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This supporting information provides details on the calculation of radial conductive profiles of 10 

temperature and heat flux for a mixed-heated system (section S1 and Table S1), and on the 11 

trends predicted by scaling laws for interior temperature and surface heat flux (section S2 and 12 

Figures S1 and S2). It further describes the methods used to calculate the ice shell properties 13 

(heat flux, interior temperature, and stagnant lid thickness ; section S3 and Figures S3 to S5) 14 

and the thermal evolution of this shell (section S4 and Figures S6 and S7). Our modelling is 15 

mostly similar to that used in Deschamps (2021). Major differences are the treatments of the 16 

interior temperature and stagnant lid thickness.  17 

 18 

S1. Temperature and heat flux profiles for stagnant lids in 19 

mixed-heated systems 20 

S1.1 Temperature and heat flux profiles in conductive mixed-heated systems    21 

Radial profiles of temperature and heat flux for a purely conductive system with internal heat 22 

production may be obtained by integrating the heat equation, which writes 23 

  
𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝜌̅𝐻 = 0  (S1) 24 

in Cartesian geometry, and 25 
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) + 𝜌̅𝐻 = 0   (S2) 26 

in spherical geometry, where T is the temperature, z (in Eq. S1) the depth, r (in Eq. S2) the 27 

radius, k the thermal conductivity,  𝜌̅ the density and H the heating rate per unit of mass. 28 

Considering that k,  𝜌̅ and H are constant throughout the system, and taking surface and bottom 29 
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temperatures, Tsurf and Tbot, as boundary conditions, integrations of Eqs. (S1) and (S2) lead to 30 

the expressions listed in Table S1 for the temperature and heat flux profiles. Note that in 31 

Cartesian geometry, D is the thickness of the domain, and in spherical geometry, R and rc are 32 

the total and core radii, 𝑓 = 𝑟𝑐 𝑅⁄  the ratio between these radii, and 𝐷 = (𝑅 − 𝑟𝑐), again, the 33 

thickness of the conductive layer. Expressions for radial profiles of heat flux (also listed in 34 

Table S1) are obtained by derivating the radial profiles for temperature with respect to either z 35 

in Cartesian geometry, or r in spherical geometry. In this later case, one may recall that the heat 36 

flux is defined as the opposite of the temperature derivative with respect to radius. 37 

  In the case of the outer shells of icy bodies, the bottom temperature is known from the 38 

liquidus at the bottom of the ice shell. Instead of using Tbot as boundary condition, one may use 39 

the surface heat flux, surf. This surface heat flux is given by   40 

  Φ𝑠𝑢𝑟𝑓 = 𝑘
∆𝑇

𝐷
+

𝜌̅𝐻𝐷

2
         (S3) 41 

in Cartesian geometry (z = 0), and, noting that (2 − 𝑓 − 𝑓2) = (1 − 𝑓)(2 + 𝑓)  and 𝑅 =42 

𝐷 (1 − 𝑓)⁄ , by 43 

  Φ𝑠𝑢𝑟𝑓 = 𝑘
∆𝑇

𝐷
𝑓 +

𝜌̅𝐻𝐷

6
(2 + 𝑓) ,       (S4) 44 

in spherical geometry (r = R). Temperature profiles then write 45 

  𝑇(𝑧) = 𝑇𝑠𝑢𝑟𝑓 + 𝑧
Φ𝑠𝑢𝑟𝑓

𝑘
−

𝜌̅𝐻𝑧2

2𝑘
 ,       (S5) 46 

in Cartesian geometry, and 47 

  𝑇(𝑟) = 𝑇𝑠𝑢𝑟𝑓 −
Φ𝑠𝑢𝑟𝑓

𝑘
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𝑟
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𝜌̅𝐻𝑅2

6𝑘
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𝑟
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𝑅2)]   (S6) 48 

in spherical geometry. 49 

 50 

S1.2 Application to stagnant lids 51 

Depending on whether the bottom temperature, Tbot, or the surface heat flux, surf, is known or 52 

easier to access, either expressions in Table S1 or Eqs. (S5) and (S6) may be used to describe 53 
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temperature profiles within conductive systems or conductive layers. These equations may, in 54 

particular be used to infer the thermal profile within the rigid lid that forms at the top of a system 55 

animated with stagnant-lid convection (section 3.2), which writes  56 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 + 𝑧
Φ𝑠𝑢𝑟𝑓

𝑘
−

𝜌̅𝐻𝑧2

2𝑘
 (S7) 57 

in Cartesian geometry, and 58 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 −
Φ𝑠𝑢𝑟𝑓

𝑘
𝑅 (1 −

𝑅

𝑟
) +

𝜌̅𝐻𝑅2

6𝑘
[2 (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)]          (S8) 59 

in spherical geometry. If surf is known, Eqs. (S7) and (S8) can be directly used to determine 60 

the temperature profiles within the stagnant lid.  61 

  If the thickness of the stagnant lid, dlid, and the temperature at its bottom, Tlid, are specified 62 

instead of the surface heat flux, expressions given in Table S1 lead to 63 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 + ∆𝑇𝑙𝑖𝑑
𝑧

𝑑𝑙𝑖𝑑
+

𝜌𝐻𝑧

2𝑘
(𝑑𝑙𝑖𝑑 − 𝑧) (S9) 64 

in Cartesian geometry, and 65 

  < 𝑇 >= 𝑇𝑠𝑢𝑟𝑓 − ∆𝑇𝑙𝑖𝑑
𝑅

𝑑𝑙𝑖𝑑
𝑓𝑙𝑖𝑑 (1 −

𝑅

𝑟
) +

𝜌𝐻𝑅2

6𝑘
[𝑓𝑙𝑖𝑑(1 + 𝑓𝑙𝑖𝑑) (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)]  (S10) 66 

in spherical geometry, where ∆𝑇𝑙𝑖𝑑 = (𝑇𝑙𝑖𝑑 − 𝑇𝑠𝑢𝑟𝑓)  is the temperature jump across the 67 

stagnant lid, and 𝑓𝑙𝑖𝑑 = (𝑅 − 𝑑𝑙𝑖𝑑) 𝑅⁄ = 1 − (1 − 𝑓) 𝑑𝑙𝑖𝑑 𝐷⁄  the ratio between the radius of its 68 

base and the total radius. Numerical simulations of stagnant lid convection give easily access 69 

to the surface heat flux, while the average temperature at the bottom of the stagnant lid, Tlid, is 70 

more difficult to estimate. To calculate the temperature profiles within stagnant lids Eqs. (S7) 71 

and (S8) are thus handier than Eqs. (S9) and (S10). 72 

  Heat flux equations in Table S1 may further be used to estimate the temperature at the 73 

bottom of stagnant lids given the surface heat flux and the lid thickness. In this case, heat flux 74 

writes   75 

  Φ(𝑧) = 𝑘
∆𝑇𝑙𝑖𝑑

𝑑𝑙𝑖𝑑
+

𝜌̅𝐻

2
(𝑑𝑙𝑖𝑑 − 2𝑧)  (S11) 76 
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in Cartesian geometry, and 77 

  Φ(𝑟) = 𝑘
∆𝑇𝑙𝑖𝑑

𝑑𝑙𝑖𝑑
𝑓𝑙𝑖𝑑 (

𝑅

𝑟
)

2

+
𝜌̅𝐻𝑟

3
[1 −

𝑓𝑙𝑖𝑑(1+𝑓𝑙𝑖𝑑)

2

𝑅3

𝑟3
] (S12) 78 

in spherical geometry. Taking Eqs. (S11) and (S12) at the surface (z = 0 or r = R), and 79 

rearranging the terms, one gets the temperature at the bottom of the lid, 𝑇𝑙𝑖𝑑 = 𝑇𝑠𝑢𝑟𝑓 + ∆𝑇𝑙𝑖𝑑, 80 

as a function of the surface heat flux and stagnant lid thickness, following 81 

  𝑇𝑙𝑖𝑑 = 𝑇𝑠𝑢𝑟𝑓 +
𝑑𝑙𝑖𝑑

𝑘
(Φ𝑠𝑢𝑟𝑓 −

𝜌̅𝐻𝑑𝑙𝑖𝑑

2
) (S13) 82 

in Cartesian geometry, and 83 

  𝑇𝑙𝑖𝑑 = 𝑇𝑠𝑢𝑟𝑓 +
𝑑𝑙𝑖𝑑

𝑘𝑓𝑙𝑖𝑑
[Φ𝑠𝑢𝑟𝑓 −

𝜌̅𝐻𝑅

6
(2 − 𝑓𝑙𝑖𝑑 − 𝑓𝑙𝑖𝑑

2 )] (S14) 84 

in spherical geometry. 85 

 86 

S2. Trends in scaling laws for temperature and heat flux  87 

Supplementary Figures S1 and S2 plot the non-dimensional interior temperature, 𝑇̃𝑚 , and 88 

surface heat flux, Φ̃𝑡𝑜𝑝, as a function of the input parameters of numerical simulations and 89 

following scaling laws inferred in sections 4.1 and 4.2 of the main article (Eqs. 21 and 23). 90 

Input parameters are the surface Rayleigh number, Rasurf, the ratio between the inner and outer 91 

radii of the shell, f (with f = 1 for Cartesian geometry), the non-dimensional rate of internal 92 

heating, 𝐻̃, and the non-dimensional inverse of the viscous temperature scale, , controlling the 93 

amplitude of viscosity variations with temperature. The viscosity law follows the Frank-94 

Kamenetskii approximation, implying that  = ln(), where  is the top-to-bottom viscosity 95 

ratio. As discussed in sections 4.1 and 4.2, two sets of parameters are needed to explain the 96 

results of the simulations, depending on whether the Urey number, Ur, defined by Eq. (12) of 97 

the main text, is smaller or larger than 1. This leads to discontinuities for cases where Ur ~ 1. 98 
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  Figure S1 shows that 𝑇̃𝑚  increases with 𝐻̃ , as one would expect, but decreases with 99 

increasing Rasurf, while Φ̃𝑡𝑜𝑝 increases monotically with both 𝐻̃ and Rasurf. Interior temperature 100 

further decreases as curvature gets larger (f decreases). The amplitude of variations in 𝑇̃𝑚 with 101 

f are rather limited compared to variations of 𝑇̃𝑚 with 𝐻̃, but comparable to those induced by 102 

changes in Rasurf. Note that Φ̃𝑡𝑜𝑝 does not depend explicitly on f (Eq. 23 of main text), but is 103 

nevertheless sensitive to this parameter because the effective Rayleigh number, Raeff (Eq. 10 of 104 

main article) depends on temperature. As a consequence, Φ̃𝑡𝑜𝑝  decreases with increasing 105 

curvature, but these variations are relatively limited compared to those induced by changes in 106 

Rasurf or 𝐻̃. 107 

  The influence of  on 𝑇̃𝑚 is more complex and depends in particular on the value of 𝐻̃ 108 

(plots a and b in Figure S2). For 𝐻̃ < 1, 𝑇̃𝑚 monotically increases with  (and thus with ), as 109 

observed for stagnant-lid convection with a bottom heated-fluid, i.e., 𝐻̃ = 0 (e.g., Moresi and 110 

Solomatov, 1995; Deschamps and Sotin, 2000). By contrast, for 𝐻̃ around 1 and higher, 𝑇̃𝑚 111 

first decreases with increasing , reaches a minimum value for a value of  that increases with 112 

𝐻̃, and starts increasing again. It is also interesting to note that the influence of 𝐻̃ becomes 113 

smaller as  increases, i.e., for high values of  (typically, larger than 25-30), 𝑇̃𝑚 is mostly 114 

controlled by  (and thus by the thermal viscosity contrast) regardless of 𝐻̃. As a consequence, 115 

𝑇̃𝑚 < 1 (and thus Ur < 1) for such values of , and 𝑇̃𝑚 tends asymptotically to 1 as  goes to 116 

infinity. Finally, plots c and d in Figure S2 indicate that Φ̃𝑡𝑜𝑝 increases monotically with . As 117 

discussed in section 4.2,  acts on  Φ̃𝑡𝑜𝑝 directly, through 1/c and the exponential term defining 118 

Raeff, and indirectly through 𝑇̃𝑚. Both the 1/c term in Eq. (23) and, if  is not too large, the 119 

decrease in 𝑇̃𝑚  (and thus in Raeff) lead to a decrease in Φ̃𝑡𝑜𝑝 as  gets larger. However, the 120 

exponential term in the definition of Raeff is dominant, such that for given values of Rasurf and 121 

𝐻̃, Φ̃𝑡𝑜𝑝 increases with . Again, it is worth noting that the influence of 𝐻̃ diminishes as  122 
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gets larger, and that for high viscosity ratios the value of Φ̃𝑡𝑜𝑝 is mostly controlled by the 123 

amplitude of these variations.    124 

 125 

S3. Modelling of ice shell properties  126 

For applications to Europa, we assumed that the viscosity of ice Ih is described by 127 

  𝜂(𝑇) = 𝜂𝑟𝑒𝑓𝑒𝑥𝑝 [
𝐸

𝑅𝑇𝑟𝑒𝑓
(

𝑇𝑟𝑒𝑓

𝑇
− 1)] (S15) 128 

where E is the activation energy, R the ideal gas constant, and ref the reference viscosity at 129 

temperature Tref. The reference viscosity is not well constrained. Close to the melting point, i.e. 130 

for Tref equal to the liquidus temperature of pure water at the bottom of the ice shell, TH2O,bot, a 131 

range of values based on polar ice sheet creep is 1013-1015 Pa s (Montagnat and Duval, 2000). 132 

Here, we considered this parameter as a free parameter and varied it in the range 1012-1015 Pa 133 

s, extending the range of possible values estimated by Montagnat and Duval (2000). Activation 134 

energy is better constrained, with values in the range 49-60 kJ/mol depending on the creep 135 

regime (Durham et al., 2010), and around 60 kJ/mol for atomic diffusion (Weertman, 1983). 136 

Here, we used E = 60 kJ/mol in all calculations. Under icy moons conditions, ice Ih rheology 137 

is likely more complex than the diffusion creep mechanism assumed in Eq. (S15), but it is 138 

reasonable to think that the impact of internal heating on ice shell dynamics follows a similar 139 

trend for different rheologies.  140 

  Following Eq. (22) and the viscosity law (Eq. S15), the viscous temperature scale is  141 

  ∆𝑇𝑣 =
𝑅𝑇𝑚

2

𝐸
 , (S16) 142 

such that the inverse of the non-dimensional viscous temperature scale, γ = ∆𝑇 ∆𝑇𝑣⁄ , which 143 

controls the thermal viscosity contrast, is given by 144 

  𝛾 =
𝐸∆𝑇

𝑅𝑇𝑚
2 , (S17)  145 
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where ∆𝑇 = (𝑇𝑏𝑜𝑡 − 𝑇𝑠𝑢𝑟𝑓) is the top to bottom temperature jump. Still following Eq. (S16), 146 

rescaling Eq. (21) of main text gives the interior temperature 147 

  𝑇𝑚 = 𝑇𝑏𝑜𝑡 −
𝑎1𝑅

𝐸𝑓𝑎2
𝑇𝑚

2 + (𝑎1 + 𝑎2𝑓) [
(1+𝑓+𝑓2)

3

𝜌𝐼𝐻𝐷2

𝑘𝐼Δ𝑇
]

𝑐3 ∆𝑇

𝑅𝑎𝑒𝑓𝑓
𝑐4

, (S18) 148 

where Tbot is the bottom temperature defined as the liquidus of the water + impurities system,  149 

H the internal heating rate per mass unit, I and kI the density and thermal conductivity of the 150 

ice Ih, respectively, D the thickness of the ice layer, and Raeff the Rayleigh number calculated 151 

with the viscosity temperature Tm, 152 

  𝑅𝑎𝑒𝑓𝑓 =
𝛼𝐼𝜌𝐼𝑔Δ𝑇𝐷3

𝜂(𝑇𝑚)𝜅𝐼
 , (S19) 153 

In Eq. (S19), I and I are the thermal expansion and thermal diffusivity of ice Ih, and (Tm) is 154 

calculated with Eq. (S15). The values of the parameters a1, a2, and c1 to c4 are given in section 155 

4.1. Note that parameters c1 to c4 have different values depending on whether the Urey ratio 156 

(Ur, Eq. 12 of main text) is smaller or larger than 1. It is also worth noting that if the sub-surface 157 

ocean is composed of pure water, the bottom temperature Tbot is equal to the reference 158 

temperature defined in the viscosity law (Eq. S15), but is lower than this reference temperature 159 

if impurities (e.g., ammonia) are also present (see next paragraph). Equation (S18) does not 160 

have analytical solution, and we solved it following a Newton-Raphson zero-search method.     161 

  Impurities act as an anti-freeze and may include ammonia (NH3), methanol (CH3OH), 162 

and salts (e.g., magnesium sulfate, MgSO4). Here, we more specifically considered ammonia, 163 

which is predicted to condensate in giant planets environments with amounts up to a few per 164 

cent (Mousis et al., 2009; Deschamps et al., 2010). In the case of Europa, magnesium sulfate 165 

may further be an important compound of the ocean (Vance et al. 2018). Qualitatively, however, 166 

the evolution of the icy bodies is not significantly impacted by the nature of the impurities, but 167 

only by their amount. For instance, Vilella et al. (2020) pointed out that the impact of 30 % 168 

MgSO4 on the liquidus is equivalent to that of 3.5 % NH3. On another hand, it should be noted 169 
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that different compositions may impact physical properties of the ocean, in particular its 170 

density. Adding 30 % MgSO4 would increase density by about 150 kg/m3, while 3.5 % NH3 171 

would reduce it. Details on the calculation of the water-ammonia system liquidus can be found 172 

in Deschamps and Sotin (2001). Practically, we prescribed the initial fraction of ammonia, 173 

corresponding to the concentration of ammonia in the initial ocean. The concentration in 174 

ammonia then increases as the ocean starts to freeze, since up to the eutectic composition (equal 175 

to 32.2 wt% in the case of NH3), only water ice crystalizes, while impurities are left in the 176 

subsurface ocean, whose volume decreases due to the thickening of the outer ice layer. Note 177 

that in phase diagrams, concentrations in impurities are usually measured in wt%. For practical 178 

reasons, we perform calculations with the volume fraction, which we correct to weight fraction 179 

when determining the liquidus, following (in the case of ammonia) 180 

  𝑥𝑁𝐻3
𝑤𝑡 =

𝑥𝑁𝐻3
𝑣𝑜𝑙 𝜌𝑁𝐻3

𝑥𝑁𝐻3
𝑣𝑜𝑙 𝜌𝑁𝐻3 +(1−𝑥𝑁𝐻3

𝑣𝑜𝑙 )𝜌𝑤
 , (S20) 181 

where w and NH3 are the densities of liquid water and ammonia, respectively. 182 

  The surface heat flux is obtained by rescaling the heat flux scaling law (Eq. 23 of main 183 

text) with the characteristic heat flux, Φ𝑐𝑎𝑟𝑎𝑐 = 𝑘𝑟𝑒𝑓 Δ𝑇 𝐷⁄ , where kref is the characteristic 184 

thermal conductivity. Most reconstruction of icy bodies thermal evolutions used values of kref 185 

in the range 2.0-3.0 W/m/K, corresponding to the conductivity at the temperature of the well 186 

mixed interior or at the bottom of the shell (e.g., Grasset et al., 1996; Tobie et al., 2003; 187 

Běhounková et al., 2010). Here, we fixed kref to 2.6 W/m/K (Grasset and Sotin, 1996). 188 

Interestingly, in the case of Europa, this value leads to ice shell properties and thermal evolution 189 

very close to those obtained with temperature-dependent thermal conductivity (Deschamps, 190 

2021). Accounting for the shell’s curvature, measured with the ratio between the inner and outer 191 

radii, f, the basal and surface heat fluxes write 192 

   Φ𝑠𝑢𝑟𝑓 = Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑡𝑜𝑝        (S21) 193 

and    Φ𝑏𝑜𝑡 = Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑡𝑜𝑝 𝑓2⁄  . (S22) 194 
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Note that this formulation is slightly different from that used in Deschamps (2021), where the 195 

non-dimensional convective heat flux (Φ̃𝑐𝑜𝑛𝑣) was inferred from 3D-Cartesian calculations and 196 

a correction for spherical geometry was assumed, leading to Φ𝑠𝑢𝑟𝑓 = 𝑓Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑐𝑜𝑛𝑣  and 197 

Φ𝑏𝑜𝑡 = Φ𝑐𝑎𝑟𝑎𝑐Φ̃𝑐𝑜𝑛𝑣 𝑓⁄ . Because the curvature of outer ice layers of large icy bodies remains 198 

large (typically, f > 0.7), this difference only triggers small to moderate effects on the 199 

calculations of ice shell properties and thermal evolution. Note that if the surface heat flux is 200 

lower than the conductive characteristic heat flux, carac, the system is not animated by 201 

convection and transfers heat by conduction. This occurs, for instance, if the ice shell is too thin 202 

or, in the case of a sub-surface ocean containing impurities, too thick. In this later case, the 203 

temperature at the bottom of the shell is much lower than in the case of a pure water ocean. As 204 

a result, reference and interior viscosities are higher, decreasing the vigor of convection or even 205 

shutting off convection (Deschamps and Sotin, 2001). 206 

  As discussed in main text, two sets of parameters for Eq. (23) may be used, depending on 207 

whether the bottom heat flux, bot, is positive (Ur < 1) or negative (Ur > 1). The threshold (non-208 

dimensional) internal heating is given by Eq. (25) of main text, and may be used as a criteria to 209 

decide which set of parameters to use. Here, instead, we used a simpler procedure, which 210 

accounts for the fact that temperature and heat flux scalings are not continuous at Ur = 1. First, 211 

we calculate the internal temperature Tm (Eq. S18) and the surface heat flux, surf, assuming 212 

parameter values for Ur < 1. If the corresponding bot (calculated with Eq. (11) of main text) 213 

is negative, we re-evaluate Tm and surf, but with parameter values for Ur > 1. If the resulting 214 

bot is positive again, we set arbitrarily its value to zero, and recalculate surf and Tm 215 

accordingly. 216 

  To calculate the thickness of the stagnant lid, Deschamps (2021) assumed that the 217 

temperature at the bottom of the lid is well described by Tlid = 2Tm – Tbot, and then deduced dlid 218 

from the expression of the conductive temperature profile within the lid. However, the 219 
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relationship between Tlid and Tm assumes that temperature jump in the bottom and top thermal 220 

boundary layers (excluding the stagnant lid) are equal, which is not valid for mixed-heating 221 

convection. Here, instead, we estimated the thickness of the stagnant lid by rescaling Eq. (26) 222 

of the main article, leading to 223 

   𝑑𝑙𝑖𝑑 =
𝑎𝑙𝑖𝑑𝛾𝑐

𝑅𝑎𝑒𝑓𝑓
𝑏 𝐷 , (S23) 224 

where  and Raeff are given by Eqs. (S17) and (S19), respectively, the constant alid is equal to 225 

0.633 for Ur < 1 and 0.667 for Ur > 1, b = 0.27, and c = 1.21. The temperature at the bottom of 226 

the stagnant lid can then be calculated using Eq. (S14). 227 

 228 

S4. Thermal evolution 229 

The present day radial structure of icy bodies may be estimated from appropriate thermal 230 

evolution modelling. Here, we followed the approach of Grasset and Sotin (1996), which 231 

calculates the evolution of ice layers thicknesses based on an energy balance accounting for the 232 

production of heat in the silicate core, the cooling of the ocean, and the crystallization of ice 233 

shells. Europa is not large enough to host high pressure ices, such that the inner radius of the 234 

outer ice Ih shell, rbot, can be calculated by solving the energy conservation equation at the 235 

boundary between this shell and the sub-surface ocean. Energy conservation at this boundary 236 

then writes 237 

  
𝑑𝑟𝑏𝑜𝑡

𝑑𝑡
[𝜌𝑤𝐶𝑤 (−

𝜕𝑇𝑎𝑑

𝜕𝑟
+

𝜕𝑇𝑏𝑜𝑡

𝜕𝑟
)

(𝑟𝑏𝑜𝑡
3−𝑟𝑐

3)

3
− 𝜌𝐼𝐿𝐼𝑟𝑏𝑜𝑡

2] = 𝑟𝑏𝑜𝑡
2Φ𝑏𝑜𝑡 − 𝑟𝑐

2Φ𝑐   (S24) 238 

where t is time, Tbot and bot are the temperature and heat flux at the bottom of the ice layer, 239 

given by the liquidus of the ocean and by Eq. (S22), respectively, rc is the core radius, c the 240 

heat flux at the top of the core, w and Cw the liquid water density and heat capacity, I and LI 241 

the density and latent heat of fusion of ice Ih, respectively, and Tad, the adiabatic temperature 242 

in the ocean, given by 243 
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  𝑇𝑎𝑑(𝑟) = 𝑇𝑏𝑜𝑡(𝑟𝑏𝑜𝑡) [1 −
𝛼𝑤

𝜌𝑤𝐶𝑤
𝜌𝐼𝑔(𝑟 − 𝑟𝑏𝑜𝑡)] , (S25) 244 

with w being the thermal expansion of liquid water. Within the silicate core, heat is assumed 245 

to be produced by the decay of 4 radiogenic elements, 40K, 232Th, 235U, and 238U. The heat flux 246 

at the top of the core is then calculated following Kirk and Stevenson (1987) by  247 

  Φ𝑐 = 2√
𝜅𝑐𝑡

𝜋
𝜌𝑐 ∑ 𝐶0,𝑖𝐻𝑖

4
𝑖=1

[1−exp (−𝜆𝑖𝑡)]

𝜆𝑖𝑡
 , (S26) 248 

where c and c are the thermal diffusivity and density of the silicate core, and the subscript i 249 

refers to the 4 radiogenic elements, whose properties are listed in Table S2. We solved Eq. 250 

(S24) up to t = 4.55 Gyr using an adaptative stepsize control Runge-Kutta method (Press et al., 251 

1992), and assuming an initial ice Ih thickness equal to 10 km together with the material and 252 

physical properties listed in Table 3 of the main text. Again, because the reference viscosity ref 253 

is a sensitive parameter but is poorly constrained, we performed calculations for values of ref 254 

in the range 1012-1015 Pa s, corresponding to an extended range of the values estimated by 255 

Montagnat and Duval (2000).   256 

 257 
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 297 
 298 

Table S1. Relationships for radial profiles of temperature and heat flux for a conductive 299 

mixed-heated system. 300 

Quantity Geometry Expression 

Temperature Cartesian 
𝑇𝑠𝑢𝑟𝑓 + ∆𝑇

𝑧

𝐷
+

𝜌̅𝐻𝑧

2𝑘
(𝐷 − 𝑧) 

- Spherical 
𝑇𝑠𝑢𝑟𝑓 − ∆𝑇

𝑅

𝐷
𝑓 (1 −

𝑅

𝑟
) +

𝜌̅𝐻𝑅2

6𝑘
[𝑓(1 + 𝑓) (1 −

𝑅

𝑟
) + (1 −

𝑟2

𝑅2)] 

Heat flux Cartesian 
𝑘

∆𝑇

𝐷
+

𝜌̅𝐻

2
(𝐷 − 2𝑧) 

- Spherical 
𝑘

∆𝑇

𝐷
𝑓 (

𝑅

𝑟
)

2

+
𝜌̅𝐻𝑟

3
[1 −

𝑓(1 + 𝑓)

2

𝑅3

𝑟3
] 

T  = (Tbot - Tsurf) is the bottom-to-top temperature jump, where Tsurf and Tbot are the surface 301 

and bottom temperature and D is the thickness of the shell. In Cartesian geometry, z is depth, 302 

and in spherical geometry, r is radius, R the total radius, and 𝑓 = 𝑟𝑏𝑜𝑡 𝑅⁄  the ratio between the 303 

inner and outer radii of the shell. k is the thermal conductivity, H the rate of internal heating, 304 

and 𝜌̅  the average density, which are here all considered as being constant. 305 

 306 

 307 

 308 

 309 

 310 
 311 

Table S2. Properties of long-lived radioactive isotopes. 312 

Element Decay constant,   Heat release, H Initial abundance, C0 

 (1/yr) (W/kg) (ppb) 

40K 5.4279×10-10 2.917×10-5 738.0 
232Th 4.9405×10-11 2.638×10-5   38.7 

235U 9.8485×10-10 5.687×10-4     5.4 
238U 1.5514×10-10 9.465×10-5   19.9 

 313 

  314 
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 315 

 316 

Figure S1. Non-dimensional interior temperature 𝑇̃𝑚  deduced from Eq. (21) (top row) and 317 

surface heat flux Φ̃𝑡𝑜𝑝  calculated from Eq. (23) (bottom row) as a function of the surface 318 

Rayleigh number Rasurf (left column) and non-dimensional rate of internal heating 𝐻̃ (right 319 

column), and for several values of the ratio between the inner and outer shell radii f  (color code; 320 

f = 1 indicates Cartesian geometry). Two sets of parameters for Eqs. (21) and (23) are used, 321 

depending on whether the Urey ratio (Ur, Eq. 12) is smaller or larger than 1 (see main article), 322 

leading to discontinuities at Ur ~ 1. For calculations as a function of Rasurf (left column), 𝐻̃ is 323 

set to 4, and for calculations as a function of 𝐻̃ (right column), Rasurf is equal to 10. In all cases, 324 

the surface top-to-bottom viscosity ratio is fixed to 106. 325 

  326 
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 327 

 328 

Figure S2. Non-dimensional interior temperature 𝑇̃𝑚  deduced from Eq. (21) (top row) and 329 

surface heat flux Φ̃𝑡𝑜𝑝 calculated from Eq. (23) (bottom row) as a function inverse of the non-330 

dimensional viscous temperature scale, γ = ∆𝑇 ∆𝑇𝑣⁄  (see main text), and for several values of 331 

the non-dimensional rate of internal heating (color code). The viscosity is described by a Frank-332 

Kamenetskii law (Eq. 7), such that  is equal to the logarithm of the top-to-bottom viscosity 333 

ratio. Two sets of parameters for Eqs. (21) and (23) are used, depending on whether the Urey 334 

ratio (Ur, Eq. 12) is smaller or larger than 1 (see main article) and leading to discontinuities at 335 

Ur ~ 1. In all cases, the surface Rayleigh number is equal to 10, and geometry is Cartesian (f = 336 

1). 337 
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 339 

 340 

Figure S3. Rate of internal heating per mass unit as a function of the ice shell thickness and for 341 

several values of the total power dissipated in the ice layer (color code). The density of the ice 342 

shell is I = 920 kg/m3. 343 

  344 
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 345 

 346 

Figure S4. Critical values of internal heating for partial melting of the ice shell, Hmelt, as a 347 

function of the ice shell thickness and for different values of the reference viscosity, ref. 348 

Calculations are made with the properties of Europa (Table 3) and assuming a sub-surface ocean 349 

composed of pure water. Dashed parts of the curves indicate that the system is not animated by 350 

convection, based on the observation that the convective heat flux is smaller than the conductive 351 

heat flux. The grey dashed curves represent the heating rate for three values of the total power 352 

dissipated within the ice shell (values in TW indicated on each curve). 353 
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 355 

 356 

Figure S5. Properties of a 40 km thick ice Ih shell as a function of the reference viscosity, ref, 357 

and for several values of the total power dissipated in the ice layer (color code). (a) and (d) 358 

Surface heat flux. (b) and (e) Interior temperature. (c) and (f) Stagnant lid thickness. Physical 359 

properties used for calculations are listed in Table 3, and two initial compositions of the ocean 360 

are considered, pure water (left column), and an initial mix of water and 3.0 vol% ammonia 361 

(right column). Curves interruptions indicate that the average interior temperature is larger than 362 

the liquidus of pure water at that depth. Two regimes occur depending on whether the Urey 363 

ratio (Ur, Eq. 12) is smaller or larger than 1, leading to discontinuities at Ur ~ 1. 364 
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 366 

 367 

Figure S6. Evolution of the ice shell thickness as a function of time for reference viscosity ref 368 

= 1014 Pa s and several values of the total power dissipated in the ice layer (color code). The 369 

composition of the ocean is (a) pure water, or (b) an initial mix of water and 3.0 vol% ammonia. 370 

Note the logarithmic scale for the time axis.  371 
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 373 

 374 

Figure S7. Properties of Europa’s outer ice shell at t = 4.55 Gyr as a function of the reference 375 

viscosity, ref, and for several values of the total power dissipated in the ice layer (color code). 376 

(a) and (d) Ice shell thickness. (b) and (e) Interior temperature. (c) and (f) Stagnant lid thickness. 377 

Physical properties used for calculations are listed in Table 3, and two initial compositions of 378 

the ocean are considered, pure water (left column), and an initial mix of water and 3.0 vol% 379 

ammonia (right column). Dashed parts of the curves indicate that the system is not animated by 380 

convection. 381 
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