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New estimate of organic carbon export from optical
measurements reveals the role of particle size
distribution and export depth
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Key Points:

« We present a new estimate of sinking particulate carbon fluxes from the surface
ocean from global reconstructions of particle size distribution.

« Smaller particles contribute more to the total sinking carbon flux than large par-
ticles.

e Carbon flux estimates from multiple depth horizons suggest net heterotrophy in
the deeper euphotic zone, rather than autotrophy.
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Abstract

Export of sinking particles from the surface ocean is critical for carbon sequestration and
to provide energy to the deep biosphere. The magnitude and spatial patterns of this ex-
port have been estimated in the past by in situ particle flux observations, satellite-based
algorithms, and ocean biogeochemical models; however, these estimates remain uncer-
tain. Here, we use a recent machine learning reconstruction of global ocean particle size
distributions from Underwater Vision Profiler 5 (UVP5) measurements to estimate car-
bon fluxes by sinking particles (35 pm - 5 mm equivalent spherical diameter) from the
surface ocean. We combine global maps of particle size distribution properties with em-
pirical relationships constrained against in situ flux observations to calculate particu-

late carbon export from the euphotic zone and wintertime mixed layer depths. The new
flux reconstructions suggest a less variable seasonal cycle in the tropical ocean, and a more
persistent export in the Southern Ocean than previously recognized. Smaller particles
(less than 420 pum) contribute most of the flux globally, while larger particles become more
important at high latitudes and in tropical upwelling regions. Export from the winter-
time mixed layer globally exceeds that from the euphotic zone, suggesting shallow par-
ticle recycling and net heterotrophy in the deep euphotic zone. These estimates open the
way to fully three-dimensional global reconstructions of particle fluxes in the ocean, sup-
ported by the growing database of in situ optical observations.

1 Introduction

At the ocean surface, primary production and other biogeochemical processes in-
teract to form organic particles that drive the ocean’s biological pump (Volk & Hoffert,
1985; Honjo et al., 2008; Turner, 2015; Siegel et al., 2022). Aggregation and sinking of
particulate organic matter stores inorganic carbon and nutrients in the deep ocean for
timescales ranging from decades to centuries (DeVries et al., 2012; Boyd et al., 2019),
reducing surface carbon concentrations and leading to a decrease in atmospheric COq
(Kwon et al., 2009). Sinking particles provide organic matter sustaining the deep ocean
biosphere (Robinson et al., 2010) and shape the ocean’s microbiome (Karl et al., 1984;
Fontanez et al., 2015; Bianchi et al., 2018).

Export of particulate organic matter results from the interaction of complex phys-
ical and biological processes (Turner, 2015; Boyd et al., 2019; Siegel et al., 2022). Grav-
itational settling of particles denser than seawater, including fecal pellets, phytodetri-
tus, and heterogeneous aggregates, is thought to be the primary export mechanism, con-
tributing to about 60% of the total carbon export, and more than half of the carbon stor-
age in the deep ocean (Boyd et al., 2019). Other export processes, such as organic mat-
ter transport and repackaging by vertically migrating organisms (Longhurst et al., 1990;
Steinberg et al., 2000; Bianchi et al., 2013) and physical injection (Carlson et al., 1994;
Omand et al., 2015; Stukel et al., 2017; Dall’Olmo et al., 2016), make up the remainder
(Boyd et al., 2019). The importance of large sinking particles in driving the export flux
has been well described (Honjo et al., 2008; A. L. Alldredge & Gotschalk, 1988; Turner,
2015), although several studies have also highlighted the importance of smaller aggre-
gates (Alonso-Gonzalez et al., 2010; Durkin et al., 2015; Kiko et al., 2017; Richardson,
2019).

Export fluxes can be quantified at different depth horizons, with the euphotic zone
and mixed layer depths as common choices, underlying competing interpretations: ex-
port from the euphotic zone provides an ecosystem-level viewpoint, while export from
the mixed layer provides an estimate of long-term carbon storage. Observational and model-
based estimates generally evaluate export at the base of the euphotic zone, as defined

by the 1% or 0.1% light levels (K. O. Buesseler & Boyd, 2009; Siegel et al., 2014; K. O. Bues-

seler et al., 2020). On annual timescales or longer, organic carbon export balances net
community production (Emerson, 2013), and, since synthesis of new particles is greatly
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reduced below the euphotic zone, it also provides an upper limit to the energy that can
fuel subsurface ecosystems. Meanwhile, carbon exported below the maximum mixed layer
depth is removed from contact with the atmosphere for timescales longer than a year,
and thus is relevant for ocean carbon sequestration. Recent work with a global biogeo-
chemical model indicates that the magnitude and patterns of carbon export are sensi-
tive to the choice of depth horizon (Palevsky & Doney, 2018). However, tests of this sen-
sitivity based on global observations are missing.

Because of its central role in ocean biogeochemistry, the global particle export has
received significant attention, resulting in a wide range of estimates — from less than 3
to more than 10 PgC y~! (Henson et al., 2011; Siegel et al., 2014; DeVries & Weber, 2017;
Duunne et al., 2007), with some of the discrepancies depending on the methods used (Quay
et al., 2020). Biogeochemical models yield a global export of 4-6 PgC y~! when tuned
to match particle flux observations (Siegel et al., 2014), but can reach up to 10 PgC y~
when tuned to match in situ profiles of nutrients and other biogeochemical tracers (DeVries
& Weber, 2017). A similar range is suggested by recent global IPCC-class Earth Sys-
tem Models, which produce global carbon exports from 2.4 to 12 PgC y~!, with an av-
erage of 7.4 PgC y~! (Séférian et al., 2020). Data-driven estimates that combine satellite-
based primary production with empirical measures of particle export ratios often result
in fluxes near the upper range (Dunne et al., 2007; Laws et al., 2011; Guidi et al., 2015),
with some exceptions (Henson et al., 2011).

1

A global export of around 10 PgC y~! is comparable to biogeochemical estimates
of annual net community production in the mixed layer (Emerson, 2013; Quay et al., 2020).
However, on long timescales, community production must be balanced by multiple ex-
port processes (Boyd et al., 2019; Siegel et al., 2022) that also include subduction of non-
sinking organic carbon (Carlson et al., 1994; Dall’Olmo et al., 2016) and export via ver-
tical migrations of zooplankton and fish (Longhurst et al., 1990; Steinberg et al., 2000;
Bianchi et al., 2013). Using an euphotic viewpoint, and considering only gravitational
settling, particle flux estimates have begun to converge on a value of 6 PgC y~!, although
with significant uncertainty (Boyd et al., 2019).

In the field, sediment traps and thorium-234 measurements have been used to quan-
tify sinking particle fluxes. However, both types of observations lack detailed particle size
information, vertical resolution, and have known biases, making extrapolations to global
scales difficult (K. Buesseler et al., 2007; Le Gland et al., 2019). Recently, optical meth-
ods have gained traction to estimate particle export. These methods are based on in situ
observations of particle size distribution (PSD), i.e., the number of particles, or abun-
dance, as a function of size (Guidi et al., 2008; Bourne et al., 2019). Among optical in-
struments, the Underwater Vision Profiler 5 (UVP5) measures the abundance of parti-
cles in the 80 pm - 2.6 cm range (Picheral et al., 2010) and is routinely deployed on oceano-
graphic expeditions (Kiko et al., 2022). The high vertical resolution of UVP5 observa-
tions, combined with empirical, size-dependent relationships for carbon content and sink-
ing speed (Kriest, 2002; Stemmann et al., 2004; Guidi et al., 2008), enables a uniquely
detailed view into the three-dimensional ocean particle flux (Guidi et al., 2016). Obser-
vations from UVP5 have been used to quantify particulate fluxes from the surface ocean
on a regional basis (Kiko et al., 2017; Cram et al., 2018; Forest et al., 2012), and to re-
construct carbon export across large-scale biomes based on limited sets of measurements
(Guidi et al., 2015).

The growing number of UVP5 observations, their global distribution, high verti-
cal resolution, and ability to resolve multiple particle size classes offer an unprecedented
opportunity to re-evaluate global carbon fluxes from the ocean’s surface, testing the im-
portance of the choice of depth horizon, the role of small vs. large particles, and the de-
gree of autotrophy (i.e., net particle production) vs. heterotrophy (i.e., net particle con-
sumption) across the euphotic zone. In this study, we use a global reconstruction of PSDs
from UVP5 observations (Clements et al., 2022) to provide a new estimate of the mag-
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nitude and patterns of particulate carbon export from the ocean’s surface. The approach
relies on empirical relationships that relate particle size and abundance to sinking fluxes
(Kriest, 2002; Guidi et al., 2008; Kiko et al., 2017), which we tune against a global data
set of in situ sediment trap and thorium-derived particle flux observations (Bisson et al.,
2018). We exploit the high vertical resolution of UVP5 measurements to estimate par-
ticle export at both the climatological euphotic zone depth and the maximum mixed layer
depth, elucidating the importance of the export horizon for net carbon export and se-
questration.

The rest of the paper is organized as follows. Section 2 describes the methods used
to estimate particle fluxes from global PSD reconstructions and in situ observations. Sec-
tion 3 presents the results of the new export estimates, comparing them to prior work,
and discussing the implications, uncertainties, and caveats inherent to our approach. Sec-
tion 4 summarizes the main findings and future directions.

2 Methods

The flux of particulate carbon (¢, ;ggfy) at any given depth can be expressed as

a function of three size-dependent quantities: the number (#) of particles of a given size,
i.e., the PSD (n(s) im), the sinking speed (w(s), ), and the carbon content of each

' m3c
mg

particle (c(s), ?), according to the following equation (Guidi et al., 2008; Stemmann
& Boss, 2012):

o= [ nts) ws) - els) as, 1)

Smin

Here, s (cm) indicates the particle ESD, or size, and 8,5, and $,,4, the minimum
and maximum size of particles considered for export. Following previous work, we as-
sume that the quantities in Equation 1 can be approximated by power laws that depend
on particle size, each characterized by an intercept (the size-independent coefficient) and
a slope (the exponent for size-dependence) (Stemmann & Boss, 2012):

n(s) =ng-s " (2)
w(s) = wp - §" (3)
c(s) = co - s, (4)

Thus, by using Equations 2-4, the total particle flux can be expressed as:

-

where we combined the intercepts and exponents of the sinking speed and carbon
content relationships by setting mo = wp-cp and p = n+¢, following the approach by
Guidi et al. (2008). We further approximate mg and p with globally constant values, which
we constrain with in situ observations. In practice, we calculate the continuous integral
in Equation 5 as a discrete summation over the finite size bins that approximate the PSD
observed by UVP5 instruments.

Smaz Smaz
no - wo - co - s P ds = / no-mo-s P ds (5)

min Smin

We use PSD properties (biovolume and slope) from a global UVP5-based recon-
struction, shown in Figure 1 (Clements et al., 2022). Briefly, this reconstruction is based



on a machine learning algorithm (a bagged Random Forest ensemble) applied to a global
dataset of UVP5 observations (Kiko et al., 2022), and provides monthly varying clima-
tological maps of PSD slope and biovolume in the upper ocean. We combine these PSD
reconstructions with empirical relationships for sinking velocity and carbon content to
estimate particle fluxes by solving Equation 5. Since the parameters that define the com-
bined sinking speed and carbon content relationships, i.e., mg and pu, are poorly constrained
(Kriest, 2002; Stemmann & Boss, 2012; Kiko et al., 2017), we optimized them by min-
imizing the mismatch between predicted particle fluxes and in situ observations from sed-
iment traps and thorium-uranium disequilibrium at the base of the euphotic zone (Bisson
et al. (2018), see Section 2.1).

We exploit the three-dimensional nature of UVP5 observations to calculate par-
ticle fluxes at two different export horizons: the base of the euphotic zone (here defined
by the 1% light level following Morel et al. (2007)) and the annual maximum mixed layer
depth (Johnson et al., 2012). For the former, we take the PSD estimates from Clements
et al. (2022). For the latter, we estimate the PSD at the base of the wintertime mixed
layer, following the same procedure as Clements et al. (2022).

a) Reconstructed PSD Biovolume

0.01 0.1 1 10
ppm

b) Reconstructed PSD Slope

Figure 1. Global reconstructions of (a) PSD biovolume (ppm), and (b) PSD slope (non-
dimensional), based on a machine-learning extrapolation of in situ UVP5 observations (Clements
et al., 2022). Color contours show reconstructed variables as annual means. Dots show in situ
quantities from UVP5 observations. Note that observations reflect specific months of the year,

explaining some of the mismatches with annual mean quantities shown by the background colors.
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2.1 Sinking Speed and Carbon Content

Particle sinking speed and carbon content have been empirically evaluated using
power law relationships analogous to Equations 3 and 4, e.g., as compiled in Kriest (2002)
and Stemmann et al. (2004). Individually, most observational studies measure a range
of particles that does not wholly encompass the sizes detected by the UVP5. Further-
more, these relationships are defined for specific particle types, which are not distinguished
in the PSD reconstruction used here (Clements et al., 2022).

Since estimates of total flux are sensitive to the sinking speed and carbon content
relationships encapsulated by the parameters mg and p, we apply an optimization pro-
cedure to keep our results consistent with in situ particle flux measurements. Specifi-
cally, we find the values of mg and g that minimize the sum of the square errors between
the log of the particle flux reconstructions (Equation 1) and co-located in situ carbon
flux measurements (Bisson et al., 2018). We use both trap and thorium flux data, cor-
rected to be at the euphotic depth. We average together all in situ data onto the same
grid of the PSD reconstructions (Clements et al., 2022), i.e., into 1 degree grids, by month,
so that the optimizations are done on a climatological basis. Because in situ carbon flux
measurements are uncertain (Bisson et al., 2018), we adopt a Monte Carlo approach for
this optimization, repeating it 1000 times after perturbing each flux observation by ap-
plying a random observational error, assuming a log-normal distribution and an uncer-
tainty of 1 standard deviation on the measurements. This Monte Carlo ensemble also
allows us to estimate the error associated with the optimization of the sinking speed and
carbon content parameters.

Because the size distribution of particles that contribute to the flux is poorly con-
strained, we perform this optimization for a range of plausible minimum and maximum
sizes for Equation 5, selecting a physically reasonable combination for the final estimate.
Ultimately, when optimizing the sinking carbon parameters, the total global export flux
is not sensitive to the size range; however the resulting empirical relationships are. The
insensitivity of the carbon flux to the size range indicates a compensatory effect between
the sinking carbon parameters and the size range selected for the optimizations. Thus,
choosing different size combinations would result in a similar total flux, although it may
slightly alter spatial or temporal patterns in a compensatory way (SI Fig. 1).

Our final choice of size range is informed by average sinking speeds and carbon con-
tent previously reported (Kriest, 2002). Based on this optimization analysis, we set the
minimum size class to be 35 pum, where the average sinking speed is near 1 m d=! (Smayda,
1970; Kriest, 2002). Although this value is lower than the detection limit of the UVP5,
the power law slope can likely be extended to this size range, as demonstrated for ex-
ample by observations in the the Pacific Ocean (Stemmann, Eloire, et al., 2008). Most
organic particles smaller than this size are likely rapidly remineralized, making their con-
tribution to the sinking flux negligible (Riley et al., 2012). Even if some smaller parti-
cles could sink more rapidly (e.g., because of higher concentrations of mineral “ballast”
and higher density) and could contribute more substantially to the total flux, neglect-
ing them would not significantly affect our final export, because the optimized flux is nearly
insensitive to the size range selected (SI Fig. 1). We choose 5 mm as the maximum size,
i.e., the same maximum size used for the PSD reconstructions (Clements et al., 2022),
roughly corresponding to the size where zooplankton become important contributors to
the particle biovolume detected by UVP5 in a variety of regions (Forest et al., 2012; Stem-
mann, Youngbluth, et al., 2008; Stemmann & Boss, 2012).

Overall, this optimization approach results in a median value of 2.63 + 0.06 for the
exponent s, and 18.0 £ 2.8 mgC m s~! cm™2-%3 for the intercept mg, both in the range
suggested by in situ observations (Kriest, 2002), and comparable to values adopted by
previous studies (Kriest, 2002; Stemmann et al., 2004; Guidi et al., 2008; Kiko et al., 2017;
Bianchi et al., 2018).
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2.2 Flux reconstruction, error and evaluation

We first present results for fluxes estimated at the climatological euphotic zone depth,
and then repeat the calculation at the maximum mixed layer depth. This requires an
estimate of the PSD at the maximum mixed layer depth, which we obtain from UVP5
observations following the same machine learning approach of Clements et al. (2022). We
keep the same sinking speed and carbon content parameters (mg and p), assuming that
they do not change substantially between the two depths, which are often not too far
apart from each other. Thus, the only methodological difference between the two esti-
mates is the depth of the PSD reconstruction used to calculate the flux.

We take the ensemble mean of the Monte Carlo optimizations (Section 2.1) as the
final carbon flux estimate. Error in this estimate could arise not only from the uncer-
tainty in the particle sinking speed and carbon content parameters, but also from the
uncertainty in the PSD reconstructions (Clements et al., 2022). We combine these two
sources of error by summing the variances of two ensembles of carbon flux reconstruc-
tions. The first consists of the Monte Carlo optimization ensemble, based on the mean
PSD from Clements et al. (2022). The second uses 100 different realizations of PSD from
Clements et al. (2022), but sets mg and p to the median values from the optimization.
The final uncertainty is taken as the square root of the combined variances.

We evaluate reconstructed particle export fluxes by comparing them to in situ flux
observations and previous global reconstructions. Specifically, we compare total fluxes,
zonal averages, and seasonal cycles. For these comparisons, we divide the ocean into 14
biogeochemically consistent regions based on the boundaries identified by Weber et al.
(2016), with an additional boundary along the equator to separate Northern and South-
ern Hemispheres.

3 Results and Discussion
3.1 Euphotic zone export fluxes

Our resulting global carbon flux reconstruction at the base of the euphotic zone
compares well with in situ sediment trap and thorium-based observations (Fig. 2), per-
forming in a similar way as previous estimates (Henson et al., 2011; Dunne et al., 2007;
Siegel et al., 2014). Compared to previous work, we reduce the uncertainty relative to
observations, as expressed by the lower root mean square error and bias. However, our
method also reduces the full range of reconstructed fluxes, i.e., it overestimates the flux
at low values and underestimates it a high values compared to observations. This bias
could be related to a similar underestimate of the range of PSD biovolume and slope that
likely depends on the specific machine learning method used to extrapolate UVP5 ob-
servations (Clements et al., 2022). It is also possible that the optimization approach against
an averaged global dataset of in situ fluxes fails to capture extremes in particle export
at both the high and low range of observations.

Comparing sediment trap and thorium-based observations to the various estimates
of Fig. 2 highlights the relative strengths and weaknesses of each approach. The results
from Dunne et al. (2007), based on combining satellite primary production with empir-
ical estimates of particle export ratios, match the observed values well, but tend to over-
estimate the largest fluxes (not shown on these figure axes). The estimate by Henson et
al. (2011), based on a similar approach as Dunne et al. (2007), follows a similar pattern
as observations, as indicated by the high r2, but systematically underestimates the flux
magnitude, as shown by the negative bias. The satellite-driven, model-based estimate
from Siegel et al. (2014) captures the overall magnitude of export, but misses some of
the variability of observations, as indicated by the relatively low 2. Overall, all estimates
in Fig. 2 show combinations of strengths and weaknesses, and it would be difficult to high-
light a specific model as unconditionally superior. This suggests that a combination of
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Figure 2. Density scatter plots showing the relationships between in situ flux observations
and global flux reconstructions (mg C m~2 d~!) at the base of the euphotic zone from (a) this
study, (b) Siegel et al. (2014), (c) Henson et al. (2011), (d) (Dunne et al., 2007). Colored dots
represent the relative density of grid points surrounding the data point, and the dashed line in-
dicates a 1:1 ratio. Annotations show the coefficient of determination (r?), root mean square
error (RMSE), and average bias. Note that to keep similar x-axes and allow better comparison

between the different estimates, a limited number of points with flux larger than 1000 mg C m~?2
d~! have been omitted from the figures.

estimates should be used to asses export of carbon from the surface ocean, and that fu-

ture efforts should strive to reduce the biases discussed above, potentially combining strengths
from different approaches.

Extrapolated to the whole ocean, our method reveals spatial patterns of export fluxes
in broad agreement with previous studies, with some notable differences (Fig. 3). Sim-
ilar to other estimates, particle fluxes tend to decrease from high to low latitudes, and
from coastal regions to the open ocean. A local maximum of export is reproduced along
the equator, and is particularly evident in the Pacific Ocean. Compared to previous work,
our method produces somewhat weaker gradients between coastal and offshore waters,
with slightly higher fluxes near the centers of subtropical gyres, and suggests an asym-
metry between the subpolar Atlantic and Pacific Oceans, with more intense particle ex-
port along the gulf of Alaska than in the North Atlantic (see also Section 3.1.1). We also

reconstruct substantially stronger export than previously found in the Southern Ocean,
in particular south of 50S (see discussion in Section 3.2).
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Globally integrated, we estimate a particle export flux of 5.8 & 0.1 PgC y~!, in good

agreement with the range of observational and model-based estimates of the biological
gravitational pump (4-9 PgC y~!, Boyd et al. (2019)). Compared to other spatially re-
solved reconstructions, our global flux sits between the low-value of Henson et al. (2011)
(3.0 £ 0.3 PgC y 1) and the high-value of Dunne et al. (2007) (8.5 + 0.81 PgC y~1).
Seasonal maps of the export and standard deviation are shown in Supplementary Fig-
ures S2 and S3.

a) This Study b) Bisson et al. (2018)

Figure 3. Annual average particle export flux (mg C m™2 d™') from the euphotic zone for
(a) the global PSD-derived flux from this study, compared to (b) the in situ data of Bisson et al.
(2018), (c) the steady state satellite-driven model SIMPLE-TRIM of DeVries et al. (2017), (d)
the empirical model of Dunne et al. (2007), (e) the satellite-driven euphotic zone food web model
Siegel et al. (2014), and (e) the empirical model of Henson et al. (2011). Annotations in each fig-
ure show the globally integrated export in Pg C y !, and the uncertainty reported by each study.

8.1.1 Spatial variability

Variations in export patterns derived with our approach (Equations 1 and 5) re-
flect a combination of spatially varying PSD biovolume and slope (Clements et al., 2022).
We can quantitatively describe the effect of the PSD as the relative contribution of small
(35 pm - 418 pm) vs. large particles (418 ym - 5 mm) to the total flux (Figure 4), where
418 pm is the geometric mean of the size range considered here. Biovolume and PSD slope
generally correlate in such a way that both factors contribute to increasing export fluxes
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in particle-rich productive waters, where large, rapidly sinking particles tend to be rel-
atively more abundant than small particles, and to decreasing export fluxes in particle-
poor oligotrophic waters where small particles dominate (Clements et al., 2022) (Figure
4).

High export in the eastern equatorial and tropical Pacific can be attributed to high
biovolume, with a minor contribution from PSD slope, which appears to be more uni-
form across the region (Figure 1). The picture is somewhat different in the equatorial
Atlantic Ocean, where a more substantial “flattening” of the PSD supports a higher con-
tribution from large particles. A similar interaction of particle abundance and size-structure
dramatically intensify fluxes at high latitudes, such as in the subpolar North Pacific and
Southern Ocean, and to a lesser extent the subpolar Atlantic, where an increase in par-
ticle abundance is accompanied by a shift of the PSD toward large particles. In contrast,
along many coastal regions, including eastern boundary upwelling systems and the Ara-
bian Sea upwelling, increase in particle biovolume, rather than substantial changes in size
structure, appears to drive enhanced export fluxes. We speculate that changes in com-
munity structure associated with more productive regions explain such a shift.

We illustrate the main spatial differences between our and other reconstructions
by considering zonally averaged export fluxes (Fig. 5). The largest export rates are ob-
served around the equator, in the subpolar Pacific Ocean, and in the mid- to high-latitudes
of the South Atlantic Ocean, while more uniform export is observed in the Indian Ocean.
In all basins, the minimum export rates are generally located at the latitude of the sub-
tropical gyres. While export is nearly symmetrical around the equator in the Pacific Ocean
(Fig. 5a), in the Atlantic Ocean it dramatically increases moving from the Northern to
the Southern Hemisphere (Fig. 5b). These patterns reflect a combination of open-ocean
and shelf enhanced particle fluxes. Specifically, high export in the Northern Pacific and
Southern Atlantic Oceans are partly driven by large fluxes in the Bering Sea, the Sea
of Okhotsk, and the Patagonian shelf. At lower latitudes, coastal upwelling systems sus-
tain particularly high export in the northern Indian Ocean and the tropical to subtrop-
ical Atlantic.

Our reconstruction shows broad meridional patterns similar to previous estimates
(Fig. 5); however, significant regional-level discrepancies remain. For example, in the low
latitudes, we predict somewhat less intense equatorial export peaks and subtropical lows,
compared to the estimates of Dunne et al. (2007) and Siegel et al. (2014). In this respect,
our reconstruction is more in line with that of DeVries and Weber (2017). In the north-
ern Pacific, we do broadly underestimate the transition zone as a persistent feature; how-
ever, seasonally, it is present (Supplementary figure S2). Overall, in the subpolar North
Pacific, our estimate shows a northward shift of maximum export towards the continen-
tal margins that is comparable to the results of Dunne et al. (2007). This is likely caused
by intensification of particle fluxes in coastal waters and marginal seas, which may be
related to regional processes such as more efficient nutrient recycling in shallow regions,
or iron leakage from continental shelves (Nishioka et al., 2020) supporting large phyto-
plankton sizes. In the Atlantic Ocean, the gradual increase of export from northern to
southern latitudes (mostly driven by high export near the coast), and the rapid increase
in the Southern Ocean (caused by high export near the Patagonian shelf), are similar
to the reconstruction of Henson et al. (2011), although the magnitude is larger. In the
Indian Ocean, our reconstruction matches other studies at low latitudes; however, it shows
a more dramatic increase in export towards the Southern Ocean sector (discussed in more
detail in Section 3.2).

3.1.2 Seasonal cycle

The seasonal cycle of particle export is comparable to previous studies, when av-
eraged over large-scale coherent biomes (Fig. 6). However, significant discrepancies are
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a) Small Particle Fraction

10 20 30 40 50 60

Figure 4. Role of small vs. large particles. The two panels show the fraction of carbon flux at
the euphotic zone from (a) small particles (35um to 418um ESD) and (b) large particles (418um
to 5mm ESD).

also revealed. In general, our seasonal cycle is more muted than previous work, suggest-
ing weaker month-to-month variability in some regions, while other regions match pre-
vious reconstructions more closely. The most significant discrepancy is observed in the
Southern Ocean, in particular in the Antarctic zone, where our reconstruction is sub-
stantially higher than previous estimates, with sustained export throughout winter months.
We discuss this deviation in Section 3.2.

The lower seasonality in our estimate is consistent with the reduced spatial gra-
dients, and suggests overall weaker variations in net community production and export
than previously assumed. The machine learning approach used to reconstruct the PSD
relies on non-linear relationships with multiple ocean variables to reconstruct particle
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Figure 5. Zonally integrated annual mean export (Tg C y~' degree™) from the base of the
euphotic zone, for (a) the Global Ocean, (b) the Pacific Ocean, (c) the Atlantic Ocean, and (d)

the Indian Ocean. Each color represents a different study, as shown in the legend (bottom).

size distributions, which may accentuate compensatory relationships between different
predictors. Surface chlorophyll, temperature, and net primary production have all been
used in previous global reconstructions (Dunne et al., 2007; Henson et al., 2011; Siegel

et al., 2014), but rarely together with additional variables that may be important in mod-
ulating spatial and seasonal patterns of export. It is also possible that our method some-
what underestimates variability compared to previous work. As previously noted, our
PSD reconstructions reduces extremes in both biovolume and PSD slope (Clements et

al., 2022), which may lead to underestimating variability in particle export fluxes derived
from these quantities.

3.2 Southern Ocean Export

Export flux in the Antarctic zone of the Southern Ocean are larger in our estimate
than other global reconstructions, especially during austral summer (Fig. 6). We also
find a southward shift in export, with a peak around 50S, rather than around 40S as in
other estimates. A regional study based on 10 years of biogeochemical Argo measure-
ments from 2006-2014, combined with satellite-based net primary production and ex-
port algorithms, similarly suggests higher than previously reported particle fluxes through-
out the region (Arteaga et al., 2018), in better agreement with our results (Fig. 7). This
similarity is mostly evident in the open ocean, and varies depending on the primary pro-
duction algorithm chosen for the comparison. However, our estimate also suggests sub-
stantially higher export near landmasses, for example South Georgia and the South Sand-
wich Islands and the Kerguelen Plateau. Although estimates from Arteaga et al. (2018)
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Figure 6. Annual seasonal cycle of particle flux from the euphotic zone (Tg C y~!) for the

regions specified in the map (top). Each line corresponds to a different estimate, as listed in the
legend below the map. The same seasonal spatial mask was applied to each study. Note that the

study by DeVries and Weber (2017) provides annual mean export fluxes, which are shown here as
horizontal lines.

do not show the same high flux in austal winter through the end of the year as our re-
construction, they do demonstrate that export fluxes from the Antarctic zone of the South-

ern Ocean likely never decrease to the nearly negligible levels shown by other global es-
timates (Fig. 6).

The discrepancy in export from the Antarctic zone relative to prior global estimates
could arise from a combination of factors. Observations in the Southern Ocean, partic-
ularly in austral winter, are scarce. This is true for both the UVP5 measurements and
the climatological predictors used to reconstruct PSD (Clements et al., 2022). The UVP5
data compilation (Kiko et al., 2022) includes two major cruises in the Southern Ocean,
which only cover the months of March to May. Satellite-based reconstructions of chloro-
phyll and primary production from ocean color are on the other hand poorly resolved
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ferent data-based estimates from Arteaga et al. (2018), and (f) the mean from that study. Each
data-based estimate from Arteaga et al. (2018) uses a different net primary production algorithm
to derive export. (g) Seasonal cycle of export for each estimate in the Antarctic zone (shown in
figure 6).

in austral wintertime. Other climatological variables, such as nutrients and oxygen, are
also the results of interpolation of fewer in situ observations relative to the rest of the
ocean. The scarcity of observations to train the machine learning model used for the PSD
reconstructions results in significant uncertainty in predicted PSD and export fluxes in
this region (Clements et al., 2022).

Our reconstruction reveals significant export primarily next to island masses. Prox-
imity to Southern Ocean islands have been shown to increase productivity and carbon
flux (Jouandet et al., 2014; Stemmann, Eloire, et al., 2008), presumably via enhanced
vertical mixing and iron fertilization from sedimentary sources in otherwise high-nutrient
low-chlorophyll waters (Gaiero et al., 2003). It is possible that other methods of flux re-
constructions (Henson et al., 2011; Siegel et al., 2014; DeVries & Weber, 2017) under-
estimate this increased export, in particular during winter, when observations are scarce.
Expanding the number of in situ particle flux and UVP5 observations from the Antarc-
tic zone, downstream of major land masses and over the entire seasonal cycle, could help
shed light on the patterns of export and their variability in this undersampled region.

3.3 Mixed layer versus euphotic zone export

Globally integrated, export from the maximum wintertime mixed layer depth is 6.1
+0.1 PgC y1, i.e., about 0.5 PgC y~! larger than the global export from the euphotic
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420 zone. This estimate is lower than observational estimates of organic carbon export and

421 annual net community production from the same depth horizon (Emerson, 2013), which
422 would include additional export mechanisms.
a)

Annual average POC flux from the
wintertime Mixed Layer

b)

Ratio of Annual average POC flux from maximum
Mixed Layer depth to Euphotic depth

0.25

Ratio of Annual average Euphotic depth to
c) maximum Mixed Layer depth

0.25

Figure 8. (a) Annual mean particle export (mg C m~2 d™') from the maximum mixed layer
depth. Total export is 6.1 PgC y~'. (b) Ratio of the export from the MLD to the export from
the Euphotic zone. Red indicates a higher export from the MLD (c) Ratio of the annual mean
Euphotic zone depth to the Maximum annual mixed layer depth. Red indicates where the eu-

photic zone is deeper.

423 Overall, export from the wintertime mixed layer follows broad spatial patterns sim-
424 ilar to the export from the euphotic zone (Fig. 8a). The tropics and subtropics show larger
a25 mixed layer export fluxes (locally, up to a few times), while high latitudes show overall

426 weaker values (Fig. 8b). The low-latitude intensification of mixed layer fluxes is simi-

427 lar in all ocean basins, and more than compensates for the reduction at high latitudes

428 (Supplementary Fig. S6), thus producing an overall larger export from this horizon. Be-
420 cause of this low-latitude intensification, export from the mixed layer shows stronger gra-
430 dients between the tropics and high latitudes. Gradients between the equatorial export
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peak and the subtropical export low are also intensified. Finally, export from the mixed
layer in the Southern Ocean is substantially depressed compared to export from the eu-
photic zone. Similar to export from the euphotic zone, export from the mixed layer tends
to be dominated by smaller particles (SI Fig. ST7)

Differences between euphotic zone and mixed layer export can be best interpreted
by considering the different depth of these horizons (Palevsky & Doney, 2018) (Fig. 8
C). The maximum mixed layer is shallower than the euphotic zone in the tropics and
sub-tropics, and is deeper in high latitudes (Fig. 8c). This suggests that shallower ex-
port horizons are generally characterized by higher fluxes than deeper export horizons,
which we attribute to remineralization of particles in surface layers. Specifically, we iden-
tify three main latitudinal bands with different horizon depths and export patterns, roughly
corresponding to tropics and subtropics, mid-latitudes, and subpolar regions.

Over most of the tropics and the subtropics, the maximum wintertime mixed layer
is shallower on average than the climatological euphotic zone (blue colors in Fig. 8 c).
Here, particle remineralization between the wintertime mixed layer and the euphotic zone
depth likely reduces export from the latter horizon, suggesting net heterotrophy in the
deeper layers of the euphotic zone, consistent with observations of shallow particle re-
generation in the tropics (Pavia et al., 2019).

Over subpolar regions, the wintertime mixed layer is deeper on average than the
climatological euphotic zone. Thus, export fluxes reach maximum values within the eu-
photic zone, and decrease below it following typical flux attenuation profiles (Martin et
al., 1987; Guidi et al., 2009). Finally, over most of mid-latitudes, the wintertime mixed
layer is deeper on average than the climatological euphotic zone. However, export fluxes
from the mixed layer and euphotic zone are very similar in magnitude, suggesting a close
seasonal compensation between enhanced euphotic zone fluxes when this horizon is found
above the wintertime mixed layer, and reduced euphotic zone fluxes when it is found be-
low it.

Ultimately, differences in export between the euphotic zone and the wintertime mixed
layer are important when considering the role of the biological pump for carbon seques-
tration (Palevsky & Doney, 2018). Export below the wintertime mixed layer removes
carbon from contact with the atmosphere for timescales longer than one year. Our re-
sults suggest that more carbon is sequestered below the wintertime mixed layer than leaves
the euphotic zone. We further suggest a role for particle consumption by heterotrophes
(microbes and zooplankton) in reducing the abundance of organic particles in the lower
euphotic zone, making it net heterotrophic rather than primarily autotrophic.

3.4 Caveats to our approach

Our method relies on global PSD reconstructions from UVP5 observations, as well
as in situ particle flux measurements, both of which are spatially and temporally lim-
ited. This in turns reduces the ability of our approach to obtain an accurate climato-
logical picture of PSD and fluxes, and extrapolate local observations to larger regions
and other times of the year. In particular, about forty-three percent of monthly parti-
cle flux observations contain only one data point, and entire ocean basins are represented
by a handful of measurements (Fig. 2b). While more widely distributed than flux mea-
surements, UVP5 observations are also characterized by large gaps in space and time (Kiko
et al., 2022).

As previously discussed (Clements et al., 2022), regional correlations between en-
vironmental properties and PSD observations from UVP5 may not be well captured by
extrapolation with a machine learning algorithm trained on data from different regions,
especially when non-linear relationships between variables become important. Similarly,
our reconstructions rely on the assumption that PSD can be well approximated by power
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law distributions. Analysis of UVP5 data suggest that this assumption is generally valid
over the open ocean (Clements et al., 2022), although locally it may be flawed, and other
distributions may be more accurate (R. A. Reynolds & Stramski, 2021). Expanding the
coverage of in situ PSD and fluxes, in particular in under-sampled regions characterized
by large variability, such as the Southern and northwest Pacific Oceans, would improve
the robustness of our estimates, and shed additional light on regional export patterns
not captured by previous work.

The conversion of PSD to export flux encapsulated by Equations 1 and 5 also suf-
fers from limitations. Converting standing stocks of particles from UVP5 observations
to sinking carbon flux using size-dependent relationships assumes that (1) all particles
of a given size have the same carbon content, and (2) they all sink at a similar speed pro-
portional to their size. Known biases exist with both assumptions. For example, densely
packed fecal pellets often contain more carbon and sink faster than heterogeneous ag-
gregates and marine snow of the same size (A. Alldredge, 1998). Biogenic and lithogenic
minerals could alter these relationships on a regional basis, e.g., near continental mar-
gins, where lithogenic particles are generally more abundant (R. Reynolds et al., 2010;
Trudnowska et al., 2020). Furthermore, we assume globally uniform relationships between
particle size, sinking speed, and carbon content. However, these relationships remain highly
uncertain (A. Alldredge, 1998; Stemmann, Eloire, et al., 2008; Stemmann & Boss, 2012;
Cael et al., 2021), and are likely to depend on region and time of the year, reflecting vari-
able particle characteristics and underlying oceanographic and ecological processes.

Our approach, which optimizes carbon content and sinking velocity parameters against
in situ particle fluxes, reduces to some extent the effect of these uncertainties. More work
combining in situ and optical measurements should focus on constraining these quan-
tities and their regional and temporal variability. Future studies could also improve our
approach by distinguishing living and non-living particles, as well as particle type and
composition, e.g., by analysis of UVP5 images or other optical methods in conjunction
with in situ particle samples (Trudnowska et al., 2021).

4 Conclusions and future work

We provide a new, data-constrained estimate of particle export fluxes by combin-
ing global reconstructions of PSD from UVP5 observations and in situ export flux mea-
surements. Our estimate of particle export captures regional and seasonal variability in
fluxes, and allows reconstruction of export fluxes from spatially variable euphotic zone
and mixed layer depths, highlighting the importance of the choice of export horizon (Palevsky
& Doney, 2018).

We obtain a global particle export flux of 5.8 + 0.1 PgC y—! from the euphotic zone,
in line with previous work, although with regional and temporal differences. Our results
suggest weaker spatial and seasonal variability compared to previous studies, in partic-
ular in the open ocean, and highlight the importance of coastal waters and marginal seas
for export at high latitudes. Results from the Southern Ocean suggest that processes that
sustain elevated fluxes, in particular in wintertime and early austral summer, may not
be completely captured by other global reconstructions, and that waters downstream of
coasts and islands may harbor a significant source of carbon export to the deep ocean,
which is only partially captured in one other reconstruction (Dunne et al., 2007).

We illustrate the ability of our method to obtain particulate organic carbon fluxes
at multiple depth by reconstructing and comparing carbon export from the euphotic zone
and the wintertime mixed layer depth. Export from the mixed layer is overall stronger
than export from the euphotic zone in low and mid latitudes, and weaker in high lat-
itudes, driving a marginally larger flux of 6.1 £ 0.1 PgC y~!. Differences between eu-
photic zone and mixed layer export are only partially consistent with results from large
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scale models (Palevsky & Doney, 2018), and suggest important organic matter reminer-
alization in the deeper parts of the euphotic zone. Three-dimensional reconstructions of
particle fluxes would allow a closer investigation of the processes controlling export changes
with depth and their implications for particle transfer efficiency and carbon sequestra-
tion.

Our results highlight the relative importance of particle abundance and size struc-
ture in driving export. Total particle biovolume and the PSD slope are correlated in such
a way to act synergistically on particle fluxes (Clements et al., 2022). Consistently, higher
fluxes are reconstructed in regions with larger particle biovolume and “flatter” slopes. We
also suggest distinct deviations from these patterns, for example in the tropical and north-
ern subtropical Pacific Ocean, where high abundance of all particles, rather than dom-
inance of large relative to small particles, appears to drive elevated export. We further
highlight the importance of the PSD by comparing export for small and large particles
(here separated at a cutoff size of 418 pm), showing that, while small particles (35 pm
- 418 um range) overall dominate export, large particles (418 pym - 5 mm range) become
proportionally more important in high latitudes and tropical regions, where they can ac-
count to up to 60 % of export fluxes.

We identify sources of uncertainty and limitations that should be addressed in fu-
ture work. There remain areas of the ocean and times of the year with limited UVP5
observations and, critically, in situ flux measurements, driving uncertainty in both the
PSD and flux reconstructions. As UVP5 observations increase in number, our analysis
can be refined, for example by expanding comparison with in situ sediment trap and thorium-
based particle flux observations (Mouw et al., 2016). New machine learning approaches
should aim at better capturing fluxes at the high and low end of their range, reducing
current biases (Clements et al., 2022). Furthermore, better constraints should be placed
on particle carbon content and sinking speed parameters, reflecting regional variability
and particle types.

The three-dimensional nature of UVP5 observations paves the way for fully three-
dimensional reconstructions of particle export fluxes in the ocean interior. This will greatly
benefit from particle flux compilations that span the full depth of the ocean (Mouw et
al., 2016), and that harmonize discrepancies between different flux measurement meth-
ods (Bisson et al., 2018). Ongoing deployments of UVP instruments, including on Argo
floats, will rapidly increase the number of PSD observations with high vertical resolu-
tion (Picheral et al., 2022). In turn, three-dimensional reconstructions of export will en-
able a better characterization of the ocean’s ability to sequester carbon (Boyd et al., 2019),
and, in combination with models (DeVries & Weber, 2017; Siegel et al., 2014), a better
understanding of the processes behind the ocean’s biological pump (Siegel et al., 2022).
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