in 1907 on Hawaii. The sample was drilled at an elevation of 603 m165

(±4 m) with a latitude of 19◦ 4.315’ and a longitude of 155◦ 44.314’. The sample was166

reduced to a thickness of 80 µm, after which the location and size of its magnetic grains167

were obtained with MicroCT. We populated the models with these grains until the re-168

spective grain density was reached, which is specified in Table 1. By using this range of169

grain densities, the models simulated both the low grain density of the synthetic sam-170
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ple of de Groot et al. (2018) and the high grain density of the volcanic sample of de Groot171

et al. (2021). Each grain was then placed at a random location within the model such172

that it does not intersect another grain or the boundaries of the model (Fig. 1a). To speed173

up the placing procedure of the grains in the model, we imposed that the top side of each174

grain could only be placed between the surface of the sample and 10 µm from the bot-175

tom of the sample. If the grain did not fit at the given location, we retried placing the176

grain up to a hundred times. If the grain did not fit by then, we selected at random an-177

other grain geometry and tried to fit the new grain up to a hundred times again.178

2.1.2 Assigning realistic magnetizations179

In the next step, each grain was assigned a random magnetization m = (mx, my,180

mz), where |m| denotes its magnitude. To obtain realistic magnetization values, the value181

of |m| was chosen to agree with the magnetization versus grain diameter trend for a nat-182

ural volcanic sample presented in Fig. 4D of de Groot et al. (2021). This trend is in good183

agreement to the relation between the relative magnetization as function of grain diam-184

eter in Fig. 29 of Dunlop (1990). The trend line in Fig. 4D (de Groot et al., 2021) can185

be converted to the empirical relation:186

|m| = m0 (V/V0)
α
, (1)

where V0 is the volume, and m0 the magnetic moment of a sphere with diameter 1 µm;187

α is the relation parameter, and |m| is the absolute expected magnetic moment of a grain188

with volume V . For the trend line in Fig. 4D in de Groot et al. (2021) we obtained: m0 =189

46.5 kA/m, and α = −0.355. To simulate the spread in the data points that define this190

relation, we add a perturbation to the magnetizations. To this end the magnetization191

norm |m| was multiplied by 10N(µ,σ2), where N(µ, σ) represents the Gaussian distribu-192

tion with a mean, µ, of zero and a variation, σ2, of 0.52, to produce the final magneti-193

zation norm |mf |. Hereafter, we sampled the uniform distribution U(0, 2π) to obtain the194

angle φ of the magnetization vector in the x−y-plane. The angle θ with respect to the195

z-axis was sampled from the uniform distribution U(0, π). The norm and the two an-196

gles of the magnetization vector were then transformed into the Cartesian components197

mx, my, and mz.198
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2.1.3 Calculating the magnetic flux map199

Once the particle positions and magnetizations are assigned, the grid of measure-200

ment points is defined on the surface z = 0 by summing the resulting magnetic field201

on the surface arising from all grains in the sample. The sampling interval of the mag-202

netic flux map is one of the parameters that we investigate in this study, so it is varied203

to represent different realistic sampling intervals (Table 1). The smallest sampling in-204

terval used in the analysis is 1 µm such that a measurement area of 200 × 200 µm2 con-205

tains 201 × 201 (=40,401) measurement points, and a model area of 500 × 500 µm2 con-206

tains 501 × 501 (=251,001) measurement points. The largest sampling interval is set to207

5 µm, so that the 200 × 200 µm2 surface contains 41 × 41 (=1,681) data points and the208

500 × 500 µm2 surface is limited to 101 × 101 (=10,201) data points.209

With the position of the grains and measurement points we calculate the Green’s210

matrix Q. The Green’s matrix relates the magnetic signal that each grain contributes211

to the response of the signal at the surface of the sample. The size of the Green’s ma-212

trix is dependent on the amount of grains and measurement points. If a model contains213

K grains and P measurement points, then the Green’s matrix consists of 3 × K rows214

and P columns (see Supplementary Information of de Groot et al., 2018). By combin-215

ing the magnetization of each grain ma with the Green’s matrix, the magnetic signal φ216

was obtained in a forward approach:217

φ = Qma. (2)

The magnetic signal at each measurement point is the total integrated magnetic flux from218

all modeled grains through a modeled rectangular sensor loop in the x−y-plane of the219

sample with side lengths 1 × 1 µm centered at the measurement point. To simulate the220

effect of instrumental errors introduced by a magnetometer, e, one of the four noise lev-221

els specified in Table 1 was added to the magnetic field of each model, φ̃ = φ+e. This222

adds white noise that is normally distributed with a standard deviation governed by the223

noise level and with a zero mean to the magnetic surface scan. These noise magnitudes224

are comparable to those described by Glenn et al. (2017). Now the maps of the magnetic225

flux at the surface of our models are known (Fig. 1b).226
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2.1.4 Inversion procedure227

Akin to de Groot et al. (2018), Fabian and De Groot (2019), and de Groot et al.228

(2021), we used a least-squares minimization to obtain the magnetization of individual229

grains in the sample, since the inverse problem has a larger number of magnetic flux field230

observations than unknown magnetization components, i.e. P > 3×K (Snieder & Tram-231

pert, 1999). The magnetization solution, m̂a, is given by232

m̂a = Q†φ̃, (3)

with Q† being the pseudo-inverse of Q. The calculated magnetization is used to com-233

pute the forward magnetic flux field, φ̂ (Fig. 1c). This forward field is obtained through234

matrix multiplication of the calculated magnetizations with the Green’s matrix235

φ̂ = Qm̂a. (4)

Subtracting the initial magnetic field from the forward field results in the residual mag-236

netic field (Fig. 1d).237

2.1.5 Varying the input parameters238

For each of the five input parameters we determined a range of realistic values to239

assess (Table 1). Incorporating all combinations of these five factors yields 448 differ-240

ent computational models, formed by all possible combinations of 2 sample surface ar-241

eas, 2 sample thicknesses, 7 different grain densities, 4 different sampling intervals, and242

4 different noise levels. We executed each of these models fifteen times with different ran-243

dom grain locations and dipolar magnetizations to attain enough inversion solutions for244

a stable and meaningful statistical underpinning of the results. The coarser sampling rates245

of 2, 4, and 5 µm grid spacing were simulated by sub-sampling the 1 µm grid after noise246

was added. In this way we make sure that each sampling rate uses the same noise con-247

taminated magnetic field.248

2.2 Covariance and standard deviation249

The inversion as used for MMT allows for determining the standard deviation and250

covariance associated with each solution. To assess the accuracy of the MMT results we251

define a 95% confidence interval based on bootstrapping the three orthogonal standard252

deviations for each solution that we obtain from the inversion routine. This is done such253
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that if we would repeat the inversion procedure and redraw the Gaussian noise e a hun-254

dred times, we would expect for each grain that 95 out of the 100 associated 95% con-255

fidence intervals contain the ‘true’ correct magnetization, m (Sim & Reid, 1999). The256

radius of the confidence interval gives the precision of the corresponding magnetization257

solution, where a larger radius indicates a less precise solution.258

The 95% confidence interval is constructed by means of the magnetization solutions259

m̂a and the standard deviations, σx, σy, and σz. To obtain the standard deviations, the260

covariance matrix has to be constructed first. The covariance matrix Cij is defined to261

indicate the expected relationship between two variables a and b relatively to the devi-262

ation from their expected values E[a] and E[b]. If the covariance between two magne-263

tization variables m1 and m2 is positive, and if m2 is larger than expected, then this im-264

plies that m1 will be larger than expected and vice versa. Conversely, if the covariance265

is negative and if m1 is larger than expected, then this means that m2 will be smaller266

than the expected value and vice versa. The covariance of a magnetization variable with267

itself, Cii, is always positive and indicates the squared deviation from the expected value,268

which is frequently called the squared standard deviation. To derive the standard de-269

viation per magnetization component, we first define the covariance matrix as270

C = E[(m̂a − E[ma])(m̂a − E[ma])T ]. (5)

The value E[ma] is known as the expected magnetization, which is the magnetization271

that would result from perfect magnetic flux observations without any observational noise272

E[ma] = Q†φ (6)

With the combination of equations 3 and 6, we can define m̂a as the sum of perfect ob-273

servations and instrumental errors, which is given by274

m̂a = Q†(φ + e)

= Q†φ +Q†e

= E[ma] +Q†e, (7)

with Q†e being the magnetization error. Equation (5) is simplified to275

C = E[(E[ma] +Q†e− E[ma])(E[ma] +Q†e− E[ma])T ]

= E[(Q†e)(Q†e)T ]

= E[Q†eeT (Q†)T ]. (8)
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The matrix Q† is the least squares inverse of Q, therefore it is defined as (QTQ)−1QT276

(Snieder & Trampert, 1999). The matrix is not a variable, therefore only the expected277

value of the errors of the magnetic field is left, E[eeT ]. If we assume that the errors are278

uncorrelated, then this expression is equal to the squared standard deviation times the279

unit matrix, σ2I. Note that this standard deviation is related to the expected instru-280

mental noise in the data. Implementing this new expression into equation (8) and re-281

arranging gives the final equation for calculating the covariance matrix282

C = Q†E[eeT ](Q†)T

= Q†E[eeT ]((QTQ)−1QT )T

= (σ2(QTQ)−1)T = σ2(QTQ)−1. (9)

We deduced from equation (5) that the covariance matrix is symmetric. Hence, (σ2(QTQ)−1)T283

is the same as σ2(QTQ)−1. The inverse of the matrix QTQ exists, because the problem284

is well posed (Fabian & De Groot, 2019). The squared standard deviations of the assigned285

magnetizations are now found on the main diagonal of the σ2(QTQ)−1 matrix. The root286

of the main diagonal therefore gives the standard deviations of the assigned magnetiza-287

tions, per x, y, z-component.288

2.3 Coordinate transformations289

To simplify the description of the 95% confidence interval, that is constructed by290

twice the standard deviation as obtained above, we change the coordinate system from291

Cartesian to spherical. Therefore, we converted the magnetization vector from the Carte-292

sian frame to the spherical frame, where293

1. the norm, |m|, is given by
√
m2
x +m2

y +m2
z,294

2. the angle with respect to the x-axis in the xy-plane, φ, is given by tan−1(my/mx),295

3. and the angle with respect to the z-axis, θ, is given by cos−1(mz/
√
m2
x +m2

y).296

It is complicated to transform the standard deviation describing a Gaussian dis-297

tribution on the three axes of the Cartesian coordinate frame to a corresponding distri-298

bution in spherical coordinates in an analytical way. However, this difficulty can be cir-299

cumvented numerically by bootstrapping the magnetization vector (Fig. 2). The mean300

magnetization vector is bootstrapped 10,000 times by drawing samples from a multivari-301

ate normal distribution based on both the mean magnetization vector and the complete302
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Figure 2. The construction of the uncertainty ratio. The standard deviations in the x, y, and

z-directions (σx, σy, and σz, respectively) are bootstrapped to generate a set of 10,000 possible

magnetization vectors around mean magnetization vector m. The radius of a sphere containing

9,500 of the end-points of these vectors is defined as the 95% confidence sphere with radius r.

The length of the magnetization vector |m| and r are then used to define the uncertainty ratio of

a solution.
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covariance matrix. These samples are used to construct difference vectors, which rep-303

resent the difference between the bootstrapped vectors and the mean magnetization vec-304

tor in the Cartesian frame. The norms of these vectors are sorted in ascending order and305

the 9,500th norm value is used as radius, r, for a 95% confidence sphere. Note that we306

have implicitly assumed that the bootstrapped magnetization vectors are Fisherian dis-307

tributed, which means that the deviation from the mean is the same in every direction308

(Fisher, 1953). However, this is not necessarily true, because the standard deviation in309

the Cartesian coordinate frame is not equal in the x, y, and z direction. The real dis-310

tribution is therefore probably more similar to an elliptic Kent distribution (Kent, 1982).311

On the other hand, the downside of parametrizing the Kent distribution is that it is nec-312

essary to use three parameters to describe an ellipsoid. Nevertheless, the dimension (|m|,313

θ, or φ) in which the uncertainty is mainly concentrated is not important, because if the314

uncertainty in one dimension turns out to be too large, then the magnetization of the315

grain cannot be used even if the other two dimensions have small uncertainties. For that316

reason we assume a Fisherian distribution, which can be visually represented by a 95%317

confidence sphere around the mean magnetization vector.318

The radius of the confidence sphere is an absolute measure. This makes it difficult319

to compare the magnetization uncertainties of grains with different mean magnetizations.320

We therefore define the uncertainty ratio as the radius of the 95% confidence sphere, r,321

as fraction of the mean magnetization vector |m| (Fig. 2):322

uncertainty ratio =
r

|m|
× 100%. (10)

2.4 Signal strength ratio323

The performance of the MMT technique depends on how well the magnetic mo-324

ment of an individual grain is expressed in the magnetic flux map on the surface of the325

grain. To assess the potential maximum contribution to the magnetic flux on the sur-326

face of the sample arising from an individual grain Cortés-Ortuño et al. (2021) defined327

the V/R3 ratio. This property is dependent on the distance of the grain to the scanning328

surface, R, and the volume of the grain, V , (see Appendix of de Groot et al., 2018). Un-329

fortunately, the V/R3 ratio does not account for the magnetization of grains as function330

of their volume. Smaller SD to PSD grains have on average stronger magnetizations than331

larger MD grains (Dunlop, 1990; de Groot et al., 2018). To improve the V/R3 ratio we332
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Figure 3. a) Relation between grain depth and grain volume as a function of SSR. b) Re-

versed cumulative SSR distribution for a 50 and 75 µm thick sample based on grains of the

volcanic sample of de Groot et al. (2013). This panels shows, for example, that 70% of the grains

in a modeled sample with a thickness of 75 µm have a SSR larger than 2.3×10−4, as indicated by

the red dotted lines.

used the relation between grain diameter and magnetization as described in equation (1)333

and defined the signal strength ratio, SSR:334

SSR :=
V

R3d
=
πd2

6R3
=

3
√

4πV 2

2 3
√

3R3
, (11)

with d the diameter of the grain in µm, assuming that the volume of the grain is shaped335

like a sphere. de Groot et al. (2021) related the magnetization to the volume of the grains,336

so the grain’s shapes are not taken into account. Fig. 3A shows the effect of the signal337

strength. It shows that, although smaller grains are now parametrized to produce a stronger338

signal, larger signal strengths are still linked to predominantly larger grain volumes.339

The cumulative distribution of the SSR per model is shown in Fig. 3b. All mod-340

els use the same randomly selected grains from the volcanic sample, therefore, we only341

distinguished a SSR distribution for the 50 and 75 µm thick samples, since the thick-342

ness of the sample is the only factor influencing the SSR distribution. Because the 75343

µm sample contains deeper grains, the minimum SSR for those models is lower than for344

50 µm thick models. This trend is also shown by the median SSR, which indicates that345

approximately 70% of the grains in a 75 µm thick model have a SSR of at least 2.3×346

10−4. This SSR is obtained, for example, for a grain with a volume of 10 µm3 at a depth347

of 25 µm. On the other hand, 70% of the grains in a 50 µm thick model have a SSR larger348
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than 9.8 × 10−4. A grain with this SSR and a volume of 10 µm3 would be located at349

a depth of 16 µm.350

3 Results351

First, we present the influence from sample surface size, sample thickness, grain den-352

sity, noise level, and sampling interval on the uncertainty ratio of the obtained magne-353

tizations. Thereafter we will focus on individual magnetization solution, where we in-354

spect the minimally needed SSR to produce magnetization results with an acceptable355

uncertainty ratio.356

3.1 Uncertainty ratio357

3.1.1 Grain density358

After running and combining results of all fifteen iterations per model, the sizes359

of all uncertainty ratios are sorted per noise level and summarized in Fig. 4 for the 200×200360

and 500×500 µm2 sample surface sizes. We indicate an uncertainty ratio of 10% as a ref-361

erence size in the panels of this figure, because it is the largest uncertainty value still con-362

sidered low (e.g., Berndt et al., 2016). A 10% uncertainty ratio means that 9,500 of the363

10,000 bootstrapped vectors are located within a sphere which has a radius of 10% of364

the norm of the mean magnetization vector.365

For the samples with a surface size of 500 × 500 µm and a thickness of 50 µm we366

observe an exponential increase in uncertainty ratio (Fig. 4e-f). Grain densities smaller367

than or equal to 104 grains per mm3 are frequently associated with small uncertainty368

ratios (<10%), which means that most grains in these distributions are relatively well369

solved. For grain density levels larger than 25×103 grains per mm3, uncertainty ratios370

of some grains exceed 100%. Note that these large uncertainties are already retrieved371

for a scan surface resolution of 1 µm. These large uncertainties potentially mean that372

some grains in volcanic samples, which have similar grain densities, cannot be resolved373

well. Fig. 4e shows, however, that the large uncertainty ratios are only obtained for a374

quarter of the grains with these high grain densities. More than half of the grains still375

have uncertainty ratios smaller than 1% for the best-case scenario (i.e. instrumental noise376

of 5 nT, sampling interval of 1 µm). Therefore, most grains can be well solved with a377

sufficiently small uncertainty.378
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3.1.2 Noise level379

Increasing the noise level from 5 to 100 nT results in an overall increase of all un-380

certainty ratios between one and two orders magnitude (Fig. 4e). These larger uncer-381

tainties are expected, because a larger noise level directly increases the standard devi-382

ation of the solution through the covariance matrix (see equation 9). The median con-383

fidence interval for the highest grain density increases from 0.5% to 10% for a noise level384

of respectively 5 and 100 nT and the smallest sampling interval, but the median uncer-385

tainty ratio for the lowest grain density increases only from 0.01% to about 1%. This shows386

that the noise level has more influence on the total validity of a high grain density so-387

lution than on a low grain density solution, although this trend is partly obscured by the388

log scale in the figures.389

3.1.3 Sampling interval390

The sampling interval has an exponential effect on the uncertainty ratio, which looks391

in similar to an intensification of the noise level (Fig. 4e-f). Nevertheless, the increase392

becomes stagnant between a sampling interval of 4 and 5 µm, but is amplified between393

a sampling interval of 1 and 2 µm or 2 and 4 µm (Fig. S1a-d in Supplementary Infor-394

mation). This property can be attributed to the relatively smaller decrease in the num-395

ber of surface magnetic scan points because the amount of points lowers by only 36%396

when reducing the sampling rate from 4 to 5 µm, yet the amount of points lowers by 75%397

when reducing the sampling interval from 1 to 2, or from 2 to 4 µm.398

The effect of a decreasing sampling rate on the solution uncertainty shows that the399

increase in uncertainty ratio becomes progressively larger for increasing grain density.400

Additionally, the combination of elevated noise levels and coarser sampling rates results401

in median uncertainty ratios over 10% for the largest grain density (Figure 4f). This makes402

a majority of the grains in such samples difficult to use in subsequent interpretation stages,403

as the uncertainty increases substantially.404

3.1.4 Sample thickness405

Sample thickness is a major factor that influences the uncertainty ratio. A com-406

parison of panels e against g, and f against h of Fig. 4 shows that for every noise level407

and sampling interval scenario, the median uncertainty ratios of a majority of grains in-408
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Figure 4. Box-plots showing the distribution of the uncertainty ratio as a function of grain

density. The set of panels a-d show results for a 200×200 µm2 sample surface and the set of pan-

els e-h show results for a 500×500 µm2 sample surface. Each of the four box-plots per panel per

grain density correspond from left to right to one of the four noise levels, respectively 5, 20, 50,

and 100 nT. The top panels of each set (a-b and e-f) refer to a 50 µm thick sample. The bottom

panels of each set (c-d and g-h) refer to a sample with a thickness of 75 µm. The first column of

panels is constructed with a sampling interval of 1 µm and the second column is constructed with

a sampling interval of 5 µm.
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crease more than one order of magnitude when increasing the sample thickness from 50409

to 75 µm. The interquartile range for a grain density of 25×103 grains per mm3 is be-410

low 10% for a 50 µm sample, but for a 75 µm sample this range is partly exceeding the411

10% already for all sampling intervals. For the high grain density samples (> 25×103412

grains per mm3) the effect of a higher sample thickness is more severe, because more than413

half of their grains have a confidence sphere size of ≥10%. However, low grain density414

samples (< 25×103 grains per mm3) still have a majority of grains with an uncertainty415

ratio <10% for every combination of noise level and sampling interval.416

The interquartile range in Fig. 4g-h shows an interesting trend when increasing grain417

density, sampling interval, noise level, and sample thickness. We expect that letting these418

parameters increase should cause the uncertainty ratio distribution to rise progressively.419

However, the interquartile range of the confidence interval does not increase, but stag-420

nates when reaching a size of approximately 200%. Fig. 4g-h shows that the maximum421

uncertainty ratio can become higher than 200%, but the level does not increase anymore422

when the interquartile range stagnates at 200%. Moreover, after reevaluating the uncer-423

tainty ratios for the higher grain densities of the 50 µm sample (Fig. 4e-f), we observe424

that the maximum confidence interval of the thinner sample stagnates as well when ap-425

proaching large uncertainties. This might mean that grains do not become progressively426

worse to solve, but we should not rule out other factors, such as the geometrical conse-427

quence of introducing the confidence sphere.428

3.1.5 Sample surface size429

The effect of the sample surface size is small compared to sample thickness. A com-430

parison of the panels a-d and e-h of Fig. 4 indicates that the interquartile range of un-431

certainty ratios of the 75 µm samples of both domain sizes are very similar. The low-432

est grain densities of the 75 µm sample show somewhat lower and less scattered uncer-433

tainty ratios for the 200 × 200 µm2 sample surface size than for the same sample in the434

500 × 500 µm2 sample surface. The uncertainty ratio distribution for the larger grain435

densities of both sample surfaces is on average the same. It is therefore reasonable to as-436

sume that the surface area of the sample does not play a major role in determining cor-437

rect grain magnetizations for most grain densities, but only influences the amount of com-438

putational power to solve the inversion, since many more grains and data points in the439

magnetic surface scan are present.440
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Figure 5. Resolved SSR plotted against grain density for different uncertainty ratios for the

500×500 µm2 sample surface. The top row of panels is obtained for a sample thickness of 50 µm.

The bottom row of panels is based on a sample thickness of 75 µm. Panels a and c represent

results for a noise level of 5 nT and sampling interval of 1 µm. Panels b and d show results for a

noise level of 100 nT and sampling interval of 5 µm. Each panel contains five lines corresponding

to different uncertainty ratios, namely, 1% (circle), 3% (upper base triangle), 5% (lower base tri-

angle), 10% (cross), and 20% (star). The red dotted lines in panel a and b represent an example

described in section 3.2, which shows that the SSR increases from 7 × 10−5 to 10−2 when exper-

imental conditions deteriorate for a sample with a grain density of 104 grains per mm3 and 10%

uncertainty ratio. These signal strengths corresponds to, e.g., solving a 10 µm3 grains at a depth

of 38 and 7 µm, respectively.
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3.2 Signal strength ratio441

Up to this point the distribution of the uncertainty ratios for combinations of dif-442

ferent grain densities, noise levels, sampling intervals, sample thicknesses, and sample443

surface sizes have been assessed. From the results we observe that for samples with high444

uncertainty (e.g. 75 µm thickness and high grain density) it is possible to find small groups445

of grains with very low uncertainty ratios (< 10%). To determine which grains in a cer-446

tain model produce acceptable uncertainties, we assess the SSRs as function of the un-447

certainty ratios of the magnetizations. In Fig. 5 the minimally needed SSR to solve the448

magnetization of a grain with a certain uncertainty ratio is plotted as function of grain449

density in the models with a sample surface size of 500×500 µm2. Each panel in the fig-450

ure contains five uncertainty ratios, namely, 1%, 3%, 5%, 10%, and 20%.451

The panels a-b of Fig. 5 show that up to a grain density of 104 grains per mm3 in452

a sample with a thickness of 50 µm, SSRs of 7×10−5 can be solved within uncertainty453

ratios as small as 10% for a low noise level and a high sampling resolution. This means,454

for example, that grains with a volume of 10 µm3 can be solved with an uncertainty ra-455

tio of at least 10% at a maximum depth of 38 µm. However, for the worst possible con-456

ditions, i.e. a noise level of 100 nT and a sampling rate of 5 µm, only grains with a SSR457

of 10−2 can be solved at 10% uncertainty ratio, which corresponds to solving a 10 µm3
458

volume grain at 7 µm depth. According to Fig. 3b, about 35% of the grains have a SSR459

equal to or larger than 10−2.460

The minimal SSR that can be resolved is rising quickly for grain densities higher461

than 104 grains per mm3. For the largest grain density and best-case scenario, i.e. a noise462

level of 5 nT and a sampling rate of 1 µm, SSRs larger than 2×10−2 can be solved within463

an uncertainty ratio of 10%. This SSR corresponds to solving about 25% of total amount464

of grains in such sample. For example, a grain with a volume of 10 µm3 can only be solved465

at a depth of 5.7 µm or less. In a worst-case scenario grains with a SSR larger than 7×466

100 can be solved for the same grain density and uncertainty ratio. For this scenario, only467

grains at the sample surface produce a SSR large enough to be properly solved.468

The sample thickness is again a major factor determining the minimally needed SSR469

to solve grains for a given uncertainty ratio as shown by the panels c-d of Fig. 5. Espe-470

cially the influence on small grain densities for the lowest noise levels and sampling in-471

tervals is large. The smallest grain density of 2.5×103 grains per mm3 can only be com-472
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pletely solved for an uncertainty ratio of at least 20%. Furthermore, the larger grain den-473

sities contain few grains that can be solved for the highest noise level and sampling in-474

terval. Nevertheless, comparing panels a-b against c-d in Fig. 5 shows that the minimum475

SSR for the same noise level and sampling interval scenario does not change significantly.476

This means that a thicker sample does not increase the minimally needed SSR to solve477

a grain for a given uncertainty ratio, implying that shallow grains are not solved worse478

due to distortion of the weak signal of deep grains. The reason for solving less grains in479

thicker samples is, therefore, that less grains have the minimally needed SSR, caused by480

a changed SSR distribution due to the deeper grains as shown by Fig. 3b.481

Decreasing the sample surface size causes a minor drop in minimal resolved SSR482

for both sample thicknesses (see Supplementary Figs. S5 and S6). The SSR of smaller483

grain densities decreased the most. This decrease in SSR makes it more likely for sam-484

ples with grain densities up to 104 grains per mm3 to obtain confidence sphere sizes lower485

than 10%, even for high noise levels and coarse sampling rate. Additionally, the effect486

of a smaller sample surface size for the 75 µm sample is similar to the 50 µm sample.487

4 Discussion488

4.1 Parameter impact on uncertainty489

We set up a range of numerical models to investigate the responses of grain den-490

sity, sampling interval, noise level, sample surface size, and sample thickness on the un-491

certainty of magnetization solutions. Additionally, we assess which combinations of depth492

and grain size provide stable results given the changing initial conditions. The overall493

results indicate that the quality of the solutions is highly dependent on grain density in494

the sample. The grain density directly increases the amount of variables in the inversion,495

which leads to an increase in condition number and, therefore, in uncertainties. The grain496

density enlarges the uncertainty ratio distribution up to four orders of magnitude from497

the best to the worst case scenario in our models. The uncertainty ratio raises rapidly498

for grain densities larger than 10× 103 grains per mm3, but the larger grain densities499

still contain a many grains for which we can obtain a solution with an uncertainty ra-500

tio of just 1%.501

The effect of noise level and sampling interval on magnetization uncertainty is sim-502

ilar, because they both affect the uncertainty ratio with an increase of up to two orders503
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of magnitude. Compared to the influence of grain density, however, we perceive the ef-504

fect of noise level and sampling rate to be less severe over the magnetization uncertainty.505

The noise level does not have a significant influence because the surface magnetic field506

has, on average, a strength in the order of 10−6 to 10−3 T, which is many times larger507

than the largest realistic noise level of 100 nT (Glenn et al., 2017). In the case of sam-508

pling interval, its limited influence can be attributed to the vastly overdetermined in-509

version system, considering that the system contains at least twice as many knowns than510

unknowns. Moreover, these two parameters can be directly controlled during the exper-511

imental set-up, hence the noise level and sampling interval can be further minimized when512

needed.513

The sample surface size has the smallest effect on the magnetization uncertainty514

of all parameters tested here, because it does not change the ratio of known magnetic515

field data and unknown magnetization variables in the inversion. Nevertheless, results516

show that the smallest grain densities obtain slightly better solutions in smaller domain517

areas, which can only be attributed to the presence of less unknown magnetization vari-518

ables in the corresponding inversion.519

Sample thickness has a major influence on magnetization uncertainty; the uncer-520

tainty can rise up to two orders of magnitude by increasing the sample thickness from521

50 to 75 µm. This rise is partly caused by the SSR that quickly becomes lower for the522

additional deeper grains in the thicker sample (see Fig. 3b). We suggest, therefore, that523

in the process of sample preparation care should be taken to make the sample as thin524

as possible. Additionally, the distance between sample and sensor should be as small as525

possible to retrieve the strongest possible signals. This combined leads to relatively high526

SSRs, resulting into signals that are well visible above the noise.527

4.2 Uncertainties in previous MMT studies528

In the study of de Groot et al. (2018) MMT was used for the first time to success-529

fully obtain individual magnetizations while making use of scanning superconducting quan-530

tum interference device microscopy. They inverted magnetic signals from three subdo-531

mains in a synthetically created sample with low grain density, but without providing532

confidence limits for the solutions. The accuracy of the obtained magnetization solutions533
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is hence unknown. With the results obtained here, the uncertainties of these magneti-534

zation solutions can finally be estimated.535

The study focused on solving the magnetization of grains in three subdomains with536

an average area of 300×300 µm2, a thickness of 50 µm, and an average grain density close537

to 2500 grains per mm3. The sampling interval is 1 µm and the height of the SSM sen-538

sor above the samples is 1-2 µm. The noise level of the magnetic field produced by SSM539

is estimated to be much lower than 5 nT, although positional noise can further increase540

the noise level (Weiss et al., 2007; Lee et al., 2004). We combined the provided informa-541

tion with the newly acquired results of section 4.1. Based on the assumption that we ap-542

proximately have a 200×200 µm2 sample surface with a thickness of 50 µm for compat-543

ibility, we conclude that the uncertainty ratios of the grains in the study were much smaller544

than 1% (see Fig. 4a). In the extreme case that positional noise would increase the noise545

level to an unrealistically high level of 100 nT, grains with a SSR larger 3.7×10−4 could546

still be solved with uncertainty ratios of 1%, which is about 90% of the total amount of547

grains (see Supplementary Information Fig. S5d). The effect of the additional distance548

of 1-2 µm between sample and scanning sensor is not significant, considering that the549

comparison of panels a and c of Fig. 5 show almost no difference in the minimally needed550

signal strength to solve a grain with an uncertainty ratio of 1% for a density of 2500 grains551

per mm3. In conclusion, the magnetization results in de Groot et al. (2018) were obtained552

with high precision, although to achieve the best possible results special care should be553

taken to reduce the distance between sample and sensor as much as possible.554

4.3 Convergence of model results555

Although the models have been iterated fifteen times, variations caused by model556

specific configurations can still persist in the obtained uncertainty ratios and distribu-557

tion or SSRs. The uncertainties in the uncertainty ratio distribution (Fig. 4) have been558

estimated by comparing the change in cumulative uncertainty ratio distribution each time559

after a model has been run. The change in median declines, on average, from 80% af-560

ter two iterations to less than 5% after fifteen iterations. Extending the amount of it-561

erations appears to have no effect, as the average deviation remains around 5% and does562

not show a declining trend. The lowest grain densities show the highest deviations in me-563

dian uncertainty ratio of up to 15%, probably because the confidence interval is aver-564

aged over less grains compared to denser samples.565
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Dense samples show an uncertainty ratio distribution which plateaus when reach-566

ing percentages larger than 200% (e.g. for grain densities larger than 104 grains/mm3
567

in Fig. 4g-h). We hypothesize that this stagnant behaviour is caused by the geometry568

of the confidence sphere itself, because we have confirmed that the uncertainty in the569

Cartesian frame (σx, σy, and σz) does not stagnate. Additionally, we verified that the570

magnetization vector has been bootstrapped sufficiently to obtain a 95% confidence sphere,571

because the change in uncertainty ratios between two iterations is about 0.1% after 10,000572

iterations. Excluding these two factors, it seems that the formation of the confidence sphere573

itself is responsible for the plateau in uncertainty ratio. Nevertheless, the stagnation of574

the uncertainty ratio distribution has no major effects on the results, because it occurs575

at uncertainty levels over 200%. Evidently, all grains associated with such high levels of576

uncertainty are not to be used in a next interpretation stage.577

The SSR distribution exhibits deviations of a quarter of a log scale after fifteen it-578

erations for most sampling intervals, noise levels, and sample thicknesses. The SSR as-579

sociated with the lowest grain densities changes up to half an order in magnitude, con-580

trary to denser samples that change on average less than a quarter of an order magni-581

tude. Similarly to the uncertainty ratio distribution, lower grain densities have more dif-582

ficulty to produce a constant signal strength average over the model iterations, because583

they have less grains to cover all positions in the model within fifteen iterations. It is584

possible that increasing the number of iterations of the model can improve the conver-585

gence of the SSRs of grains with lower grain densities. On the other hand, low grain den-586

sities have on average a lower minimal SSR and initially a higher percentage grains that587

pass the uncertainty ratio. Therefore, an error of a quarter of magnitude that is intro-588

duced here will not increase the uncertainty ratio of the majority of the grains such that589

they become unusable for further analysis. The estimated errors for the higher grain den-590

sities, likewise, have little effect on the percentage of grains that can be solved, because591

the potential raise in minimally needed SSR will only result in the rejection of a very small592

percentage of grains (see Fig. 5).593

4.4 Setting a SSR threshold594

The SSR is a powerful statistic to quickly discriminate between grains that are re-595

solved well by the MMT inversion and grains that are not properly resolved. For each596

MMT inversion it is important to set a useful threshold for the SSR for the specific pur-597
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Figure 6. Using the SSR to select subsets of grains with accurately resolved magnetizations

for our models with a grain density of 105 grains per mm3, sampling interval of 1 µm, and noise

level of 5 nT for a 500 × 500 × 50 µm sample surface. The grains are colored according to their

uncertainty ratio. Four different SSRs select 99.9, 99.0, 95.0, and 90.0% of the grains with an

uncertainty ratio of maximum 10%.

pose of a study. This threshold depends on the five parameters of the inversions as stud-598

ied here, and on the required accuracy of the accepted magnetizations. The SSR thresh-599

old needs to be balanced between rejecting grains with an accurate solution that do not600

meet the SSR criterion and including grains that do fulfil the SSR requirements, but are601

not properly resolved by the inversion. In Fig. 6 we illustrate this based on all grains602

in the models with dimensions 500×500×50 µm, a grain density of 105 grains per mm3,603

sampling interval in the magnetic scan of 1 µm, and a magnetic noise level of 5 nT. We604

once again accept a magnetization solution as accurate if the uncertainty ratio is <10%.605

In total there are 18,750 grains in these models, of which 15,301 grains have uncertainty606

ratios <10%; they would ideally be selected as the accurate subset of grains. We deter-607

mined SSRs to select sets of grains for which 90.0, 95.0, 99.0, and 99.9% of all accepted608

grains have an uncertainty ratio <10%. When 99.9% of the grains in the subset must609

fulfill the uncertainty ratio criterion, 6,565 grains are selected using a SSR of 8.6×10−3,610

i.e. only 42.9% of the desired grains are selected. When 1% of the grains are allowed to611

violate the uncertainty ratio criterion, the number of grains in the subset increases to612
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9,342, but 93 of these violate the uncertainty ratio criterion, so 58.0% of the desired grains613

are recovered by the SSR of 3.4×10−3. For the case where 5% of the grains is allowed614

to have an uncertainty ratio >10%, the SSR of 7.3×10−4 accepts 13,863 grains. This im-615

plies that although there are 693 grains in this subset that violate the uncertainty ra-616

tio criterion, 86.1% of all desired grains are accepted. When 10% badly resolved grains617

are accepted, 16,289 grains pass the SSR selection of 2.8×10−4, and 95.8% of all prop-618

erly resolved grains pass, although also 1,629 grains that violate the uncertainty ratio619

criterion are accepted as well.620

The SSR to select a set of accurately resolved grains can be estimated for inver-621

sions with different parameters by running computational models with these specific sam-622

ple dimensions and magnetic scan parameters. Running these additional computational623

models to determine the best SSR for a specific MMT inversion and purpose of course624

takes some time, but it is currently the only way to select the most reliable subset of grains625

after an inversion in a objective way. Moreover, these computational models can also be626

analyzed before the actual MMT experiments are done based on the parameters that are627

difficult to control during the experiments (e.g. the grain density of the sample). This628

can help to determine to optimal sample dimensions and boundary conditions for the629

magnetic surface scans for the MMT experiments.630

4.5 Limitations and future research631

This modeling study is the first attempt to quantify errors associated with indi-632

vidual magnetization solutions as produced by MMT. We have made, therefore, some633

simplifying assumptions. First of all, we assumed dipolar magnetization sources for all634

grains. Most natural grains will not have a dipolar magnetization structure, but a more635

complex magnetic structure best represented by a multipolar approximation (Butler, 1992;636

Cortés-Ortuño et al., 2021). The multipolar magnetization of grains could introduce ad-637

ditional uncertainties in the inversion, since the sensitivity to noise of quadrupole, oc-638

tupole, and higher order magnetization terms is currently unknown. If this sensitivity639

is negligible, then the results we have derived here would still be valid. However, results640

from Cortés-Ortuño et al. (2021) show that this assumption is probably not valid, since641

they showed that the solved magnetization changes when multipole terms are added to642

the calculation. Also the amount of variables to solve per grain increases when solving643

for multipole terms, while the amount of data points in the magnetic surface scan does644
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not increase. Therefore, it would be worthwhile to investigate the sensitivity of these higher645

order multipole terms to noise, and to study the effect of adding these higher order terms646

on the uncertainty of the total solution. Fortunately, the magnetic response of multi-domain647

grains quickly declines with increasing depth, hence we would solely need to model multi-648

domain grains until a depth of 10 to 20 µm (Cortés-Ortuño et al., 2021).649

Furthermore, we assumed that the noise in the magnetic field scan is Gaussian dis-650

tributed. This assumption is incorrect for natural samples for a couple of reasons. First651

of all, most grains have a complex multi-domain magnetization structure, but they are652

solved as if they were in a dipolar state. This means that residuals caused by unsolved653

higher order magnetic moments will introduce correlated noise to the magnetic surface654

field. Another source of correlated noise is caused by missing grains or missing parts of655

grains in the microCT analysis, because the magnetization of these non-inverted parts656

still has an expression in the surface magnetic field. The influence of the magnetic field657

expression of non-identified grains on the magnetization solution of other scanned grains658

is still under research. There is a possibility that the solutions of other grains change if659

we miss grains that were originally responsible for large signals at the magnetic surface660

scan.661

A third problem that persists within MMT is the limited amount of grains we can662

invert for at once. Computationally, we can now run an MMT inversion for a sample of663

500×500×75 µm and a grain density of 105 grains per mm3. This requires a compu-664

tational system with 52 cores and 192 GB of RAM, which enables us to invert for almost665

2000 grains at once. Currently, the main limitation for the inversion of larger samples666

is the RAM capacity of the machine. The RAM requirements can be lowered in the fu-667

ture with further optimizations to the numerical code. Alternatively, it is also possible668

to reduce the resolution of the scanning grid or reduce the amount of variables by group-669

ing grains when solutions, according to the covariance matrix, are strongly correlated670

and consequently have a high individual uncertainty ratio. Although this does not de-671

crease the number of data points at the surface, the magnetization uncertainty of the672

grouped grains is improved and the amount of variables is reduced. Another option is673

to invert smaller subdomain regions that can be handled by the computational system.674

Nonetheless, problems will arise in consistency of the magnetization solution of grains675

near the boundaries of the subdomains, because the subdomains are likely magnetically676

joint, thereby violating the assumption of magnetic independent regions (Fabian & De Groot,677
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2019). Nevertheless, the inner grains of the subdomains might still have reliable solu-678

tions as long as sufficient information on their produced magnetic surface field is avail-679

able in the subdomain. Another option is to use a thicker sample, which will immedi-680

ately increase the number of grains without changing the amount of data points in the681

magnetic surface scan. However, we have shown that increasing the sample thickness leads682

to a significant increase in uncertainty ratio, because the deeper grains have an insuf-683

ficient signal strength to be noticeable at the surface.684

5 Conclusions685

In this study we have acquired a first order estimation of the uncertainties of in-686

dividual magnetization solutions using MMT. With the help of numerical models we showed687

that grain density and sample thickness are the major factors influencing the mathemat-688

ical uncertainty of the magnetization solutions. It is therefore important to make the sam-689

ple as thin as possible, since the grain density of a sample is often not controlled. Noise690

level and sampling interval are of secondary importance, because these parameters are691

controllable during experiments. Moreover, realistic noise levels are very low, and the692

least squares inversion is vastly over-determined. The sample surface size minimally in-693

fluences the magnetization results and should only be decreased when the size of the sur-694

face magnetic scan leads to overflowing computer memory. It is therefore still difficult695

to solve for enough grains to obtain a reliable paleointensity or paleodirection. More grains696

can be solved for by computationally dividing the sample in subdomains to enable the697

system to solve larger inversion systems. The effects of this procedure on the solution698

is a topic of ongoing research.699

Using the SSR as defined in this study helps to identify individual grains with an700

accurate magnetic solution as indicated by a low uncertainty ratio, even when a specific701

combination of the investigated parameters (grain density, noise level, sampling inter-702

val, sample surface size, and sample thickness) pose a challenge to the MMT inversion.703

The SSR is based on volume and depth of a grain, hence it is not necessary to rerun the704

manetization inversion to obtain individual uncertainty levels through the covariance ma-705

trix. The thresholds for the SSR obtained in this study can, therefore, be applied to other706

MMT studies that involve the same inversion procedure. In this way we can extract in-707

dividual well-resolved grains from overall challenging samples and obtain an accurate mag-708

netization solution form only those grains.709

–30–



manuscript submitted to Geochemistry, Geophysics, Geosystems

We verified that the results for uncertainty ratio distribution and SSR converge within710

fifteen model iterations. Nevertheless, the stability of magnetization results could be fur-711

ther influenced by other sources of correlated noise, such as undetected grains in the mi-712

croCT scan or incorrectly solving shallow multi-domain grains using the dipole assump-713

tion. The first two sources of errors are difficult to control and model, but the multi-domain714

grains could be solved with the multipole method of Cortés-Ortuño et al. (2021). In this715

context, modelling shallow grains with higher order magnetizations will allow to observe716

the effect of higher order terms on the uncertainty of the individual magnetization so-717

lutions in a future study. In summary, by analyzing the effect of five strongly influenc-718

ing parameters in MMT experiments we have provided a first framework to quantify the719

uncertainties of the magnetization solutions of natural magnetic grain samples. Conse-720

quently, these results can be applied to further paleomagnetic studies to determine the721

accuracy of obtained natural remanent magnetizations and to individually select reliable722

grains from bad samples.723
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