Boda Li

and 4 more

The isotopic composition of dissolved oxygen offers a family of potentially unique tracers of respiration and transport in the subsurface ocean. Uncertainties in transport parameters and isotopic fractionation factors, however, have limited the strength of the constraints offered by 18O/16O and 17O/16O ratios in dissolved oxygen. In particular, puzzlingly low 17O/16O ratios observed for some low-oxygen samples have been difficult to explain. To improve our understanding of oxygen cycling in the ocean’s interior, we investigated the systematics of oxygen isotopologues in the subsurface Pacific using new data and a 2-D isotopologue-enabled isopycnal reaction-transport model. We measured 18O/16O and 17O/16O ratios, as well as the “clumped” 18O18O isotopologue in the northeast Pacific, and compared the results to previously published data. We find that transport and respiration rates constrained by O2 concentrations in the oligotrophic Pacific yield good measurement-model agreement across all O2 isotopologues only when using a recently reported set of respiratory isotopologue fractionation factors that differ from those most often used for oxygen cycling in the ocean. These fractionation factors imply that an elevated proportion of 17O compared to 18O in dissolved oxygen―i.e., its triple-oxygen isotope composition―does not uniquely reflect gross primary productivity and mixing. For all oxygen isotopologues, transport, respiration, and photosynthesis comprise important parts of their respective budgets. Mechanisms of oxygen removal in the subsurface ocean are discussed.

Alyson E Santoro

and 5 more

Marine oxygen deficient zones (ODZs) are dynamic areas of microbial nitrogen cycling. Nitrification, the microbial oxidation of ammonia to nitrate, plays multiple roles in the biogeochemistry of these regions, including production of the greenhouse gas nitrous oxide (N2O). We present here the results of two oceanographic cruises investigating nitrification, nitrifying microorganisms, and N2O production and distribution from the offshore waters of the Eastern Tropical South Pacific (ETSP). On each cruise, high-resolution measurements of ammonium ([NH4+]), nitrite ([NO2-]), and N2O were combined with 15N tracer-based determination of ammonia oxidation, nitrite oxidation, nitrate reduction and N2O production rates. Depth-integrated inventories of NH4+ and NO2- were positively correlated with one another, and with depth-integrated primary production. Depth-integrated ammonia oxidation rates were correlated with sinking particulate organic nitrogen flux but not with primary production; ammonia oxidation rates were undetectable in trap-collected sinking particulate material. Nitrite oxidation rates exceeded ammonia oxidation rates at most mesopelagic depths. We found positive correlations between archaeal genes and ammonia oxidation rates and between -like 16S rRNA genes and nitrite oxidation rates. N2O concentrations in the upper oxycline reached values of greater than 140 nM, even at the western extent of the cruise track, supporting air-sea fluxes of up to 1.71 umol m-2 d-1. Our results suggest that a source of N2O other than ammonia oxidation may fuel high rates of nitrite oxidation in the offshore ETSP and that air-sea fluxes of N2O from this region may be higher than previously estimated.