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Introduction

The supporting information contains a detailed description of the numerical algorithm

used, the modelling approach and the initial model configuration used in this study.
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Algorithm description

As common in continuum mechanics, we solve the thermomechanically coupled equa-

tions for continuity of material, conservation of momentum and energy expressed w.r.t

temperature, T, as

∂vi
∂xi

= 0 (1)

∂σij
∂xj

= −ρ gi (2)

ρ cP
DT

Dt
=

∂

∂xi

(
k
∂T

∂xi

)
+ HA + HD + HR , (3)

where v is velocity, x is the coordinate, i and j indicate the horizontal (j,j=1) or

vertical (i,j=2) direction, ρ denotes density, gi =
[
0;−9.81] are the components of the

gravitational acceleration vector, cP is heat capacity, k is thermal conductivity, D
Dt

is

the material time derivative, HA, HD and H R are contributions resulting from adiabatic

processes, viscoplastic dissipation and radiogenic heat production, respectively. We here

employ the extended Boussinesq approximation, i.e. the slowly flowing fluid is considered

to be incompressible, density changes are only taken into account when multiplied with

gravitational acceleration and adiabatic processes only impact on temperature (Candioti

et al., 2020). The total stress tensor components are defined as

σij = −Pδij + 2 ηeff ε̇eff
ij , (4)

where δij = 0 if i 6= j, or δij = 1 if i = j, ηeff is the effective viscosity, ε̇eff
ij are the

components of the effective deviatoric strain rate tensor,

ε̇eff
ij =

(
ε̇ij +

τ oij
2G∆t

)
, (5)
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where G is the shear modulus, ∆t is the time step and τ oij are the deviatoric stress ten-

sor components of the preceding time step. We consider visco–elasto–plastic rheologies

by additive decomposition (Maxwell model) of the total deviatoric strain rate tensor com-

ponents ε̇ij into contributions from the viscous (dislocation, diffusion and Peierls creep),

plastic and elastic deformation as

ε̇ij = ε̇ela
ij + ε̇pla

ij + ε̇dis
ij + ε̇dif

ij + ε̇pei
ij . (6)

Furthermore, we perform an iteration cycle locally on each grid cell until Eq. 6 is

satisfied (e.g., Popov & Sobolev, 2008). The effective viscosity for the dislocation and

Peierls creep flow law is a function of the second invariant of the respective strain rate

components ε̇dis,pei
II = τII/(2η

dis,pei)

ηdis =
2

1−n
n

3
1+n
2n

ζ A− 1
n

(
ε̇dis

II

) 1
n
−1

exp

(
Q + PV

nRT

) (
fH2O

)− r
n , (7)

where the ratio in front of the pre-factor ζ is a correction factor (e.g., Schmalholz &

Fletcher, 2011). A, n, Q, V, f H2O and r are material parameters determined in laboratory

experiments. Diffusion creep is taken into account for the mantle material and its viscosity

is defined as

ηdif =
1

3
A−1 dm exp

(
Q + PV

RT

) (
fH2O

)−r
, (8)

where d is grain size and m is a grain size exponent. Effective Peierls viscosity is

calculated using the experimentally derived flow law by (Goetze & Evans, 1979) in the

regularised form (Kameyama et al., 1999) as
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ηpei =
2

1−s
s

3
1+s
2s

Â
(
ε̇pei

II

) 1
s
−1

, (9)

where s is a stress exponent:

s = 2 γ
Q

RT

(
1− γ

)
. (10)

Â in Eq. (9) is

Â =

[
AP exp

(
−

Q
(
1− γ

)2

RT

)]− 1
s

γσP , (11)

where AP is a pre-factor, γ is a fitting parameter and σP is a characteristic stress

value. Brittle-plastic failure is included by limiting the stresses by a Drucker-Prager yield

function

F = τII − P sinφ− C cosφ , (12)

where φ is the internal angle of friction and C is the cohesion. In case the yield condition

is met (F ≥ 0), the equivalent plastic viscosity is computed as

ηpla =
P sinφ+ C cosφ

2ε̇eff
II

(13)

and the effective deviatoric strain rate is equal to the plastic contribution of the devi-

atoric strain rate (Eq. 5). At the end of the iteration cycle, the effective viscosity in Eq.

4 is either computed as the quasi-harmonic average of the viscoelastic contributions

ηeff =

{(
1

G∆t
+ 1

ηdis
+ 1

ηdif
+ 1

ηpei

)−1
, F < 0

ηpla , F ≥ 0
(14)
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or is equal to the viscosity ηpla calculated at the yield stress according to Eq. 13. Rigid

body rotation is computed analytically at the end of each time step as

τij = RT τij R , (15)

R =

[
cos θ − sin θ
sin θ cos θ

]
, (16)

θ = ∆t ωij , (17)

ωij =
1

2

(
∂vj
∂xi
− ∂vi
∂xj

)
, (18)

(19)

where R is the rotation matrix, T is the transpose operator, θ is the rotation angle and

ωij are components of the vorticity tensor.

Data Set S1.

Movie S1.

Audio S1.
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pdf/FIG_S1_IniConf.pdf

Figure S1. a & d Velocity boundary condition values defined at the western and eastern

boundary. Duration of deformation periods as follows: extension = 50 Myr, no deformation =

60 Myr, convergence = 30 Myr with 1.5 cm yr−1 and 1.0 cm yr−1 until the end of the simulation.

b Entire model domain, initial thermal profile and mechanical boundary conditions at the top

and bottom boundary. White to red colour is the viscosity field in the mantle calculated by

the numerical algorithm and yellow to orange and green colours are the upper and lower crust,

respectively. Rheological parameters used for crustal matrix = Wet Anorthite with weakening

prefactor 0.3 during extension and cooling, Westerly Granite during convergence; lithosphere and

upper mantle = Strong mantle, elliptical inclusions in the lithosphere = Weak mantle. Material

parameters for all phases as indicated in Table S1. c Enlargement of the domain centre. Colouring

in all subplots as indicated in the figure legend.
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pdf/FIG_S2_maxPT.pdf

Figure S2. Numerical metamorphic facies variability using maximum pressure or maximum

temperature. Pressure-temperature evolution of numerical marker with tectonic pressure (solid

black line) compared to marker of close proximity, without significant tectonic pressure (dashed

black line). a Temperature evolution through time. b Pressure evolution through time. c

Pressure-temperature evolution overlaying metamorphic facies grid (adapted from Philpotts &

Ague, 2009) indicating disparity of predicted metamorphic facies for solid black line marker,

using maximum pressure (blueschist) or maximum temperature (greenschist).
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Table S1. Physical parameters used in the numerical simulations.
Model unit Rheology (Reference) k [W m−1 K−1] H R [W m−3] C [Pa] ϕ [°]
Crustal matrix 1∗,a Wet Anorthite (Rybacki & Dresen, 2004) 2.25 1.0200×10−6 1×107 30
Crustal matrix 2∗,aWesterly Granite (Hansen & Carter, 1983) 2.25 1.0200×10−6 1×107 30
Weak inclusion∗,a Wet Quartzite (Ranalli, 1995) 2.25 1.0200×10−6 1×106 5
Strong inclusion∗,a Maryland Diabase (Mackwell et al., 1998) 2.25 1.0200×10−6 1×107 30
Calcite∗,a Calcite (Schmid et al., 1977) 2.37 0.5600×10−6 1×107 30
Mica∗,a Mica (Kronenberg et al., 1990) 2.55 2.9000×10−6 1×107 15
Lower crust∗,b Wet Anorthite (Rybacki & Dresen, 2004) 2.25 0.2600×10−6 1×107 30
Strong mantle∗,c Dry Olivine (Hirth & Kohlstedt, 2003) 2.75 2.1139×10−8 1×107 30
Weak mantle∗,c Wet Olivine (Hirth & Kohlstedt, 2003) 2.75 2.1139×10−8 1×107 30
Serpentinite∗,d Antigorite (Hilairet et al., 2007) 2.75 2.1139×10−8 1×107 25
Dislocation creep A [Pa−n−r s−1] ζ [ ] n [ ] Q [J mol−1] V [m3 mol−1] r [ ]
Crustal matrix 1 3.9811×10−16 0.3e, 1.0 3.0 356×103 0.00×10−6 0.0
Crustal matrix 2 3.1623×10−26 1.0 3.3 186.5×103 0.00×10−6 0.0
Weak inclusion 5.0717×10−18 1.0 2.3 154×103 0.00×10−6 0.0
Strong inclusion 5.0477×10−28 1.0 4.7 485×103 0.00×10−6 0.0
Calcite 1.5849×10−25 1.0 4.7 297×103 0.00×10−6 0.0
Mica 1.0000×10−138 1.0 18.0 51.0×103 0.00×10−6 0.0
Lower crust 3.9811×10−16 1.0 3.0 356×103 0.00×10−6 0.0
Strong mantle 1.1000×10−16 1.0 3.5 530×103 14.0×10−6 0.0
Weak mantle1 5.6786×10−27 1.0 3.5 480×103 11.0×10−6 1.2
Serpentinite 4.4738×10−38 1.0 3.8 8.90×103 3.20×10−6 0.0
Diffusion creep2 A [Pa−n−r mm s−1] m [ ] n [ ] Q [J mol−1] V [m3 mol−1] r [ ]
Strong mantle 1.5000×10−15 3.0 1.0 370×103 7.5×10−6 0.0
Weak mantle1 2.5000×10−23 3.0 1.0 375×103 9.0×10−6 1.0
Peierls creep AP [s−1] Q [J mol−1] V [m3 mol−1] σP [Pa] γ [ ]
Mantle3 5.7000×1011 540×103 0.0×10−6 8.5×109 0.1

∗ cP = 1050 [J kg−1 K−1]

a G = 2×1010 [Pa], ρ0 = 2800 [kg m−3],α = 3.5× 10−5 [K−1], β = 1× 10−11 [Pa−1]

b G = 2×1010 [Pa], ρ0 = 2900 [kg m−3],α = 3.5× 10−5 [K−1], β = 1× 10−11 [Pa−1]

c G = 2×1010 [Pa]

d G = 1.81×1010 [Pa], ρ0 = 2585 [kg m−3],α = 4.7× 10−5 [K−1], β = 1× 10−11 [Pa−1]

e Weakening prefactor employed during extension and cooling.

1 A water fugacity f H2O = 1.0×109 [Pa] is used. For all other phases f H2O= 0.0 [Pa].

2 A constant grain size d = 1×10−3 [m] is used.

3 Reference: (Goetze & Evans, 1979) regularized by (Kameyama et al., 1999)
.
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Table S2. Bulk rock composition and solution models used for phase equilibrium modelling

1 Bulk rock modified after (Winter, 2013)

2 Bulk rock modified after (Pelletier et al., 2008)

3 Bulk rock modified after (Workman & Hart, 2005). We assume water saturation in all

calculations. Crosses denote solution models used for given lithologies.
4 Thermodynamic database: (Holland & Powell, 1998) updated in 2002

5 Thermodynamic database: (Stixrude & Lithgow-Bertelloni, 2011) for depleted MORB man-

tle (DMM). Details on the solution models can be found in the solution model.dat data file in

Perple X.
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