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Abstract16

In this work, we develop gradient boosting machines (GBMs) for forecasting the SYM-17

H index multiple hours ahead using different combinations of solar wind and interplan-18

etary magnetic field (IMF) parameters, derived parameters, and past SYM-H values. Us-19

ing Shapley Additive Explanation (SHAP) values to quantify the contributions from each20

input to predictions of the SYM-H index from GBMs, we show that our predictions are21

consistent with physical understanding while also providing insight into the complex re-22

lationship between the solar wind and Earth’s ring current. In particular, we found that23

feature contributions vary depending on the storm phase. We also perform a direct com-24

parison between GBMs and neural networks presented in prior publications for forecast-25

ing the SYM-H index by training, validating, and testing them on the same data. We26

find that the GBMs have a comparable root mean squared error as the best published27

black-box neural network schemes.28

Plain Language Summary29

Forecasting geomagnetic indices is crucial for mitigating potential effects of severe30

geomagnetic storms on critical infrastructures such as power grids. In this work, we adopt31

a machine learning method for SYM-H prediction hours ahead with various combina-32

tions of solar wind & interplanetary magnetic field parameters, past SYM-H values, and33

other derived parameters. The feature importance quantification that we derive provides34

important, new insight into the complex relationship between the solar wind and the Earth’s35

ring current.36

1 Introduction37

Geomagnetic storms are the largest geomagnetic disturbances, during which severe38

space weather threats can occur and disrupt our technological society. During geomag-39

netic storms, petajoules of energy enter the Earth’s magnetosphere from the solar wind,40

of which vast majority is stored in the ring current in the inner magnetosphere (Ganushkina41

et al., 2017). The ring current indices such as Dst and SYM-H provide essential infor-42

mation about the current strength and evolution as well as the energy budget, and thus43

are of crucial practical importance (Sugiura & Kamei, 1991). These ring current indices44

have been used in numerous space weather applications, such as in classification of storms,45

as inputs to empirical models of the magnetospheric magnetic topology (N. Tsyganenko,46

1989; N. A. Tsyganenko, 1995, 2002a, 2002b), as features representing the geomagnetic47

activity level for machine learning forecasting the ionospheric total electron content (Liu48

et al., 2020), as parameters used for forecasting of the radiation belt energetic particle49

fluxes (Sakaguchi et al., 2015) and other magnetospheric quantities (Bortnik et al., 2018).50

Therefore, the ability to predict the ring current indices is crucial for space weather fore-51

casts and end-users.52

Several attempts have been made to use machine learning methods to forecast the53

SYM-H index. Cai et al. (2010) and Bhaskar and Vichare (2019) used a Nonlinear Au-54

toRegressive with eXogeneous inputs (NARX) neural network to predict 5-minute av-55

erages of the SYM-H index one hour ahead using past SYM-H values, solar wind and56

IMF parameters as input. Cai et al. (2010) trained their neural networks with data from57

67 geomagnetic storms from 1998 to 2006, while Bhaskar and Vichare (2019) used data58

from 25 additional geomagnetic storms from 2006 to 2013. With the goal of developing59

operationally feasible models, Siciliano et al. (2021) trained long short-term memory (LSTM)60

and convolutional (CNN) neural networks to predict the SYM-H index one hour ahead61

using only IMF parameters and past SYM-H values as input. Collado-Villaverde et al.62

(2021) took a similar approach to predict the SYM-H index several hours ahead, while63

also considering the effects of omitting past SYM-H values as input on predictive per-64

formance. Both Siciliano et al. (2021) and Collado-Villaverde et al. (2021) train and val-65
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idate their networks on 25 strong geomagnetic storms (Dst < -100 nT) from 1998 to 201766

and evaluate their performance using 17 strong test storms. To conduct a direct com-67

parison of predictive performance, we use the same storms and features to train and test68

our proposed model. For the rest of this article, we will use the terms features and (model)69

inputs interchangeably. Comparison results are discussed in section 4.1.70

Many machine learning approaches have been taken to forecast the Dst index and71

other geomagnetic indices such as the Kp index. Attempts to apply machine learning72

methods to forecast the Dst index date back to the works of Lundstedt and Wintoft (1994),73

Gleisner et al. (1996), and Wu and Lundstedt (1997). These authors generally observed74

that the initial and main phases were more accurately predicted than the recovery phase75

when the Dst index is not used as an input due to the fact that the initial and main phases76

are more strongly correlated with solar wind properties. Pallocchia et al. (2006) advo-77

cated for using only IMF parameters as inputs for operational forecasting of the Dst in-78

dex because in situ solar wind plasma instruments tend to fail more often than space-79

based magnetometers. This was also the motivation for using only IMF parameters and80

past values to forecast the SYM-H index in Siciliano et al. (2021) and Collado-Villaverde81

et al. (2021).82

Although the majority of machine learning approaches to forecasting geomagnetic83

indices use neural networks, other techniques have also been proposed: Chandorkar et84

al. (2017) investigated the use of Gaussian Processes for forecasting the Dst index; Lu85

et al. (2016) compared the use of support vector machines (SVM) with neural networks;86

Boynton et al. (2011) employed the Nonlinear AutoRegressive Moving Average with eX-87

ogeneous inputs (NARMAX) model to derive an analytic expression to forecast 1-hour-88

ahead Dst as function of its past values and of the history of a solar wind-magnetoshpere89

coupling function. Xu et al. (2020) combined neural networks with SVM to construct90

an ensemble model using bagging to predict the Dst index up to six hours ahead. We91

also construct an ensemble model but use gradient boosting instead of bagging (see Bauer92

and Kohavi (1999) for a detailed comparison between boosting and bagging). Another93

difference is that we create an ensemble of many simple tree-based models as opposed94

to a few complex models. A comprehensive review of machine learning models for ge-95

omagnetic indexes can be found in Camporeale (2019).96

Despite the fact that data-driven machine learning methods have made a lot of progress97

in many scientific fields and have become popular tools, the lack of interpretability has98

been a major drawback. Even if machine learning methods have typically focused on pre-99

dictive performance, there has been a recent surge in interest in making these methods100

more interpretable (Molnar et al., 2020). The development of interpretable machine learn-101

ing algorithms is of key importance especially in scientific fields such as space weather.102

Inspite of the fact that machine learning methods have repeatedly been shown to out-103

perform operational models empirically, these methods have not been widely adopted104

in an operational setting due to a lack of trust and skepticism from the space weather105

community (Camporeale, 2019). Interpretability gives confidence to operational forecast-106

ers that relevant physical processes are captured to some degree and encoded in a black-107

box model, hence reassuring of its generalizability and robustness versus rare events, which108

are the main focus of space weather forecasting. Gray-box approaches, which combine109

physics-based models with black-box models, can also be used to make machine learn-110

ing methods for space weather forecasting more reliable (Camporeale et al., 2020).111

Explainability can be achieved by using either post-hoc explanation methods or112

intrinsically interpretable models. Examples of intrinsically interpretable models include113

linear regression, decision trees, and generalized additive models. Unfortunately, there114

is often a tradeoff between intrinsic model interpretability and predictive performance115

because interpretable models tend to make strong simplifying assumptions such as lin-116

earity or additivity. Recent efforts have been made to close this gap, starting with ad-117

ditive models that incorporate two-way feature interactions (Lou et al., 2013). Post-hoc118
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explanation methods, to some extent, can be used to explain the predictions made by119

more complex models, usually by constructing an approximate interpretable model af-120

ter training the original model. For an overview of interpretable machine learning meth-121

ods, see Molnar (2019). Several intrinsically interpretable models have previously been122

proposed for forecasting geomagnetic indices. Ayala Solares et al. (2016) proposed a Non-123

linear Autoregressive with Exogeneous Inputs (NARX) model to forecast the Kp index124

where the contribution of each model term to the output can be evaluated. Gu et al. (2019)125

proposed an interpretable NARX model the forecast the AE index that also includes un-126

certainty analysis.127

In this work, we not only aim to obtain accurate predictions of the SYM-H index,128

but more importantly, to learn if the data-driven approach can reveal insights on the phys-129

ical mechanisms. In turn, these insights could then be used to inform future physics-based130

or grey-box models. We achieve this by using a post-hoc explanation method known as131

Shapley Additive Explanations (SHAP) to quantify the contributions from each input132

on the predictions made by gradient boosting machines (Lundberg & Lee, 2017). SHAP133

has been successfully used to explain predictions from tree-based models in other scien-134

tific fields such as medicine (Lundberg et al., 2018), solar power forecasting (Kuzlu et135

al., 2020; Mitrentsis & Lens, 2021), finance (Bluwstein et al., 2020; Mokhtari et al., 2019),136

and atmospheric science (Stirnberg et al., 2020). Section 3.2 continues this discussion137

on explainability and describes the SHAP method in detail.138

The remainder of the paper is organized as follows. In Section 2, we introduce the139

data sources and our data processing procedures. In Section 3, we describe the gradi-140

ent boosting machine, hyperparameter tuning, and quantification of feature importance.141

In Section 4, we provide results of our predictions, compare them with those published142

in the existing literature, and most importantly, the new insights that we learn from the143

prediction model results. We conclude in Section 5 with a summary on key findings and144

some discussions on future work.145

2 Data146

The Disturbance Storm Time (Dst) index is computed as the H (magnetic north)147

component perturbation on equatorial magnetometers (Mayaud, 1980) on an hourly ba-148

sis, and is a characterization of a magnetic storm that has been used historically. The149

Dst index represents the longitudinally averaged part of the external geomagnetic field150

measured at the equator (Sugiura, 1964). As the index includes only the field variation,151

during geomagnetically quiet times, it hovers around zero. The typical definition of a152

geomagnetic storm is that the Dst index reaches values below −50 nT.153

The SYM-H index is a high-time-resolution version of the original Dst index, and154

is given at 1-minute cadence (Iyemori, 1990; Wanliss & Showalter, 2006). The SYM-H155

index is compiled from 11 low- and mid-latitude magnetometer stations. Quiet time fields,156

including local time and seasonal quiet time Sq current effects, are removed, and the resid-157

uals are averaged together, divided by the cosine of the co-latitude of the station to yield158

the component parallel with the magnetic dipole. Geomagnetic storms can be classified159

based on the SYM-H values: moderate (−100 nT < SYM-H < −50 nT), intense (−250 nT160

< SYM-H < −100 nT), and superstorms (SYM-H < −250 nT).161

We extract the SYM-H index data from the OMNI dataset compiled at NSSDC162

(https://spdf.gsfc.nasa.gov) using the open-source Python library swmfpy (King,163

2005; Al Shidi, Qusai, 2020). We use the level-2 solar wind plasma and interplanetary164

magnetic field (IMF) parameters from the Advanced Composition Explorer (ACE) space-165

craft provided by the NASA Space Physics Data Facility (https://cdaweb.gsfc.nasa166

.gov/index.html/) as inputs in our models. The original dataset contains the IMF com-167

ponents from the ACE Magnetic Field Experiment (MAG) instrument (Smith et al., 1998)168
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at a 16-second cadence, as well as proton density, bulk speed, and ion temperature from169

the SWEPAM suite (McComas et al., 1998), at a 64-second cadence. In addition to so-170

lar wind plasma and IMF parameters, we also include derived quantities, in particular171

the solar wind dynamic pressure and electric field, as we expect them to be relevant in-172

put parameters for predicting geomagnetic storms (Newell et al., 2007).173

Explanation methods, such as SHAP, allow us to confirm or disprove these expec-174

tations. To remove some of the high frequency variation inherent in high time resolu-175

tion data and to eliminate minor data gaps, we average the SYM-H index, solar wind176

and IMF parameters to a 5-min time resolution. This was also done by Collado-Villaverde177

et al. (2021); Siciliano et al. (2021).178

For training and testing the GBMs discussed in section 3.1, we use 42 strong ge-179

omagnetic storms occurring between 1998 to 2018 which reached a minimum SYM-H in-180

dex value of less than −100 nT. Information about these storms are given in tables 1 and 2.181

We use 5-fold cross validation to optimize hyperparameters (see section 3.1) instead of182

using a separate set of storms for validation, which allows us to use more data for train-183

ing models. Descriptive statistics for the training and test storms are given in tables A1184

and A2.185

Table 1. Storms used to train GBMs. These storms are identical to the ones used to train and

validate models in Collado-Villaverde et al. (2021).

Storm # Start date End date Min. SYM-H (nT)

1 1998-02-14 1998-02-22 -119
2 1998-08-02 1998-08-08 -168
3 1998-09-19 1998-09-29 -213
4 1999-02-16 1999-02-24 -127
5 1999-10-15 1999-10-25 -218
6 2000-07-09 2000-07-19 -335
7 2000-08-06 2000-08-16 -235
8 2000-09-15 2000-09-25 -196
9 2000-11-01 2000-11-15 -174
10 2001-03-14 2001-03-24 -165
11 2001-04-06 2001-04-16 -275
12 2001-10-17 2001-10-22 -210
13 2001-10-31 2001-11-10 -313
14 2002-05-17 2002-05-27 -113
15 2003-11-15 2003-11-25 -488
16 2004-07-20 2004-07-30 -208
17 2005-05-10 2005-05-20 -302
18 2006-04-09 2006-04-19 -110
19 1998-12-09 1998-12-19 -206
20 2012-03-01 2012-03-11 -149
21 1998-04-28 1998-08-05 -268
22 1999-09-19 1999-09-26 -160
23 2003-10-25 2003-11-03 -427
24 2015-06-18 2015-06-28 -207
25 2017-09-01 2017-09-11 -144

To predict SYM-H ∆t hours ahead of time t, henceforth denoted as y(t+∆t), we186

will consider different combinations of the features listed in table 3. We also consider lead187

times ∆t of one and two hours. When the SYM-H index is included, the observations188

from the previous one hour are used as input. We set the history length for all other fea-189
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Table 2. Storms used to test GBMs. These storms are identical to the ones used to test mod-

els in Collado-Villaverde et al. (2021).

Storm # Start time End time Min. SYM-H (nT)

26 1998-06-22 1998-06-30 -120
27 1998-11-02 1998-11-12 -179
28 1999-01-09 1999-01-18 -111
29 1999-04-13 1999-04-19 -122
30 2000-01-16 2000-01-26 -101
31 2000-04-02 2000-04-12 -315
32 2000-05-19 2000-05-28 -159
33 2001-03-26 2001-04-04 -434
34 2003-05-26 2003-06-06 -162
35 2003-07-08 2003-07-18 -125
36 2004-01-18 2004-01-27 -137
37 2004-11-04 2004-11-14 -393
38 2012-09-10 2012-10-05 -138
39 2013-05-28 2013-06-04 -134
40 2013-06-26 2013-07-04 -110
41 2015-03-11 2015-03-21 -233
42 2018-08-22 2018-09-03 -205

tures to be either two hours, if the SYM-H index is included, or 30 hours, if the SYM-190

H index is excluded. The history length selections were motivated by Siciliano et al. (2021),191

who examined the coefficient of determination R2 that quantifies the amount of observed192

variance that is explained by the predictions as a function of the history length, when193

the SYM-H index was either included or excluded as an input. They found that R2 started194

to decrease when the history length was around 30 hours, if the SYM-H index was not195

included as input. When the SYM-H index was included as input, the R2 results for his-196

tory lengths of 90 to 180 minutes were similar, while R2 started to decrease for time in-197

tervals longer than 180 minutes.198

Table 3. Features used as input into our models.

Features History length (in hours)

Past SYM-H index (nT) 1
IMF : Bx, By, Bz (nT) 2 or 30

Solar wind : Vx (km/s), ρ (amu/cm
3
), T (K) 2 or 30

Derived quantities: ρV 2
x (nPa), Es = max(0,−|Vx|Bz)(mV/m) 2 or 30

The different sets of features used as inputs are listed in table 4. Using different199

sets of features to train our models allows us to investigate how the inclusion of certain200

features affects predictive performance and feature contributions. The choice to train our201

models using only IMF parameters and past SYM-H (input set I1, table 4) was moti-202

vated by the high percentage of missing observations for solar wind plasma parameters.203

For IMF parameters and solar wind velocity, there is less than 2% of observations miss-204

ing within our sample. However, this percentage is substantially higher (roughly 9%) for205

solar wind density and temperature. Although our proposed model handles missing data206

internally, we choose to impute missing observations using linear interpolation (see sec-207

tion 3.4 in Chen and Guestrin (2016) for details).208
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Including solar wind plasma and derived parameters in input sets I3 and I4 allows209

us to investigate how these contribute to predictions. In particular, a sudden increase210

of dynamic pressure ρV 2
x can compress the magnetosphere and cause a positive jump in211

SYM-H, which typically happens at the beginning of the geomagnetic storms (sudden212

storm commencement). Another physically important parameter is the y component of213

the interplanetary electric field Ey = VxBz that characterizes the amount of north-south214

magnetic flux carried by the solar wind. Note that Vx < 0 in the geocentric-solar-magnetic215

(GSM) coordinate system used here. The rectified electric field Es = max(0, Ey) is the216

same as Ey when the IMF has a southward component (Bz < 0), which facilitates the217

onset of dayside reconnection, and zero for northward IMF when dayside reconnection218

is limited to high latitudes beyond the polar cusps (Burton et al., 1975). Including Es219

would allow us to compare and contrast its contribution to predictions using the Bur-220

ton equation (T. P. O’Brien & McPherron, 2000; T. P. O’Brien, 2002).221

To examine how solar wind and IMF parameters influence predictions without knowl-222

edge of past SYM-H values, we train models with input sets I2 and I4 which exclude past223

SYM-H values (see Table 4).224

Table 4. Various sets of features used as inputs to train our models.

Input set Features included

I1 IMF, past SYM-H
I2 IMF
I3 IMF/solar wind/derived quantities, past SYM-H
I4 IMF/solar wind/derived quantities

3 Methods225

3.1 Gradient Boosting Machines226

Gradient boosting machines (GBMs), also known as gradient boosted trees, have227

had considerable success in prediction tasks across a wide range of domains (Natekin &228

Knoll, 2013). Shwartz-Ziv and Armon (2021) recently performed a rigorous study show-229

ing GBMs outperformed several neural network models in terms of accuracy in classi-230

fication and regresssion problems with tabular data. GBMs are consistently used in the231

winning solutions of various machine learning prediction competitions like Kaggle, show-232

ing its effectiveness in a wide range of problems (Chen & Guestrin, 2016). In the space233

sciences, GBMs and other ensemble methods have recently been used to predict ambi-234

ent solar wind flow (Bailey et al., 2021) and the Dst index (Xu et al., 2020).235

In contrast to algorithms that construct one complex model, gradient boosting se-236

quentially constructs simple prediction models called base learners that improve upon237

previously constructed base learners and sums them together to obtain an ensemble model.238

This process is analogous to how gradient descent optimizes weights in a neural network.239

Seen as a form of “functional gradient descent”, gradient boosting minimizes an objec-240

tive function by iteratively adding a new base learner, usually a decision tree, that leads241

to the largest decrease in the loss function (Friedman, 2001). In the case of GBMs, the242

base learners are regression trees, which are a highly interpretable class of machine learn-243

ing models that mimic human decision-making but are often too simplistic for most pre-244

diction problems when used alone. Fortunately, ensembles of regression trees, like GBMs,245

are capable of producing highly accurate predictions while still taking advantage of the246

interpretability of regression trees. In addition to gradient boosting, bagging is another247

widely used ensemble method that constructs multiple base learners in parallel and ag-248

gregates them by averaging (Breiman, 1996).249
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The gradient boosting machines that we use to forecast SYM-H have the form

y(t+∆t) = α+

M∑
m=1

Tm(I(t)) + ϵ(t), t = 1, . . . , N, (1)

where I(t) is a vector of inputs used at time t; ϵ(t) is an error term at time t; Tm’s are
regression trees; M is the number of iterations (trees) in the training algorithm; N is the
number of timepoints; and α is a constant intercept term. I(t) depends on which input
set from table 4 is used. For instance, if input set I2 is used, I(t) =

(
Bx(t), . . . , Bx(t−

115), By(t), . . . , By(t−115), Bz(t), . . . , Bz(t−115)
)
, where, for example, Bz(t−60) de-

notes the value of Bz 60 minutes prior. The regression trees can be written mathemat-
ically as

T (x) = wq(x), (2)

where w are the leaf weights of the tree; and q represents the tree structure by mapping250

an input to its corresponding leaf node index. Figure 1 shows the tree structure of one251

of the trees in a GBM that we trained.252

SYM-H(t)<-68.5

SYM-H(t)<-169.9

True

SYM-H(t)<-21.1

False

SYM-H(t)<-263.8 SYM-H(t)<-112.1 SYM-H(t)<-41.1 SYM-H(t)<-4.1

-312.1 -194.9 -135.89 -86.0 -52.1 -29.7 -13.3 3.7

Figure 1. Structure of the first tree T1 learned in a GBM trained with input set I3 to predict

the SYM-H index one hour ahead. The leaf nodes of the tree are shaded gray. The value in each

leaf node is its corresponding leaf weight. Left splits correspond to the inequality in the previous

node being true, and vice versa.

To train our GBMs, we use the open-source framework XGBoost that constructs
the regression trees using gradient boosting and penalizes trees that are overly complex
to avoid overfitting (Chen & Guestrin, 2016). More specifically, at each iteration m, we
will construct a new regression tree Tm by minimizing the following objective function.

L(m)(Tm) =

N∑
t=1

{
y(t+∆t)−

[
ŷ(m−1)(t+∆t) + Tm(I(t))

]}2

+

m∑
j=1

Ω(Tj), (3)

where ŷ(m−1)(t+∆t) =

m−1∑
k=1

Tk(I(t)) and Ω(Tj) = γKj +
1

2
λ

Kj∑
k=1

w2
j,k. (4)
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In eq. (4), Kj is the number of leaf nodes in Tj ; wj,k’s are the leaf node weights in Tj ;253

and γ and λ are regularization hyperparameters. Ω is a regularization term that penal-254

izes the complexity of the regression trees by limiting the number of leaf nodes and shrink-255

ing the leaf weights. Increasing γ results in shallower trees while increasing λ leads to256

smaller leaf weights. An alternative method for controlling tree size is to explicitly set257

the maximum tree depth. Besides increasing λ, we can also reduce the influence of in-258

dividual trees by scaling their leaf weights by a learning rate. It is typically impossible259

to enumerate over all tree structures when constructing each regression tree. XGBoost260

takes a greedy approach that starts from a single leaf and iteratively adds branches to261

the tree that results in the largest loss reduction. This step involves finding the optimal262

feature and value to split the tree. Algorithms for splitting the tree are described in more263

detail in section 3 of Chen and Guestrin (2016).264

To reduce the risk of overfitting, we control model complexity by optimizing sev-265

eral hyperparameters: learning rate, maximum tree depth, feature subsampling percent-266

age, minimum child weight, and number of boosting iterations (trees). We optimize these267

hyperparameters, except the number of iterations, using cross validation and a gradient-268

free optimization platform called Nevergrad (Rapin & Teytaud, 2018). To set the num-269

ber of iterations (trees), we monitor performance using cross validation at each iteration270

and terminate the algorithm when the performance stops improving. This technique is271

commonly referred to as early stopping in the machine learning literature (Zhang & Yu,272

2005). Cross validation is performed by first splitting the training storms in table 1 into273

5 sets. After that, we use each set for evaluation while training the model using the other274

4 sets. We repeat this procedure four times until all sets have been used for evaluation.275

Using cross validation, as opposed to a separate validation set, allows us to use more data276

when training the final model. The specific hyperparameter values we set are given in277

table 5.278

Table 5. Hyperparameter values for training GBMs using the different input sets in table 4.

Input set Hyperparameter Value

I1, I2 Learning rate 0.072
Max. tree depth 4
Min. child weight 4
Column subsampling % 0.78
# of trees 84

I3, I4 Learning rate 0.147
Max. tree depth 3
Min. child weight 2
Column subsampling % 0.894
# of trees 291

GBMs have several advantages over competing machine learning methods. GBMs,279

and tree-based methods in general, are invariant to monotonic transformations of the280

features so it is better equipped to handle inputs on different scales. A practical conse-281

quence of this property is that the features don’t have to be standardized before train-282

ing. GBMs are robust against issues arising from correlated features due to the greedy283

nature of gradient boosting and how regression trees are constructed. A downside of tree-284

based models for time series forecasting is that they produce predictions that are not smooth285

due to the tree structure of the model (Hastie et al., 2001). This can be seen in fig. 2,286

where the predictions from our GBM looks noisier than the ones from LSTM. Despite287

this property, GBMs are still able to produce highly accurate predictions. Another dis-288

advantage is that regression trees do not extrapolate well so they may exhibit sporadic289
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behavior when predicting with inputs that have values outside of the bounds of the in-290

puts used for training. Fortunately, as seen in tables A1 and A2, the features in our test291

set are mostly within the bounds of the features in the training set.292

GBMs can also suffer from over-specialization, wherein trees added in later iter-293

ations tend to only impact the predictions of a few instances (Korlakai Vinayak & Gilad-294

Bachrach, 2015). This may make the model highly sensitive to the contributions of the295

initially added trees. This issue is combated, to some extent, by selecting a small learn-296

ing rate. To further alleviate this issue, we use a technique for employing dropouts in297

GBMs introduced by Korlakai Vinayak and Gilad-Bachrach (2015). Dropouts have been298

used successfully in neural networks, where a random subset of connections in the net-299

work is dropped during training (Srivastava et al., 2014). In the context of GBMs, at300

each training iteration, we replace ŷ(m−1) in eq. (3) with the sum of a random subset,301

instead of all, of the previously constructed trees and then normalize the newly constructed302

tree and dropped trees. Further details of this procedure can be found at (Korlakai Vinayak303

& Gilad-Bachrach, 2015).304

3.2 Feature Importance305

Methods for computing feature contribution, or feature importance, can be cate-306

gorized as global versus local and model-specific versus model-agnostic. Global feature307

importance scores are used to explain a model’s overall behavior across the entire train-308

ing dataset, while local feature importance scores tells you how individual features con-309

tributed to a single prediction. Model-specific feature importance is provided directly310

by the model, while model-agnostic methods, such as SHAP, typically construct an ap-311

proximate interpretable model to explain predictions from the original model. For tree-312

based models, global feature importance can be calculated using information gain (Breiman313

et al., 1984), permutation (Breiman, 2001), or split count (Chen & Guestrin, 2016). In314

this paper, we will focus primarily on local feature importance as the contribution from315

each feature is likely to vary over time depending on the storm phase.316

While there are several methods for computing local feature contribution in tree-
based models (Molnar, 2019), we chose to use Shapley additive explanation (SHAP) be-
cause of its desirable theoretical properties (Lundberg & Lee, 2017). SHAP is based on
Shapley values in cooperative game theory (Shapley, 1953), where they are used to fairly
distribute payoffs in a game among a coalition of players with unequal contributions. In
the case of SHAP, the payoff is the prediction and the players are the features. SHAP
belongs to the class of additive feature attribution methods which assumes the follow-
ing linear explanation model for an individual prediction.

g(z) = ϕ0 +

p∑
i=1

ϕizi, (5)

where ϕ0 is a reference value (e.g. mean); p is the number of input features; z =
(
z1 . . . zp

)′
,317

where zi is a binary variable indicating whether feature i is present; and ϕi is the con-318

tribution from feature i. SHAP yields the unique solution to eq. (5) that satisfies three319

desirable theoretical properties: local accuracy, missingness, consistency. The local ac-320

curacy property ensures that the sum of feature contributions for given inputs sum up321

to the prediction. The consistency property ensures that the SHAP value for a feature322

increases if the marginal contribution from that feature increases. Missingness is mainly323

a theoretical property that says a missing feature has zero contribution. The only alter-324

native tree-specific local explanation method that we are aware of is Saabas (2014), which325

doesn’t have the consistency property. SHAP values describe a particular model’s decision-326

making process based on the data. Therefore, they can only be used to gain insight into327

the data-generating process when the model approximates the underlying process well328

enough. Furthermore, the effect that multicollinearity has on SHAP values depends on329

the particular model used (in our case, GBMs).330
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Although SHAP values can, in theory, be computed for any black box model, they331

are more computationally efficient for tree-based models like GBMs due to a model-specific332

algorithm for computing exact SHAP values known as TreeSHAP (Lundberg et al., 2019),333

which reduces the computational complexity from exponential to polynomial. For other334

complex models like neural networks, computing SHAP values would require refitting335

the model with many subsets of features, which is impractical if training is expensive and336

more than a few features are used. Unfortunately, a downside of using TreeSHAP is that337

non-contributing features can potentially have a non-zero contribution if they are cor-338

related with a contributing feature (Molnar, 2019).339

4 Results340

In this section, we will compare the predictive performance of GBMs with neural
networks developed by Siciliano et al. (2021) and Collado-Villaverde et al. (2021), ex-
plain model predictions using the methods discussed in section 3.2, and discuss how pre-
dictions vary when the different set of features listed in table 4 are used as inputs. To
evaluate the predictive accuracy of GBMs for forecasting the SYM-H index, we use the
root mean squared error (RMSE) defined in eq. (6).

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

The RMSE metric provides insight into how well predictions match observations on av-341

erage so a lower value is better.342

To supplement the RMSE metric, we also use the forecast skill score (FSS) based
on mean squared error (Murphy, 1988) using the Burton equation described in T. O’Brien
and McPherron (2000) as a baseline defined as

FSS(y, ŷ, yburton) = 1− MSE(y, ŷ)

MSE(y, yburton)
, (7)

where yburton denotes the predictions from the Burton equation and MSE(y, ŷ) = (1/n)
∑n

i=1(yi−343

ŷi)
2. The Burton equation, which predicts the evolution of pressure-corrected Dst from344

the half-wave rectified solar wind motional electric field, is an appropriate baseline as it345

is derived from physical understanding and is thus also an interpretable method for pre-346

dicting the SYM-H index. The metric in eq. (7) evaluates the performance of model pre-347

dictions relative to the baseline predictions. If FSS is between 0 and 1 (inclusive), that348

means the considered model outperforms the baseline. However, if FSS is negative, that349

means the considered model performs worse than the baseline.350

4.1 Comparison to existing methods351

In this section, we compare the predictions obtained using our model with the neu-352

ral networks developed in Siciliano et al. (2021) (LSTM1/CNN1) and Collado-Villaverde353

et al. (2021) (LSTM2) on the 17 test storms in table 2 using the RMSE metric. Collado-354

Villaverde et al. (2021) considers 1-2 hours ahead prediction, whereas Siciliano et al. (2021)355

only considers 1-hour. On the other hand, Siciliano et al. (2021) trains models with and356

without the SYM-H index as an input, whereas Collado-Villaverde et al. (2021) only trains357

models with SYM-H. We train GBM models to predict 1-2 hours ahead with and with-358

out the SYM-H index as an input and compare them to the corresponding neural net-359

work models. All models were trained using data from the same storms in table 1. The360

RMSE values and forecast skill scores for each test storm and all considered models are361

shown in tables 6 to 9. Similar to Collado-Villaverde et al. (2021), we also compute the362

mean RMSE over all storms.363
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For each prediction scenario, we perform a paired t-test to determine if the mean364

difference in RMSEs across storms is statistically significant at a 5% significance level.365

A paired t-test can be used to compare two population means where you have two sam-366

ples with observations that can be paired with one another. It amounts to performing367

a one-sample t-test on the differences of the paired observations. In our case, we can match368

the RMSEs of different methods for the same storm together.369

4.1.1 1-hour ahead predictions370

Tables 6 and 7 show the RMSE values and forecast skill scores for 1 hr ahead pre-371

dictions with SYM-H included as an input using our GBM, LSTM1, LSTM2, and the372

simple persistence model. In this case, our GBM achieves the lowest mean and median373

RMSE among the considered models. Our GBM model has a 0.448 nT (5.7%) lower RMSE374

than LSTM2, a 1.138 nT (13.3%) lower RMSE than LSTM1, and a 1.942 nT (20.8%)375

lower RMSE than the persistence model. Furthermore, our GBM has the lowest RMSE376

and highest skill score for 14 out of 17 test storms (26-32, 35-38, 41, 42). Figure 2 shows377

the 1 hour ahead predictions from our GBM and LSTM2 during the main and recovery378

phases of the three strongest test storms with SYM-H < −300 nT (31, 33, 37) along with379

the corresponding prediction errors. The distribution of the prediction errors are roughly380

similiar for these three test storms. For the March 2001 storm (second row; fig. 2), our381

GBM was able to accurately predict the minimum SYM-H of around -400 nT that was382

reached around 06:00 to 12:00 UT Mar 31 even though the timing is slightly off. A sim-383

ilar plot and analysis for the persistence model is given in appendix A1.384

Table 6. RMSEs for 1-hour ahead prediction over the test storm set with our GBM model,

LSTM1 (Siciliano et al., 2021) and LSTM2 (Collado-Villaverde et al., 2021) neural networks,

Burton equation (T. O’Brien & McPherron, 2000) and simple persistence. Here, the GBM,

LSTM1, and LSTM2 were trained with past SYM-H and IMF parameters as inputs. The lowest

RMSE for each row is shown in bold.

Storm # GBM LSTM2 LSTM1 Burton Persistence

26 5.863 6.630 6.700 6.839 7.631
27 7.729 8.913 8.900 7.954 9.623
28 4.281 5.858 5.400 5.697 5.814
29 5.833 6.683 7.200 6.511 7.174
30 4.927 5.200 5.600 4.614 4.810
31 8.277 8.584 10.700 8.838 10.429
32 6.841 7.259 8.300 9.487 10.528
33 14.492 13.340 16.300 16.630 21.167
34 10.190 10.034 11.300 10.888 10.913
35 7.154 7.693 8.500 7.918 8.011
36 8.512 9.525 8.700 9.082 9.708
37 14.548 15.184 17.500 15.713 19.698
38 3.886 4.080 4.200 4.572 4.842
39 5.901 6.431 5.600 6.663 7.597
40 4.976 4.673 5.500 5.371 5.057
41 7.558 7.882 9.000 8.358 9.984
42 5.030 5.669 5.900 5.549 6.036

Mean 7.412 7.860 8.550 8.276 9.354
Median 6.841 7.259 8.300 7.918 8.011
Min. 3.886 4.080 4.200 4.572 4.810
Max. 14.548 15.184 17.500 16.630 21.167
Std. error 0.763 0.713 0.901 0.840 1.131
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Table 7. Forecast skill scores (using the Burton equation (T. O’Brien & McPherron, 2000) as

the baseline) for 1-hour ahead prediction over the test storm set with our GBM model, LSTM1

(Siciliano et al., 2021) and LSTM2 (Collado-Villaverde et al., 2021) neural networks. Here, the

GBM, LSTM1, and LSTM2 were trained with past SYM-H and IMF parameters as inputs. The

highest skill score for each row is shown in bold.

Storm # GBM LSTM2 LSTM1

26 0.143 0.031 0.020
27 0.028 -0.120 -0.119
28 0.249 -0.028 0.052
29 0.104 -0.026 -0.106
30 -0.068 -0.127 -0.214
31 0.063 0.029 -0.211
32 0.279 0.235 0.125
33 0.129 0.198 0.020
34 0.064 0.078 -0.038
35 0.096 0.028 -0.074
36 0.063 -0.049 0.042
37 0.074 0.034 -0.114
38 0.150 0.108 0.081
39 0.114 0.035 0.160
40 0.074 0.130 -0.024
41 0.096 0.057 -0.077
42 0.094 -0.022 -0.063

4.1.2 2-hour ahead predictions385

Tables 8 and 9 show the RMSE values and forecast skill scores for 2-hour ahead386

predictions from GBM and LSTM2 with past SYM-H included as an input. Our GBM387

model has a mean RMSE that is 3.585 nT (24.8%) lower than the mean RMSE for the388

simple persistence model. However, the mean RMSE for our GBM model is .328 nT (3.1%)389

greater than the one for LSTM2. Moreover, LSTM2 has a lower RMSE and higher skill390

score for 8 out of the 17 test storms (31-33, 36, 37, 39-41).391

4.1.3 Predictions without past SYM-H392

When we omit the SYM-H index as an input to predict 1-hour ahead, our GBM393

outperforms LSTM1 and has simliar performance as CNN1. Table 10 shows the RMSE394

for 1-hour ahead predictions from GBM, LSTM1, and CNN1 and 2-hour ahead predic-395

tions from GBM. Our GBM model has a 3.5 nT (15.4%) lower mean RMSE than LSTM1396

and a 1.6 nT (7.7%) lower mean RMSE than CNN1. Furthermore, the GBM model has397

the lowest RMSE for 11 out of 17 test storms. However, CNN1 achieves a lower RMSE398

for the 3 strongest test storms (33, 37, 40).399

4.1.4 Statistical significance400

Table 11 shows the p-values for the paired t-tests described in the second paragraph401

of section 4.1. From this table, we can see that the mean differences in RMSE across storms402

between GBM and competing methods for all prediction scenarios are statistically sig-403

nificant at a 5% significance level (p-value ≤ 0.05) except for 2 hr ahead prediction with404

LSTM2.405
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Table 8. RMSEs for 2-hour ahead prediction over the test storm set with our GBM model,

the LSTM2 neural network (Collado-Villaverde et al., 2021), Burton equation (T. O’Brien &

McPherron, 2000) and persistence. Here, the GBM and LSTM2 model were trained with past

SYM-H and IMF parameters as inputs. The lowest RMSE for each row is shown in bold.

Storm # GBM LSTM2 Burton Persistence

26 8.285 8.989 10.690 12.374
27 11.585 13.418 12.465 15.387
28 5.650 5.877 8.858 9.331
29 8.826 9.314 9.776 11.415
30 7.280 7.288 6.266 7.416
31 12.613 12.436 13.604 17.193
32 9.927 8.937 13.766 15.282
33 24.519 18.481 25.729 33.927
34 13.736 13.941 14.695 15.109
35 9.504 9.932 10.586 11.211
36 12.068 12.058 13.117 14.687
37 22.327 21.084 24.446 30.582
38 5.153 5.213 6.546 7.353
39 7.391 6.798 10.159 12.322
40 5.633 5.281 6.032 6.373
41 12.121 11.707 12.622 15.437
42 7.976 8.273 8.877 10.130

Mean 10.858 10.530 12.249 14.443
Median 9.504 9.314 10.690 12.374
Min. 5.153 5.213 6.032 6.373
Max. 24.519 21.0840 25.729 33.927
Std. error 1.310 1.077 1.338 1.808

4.2 Explaining predictions406

In this section, we explain how the input features we use contributed to our model’s407

predictions using the methods discussed in section 3.2. To obtain the contributions from408

each feature in table 3, we sum up the contributions from the history of that feature.409

Figure 3 shows the contributions to the 1-hour prediction from various features as410

a function of the SYM-H. Overall, the past SYM-H value dominates, which means that411

SYM-H varies smoothly at a 1-hour time scale. This also means that beating the per-412

sistence model is not easy. The second most important contribution comes from Bz, which413

is expected based on its importance in driving magnetic reconnection that allows energy414

entry into the magnetosphere. What is less expected is that the velocity Vx and the rec-415

tified electric field Es are much less important for the storm peak values (SYM-H be-416

low −100 nT). In fact, the third most important feature is the dynamic pressure ρV 2
x .417

One would expect the dynamic pressure to be most important during the sudden storm418

commencement that produces a positive jump in SYM-H. Interestingly, the contributions419

of ρV 2
x and Bz are comparable even for predicting positive SYM-H, except for the most420

positive values. Overall, we find that past SYM-H and Bz are the most important fea-421

tures. Density, velocity, the derived dynamic pressure and rectified electric field are com-422

parable. The rest of the features, such as Bx, By and temperature provide quite small423

contributions. Note that the rectified Es is a less important contributor than Bz and the424

dynamic pressure, despite its physical significance of carrying the magnetic flux that in-425

duces dayside reconnection.426
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Table 9. Forecast skill scores (using the Burton equation (T. O’Brien & McPherron, 2000) as

the baseline) for 2-hour ahead prediction over the test storm set with our GBM model and the

LSTM2 neural network (Collado-Villaverde et al., 2021). Here, the GBM and LSTM2 model were

trained with past SYM-H and IMF parameters as inputs. The highest skill score for each row is

shown in bold.

Storm # GBM LSTM2

26 0.225 0.159
27 0.071 -0.076
28 0.362 0.337
29 0.097 0.047
30 -0.162 -0.163
31 0.073 0.086
32 0.279 0.351
33 0.047 0.282
34 0.065 0.051
35 0.102 0.062
36 0.080 0.081
37 0.087 0.138
38 0.213 0.204
39 0.272 0.331
40 0.066 0.125
41 0.040 0.072
42 0.101 0.068

Figure 4 shows the contribution of various features of the model that is not using427

past SYM-H. As expected, Bz becomes the most important feature. Now velocity and428

density are the next most important features, especially for moderate values of SYM-429

H, and the dynamic pressure by itself does not have enough information (unlike in the430

previous case that used past SYM-H). The rectified Es is still a rather small contribu-431

tor compared to Bz. This can be explained by jointly examining the contributions of Bz432

and Vx: Bz becomes more and more dominant for larger negative SYM-H values. On433

the other hand, the contribution of Vx peaks at moderate storm with SYM-H above −100434

nT, and its contribution tapers off for the very strong storms. While the electric field435

Es combines these two terms, one can see that their contributions are most effective in436

different severity of storms or different phases of the storm, suggesting that considering437

them as independent variables rather than as a single parameter provides more insight438

into the underlying physics. The strong contribution of density for small and positive439

SYM-H values speaks to the importance of density pulses that often are found at the lead-440

ing edges of solar wind structures impacting the Earth (Kilpua et al., 2017).441

4.2.1 November 2004 Storm442

We now look into how the prediction is obtained during the strongest test storm.443

Figure 5 shows the absolute and relative contributions of various features to the 1-hour444

and 2-hour ahead predictions of SYM-H during the November 2004 geomagnetic storm.445

The minimum SYM-H is close to −400 nT for this extreme event, so the RMSE of about446

30 nT for 1-hour and 39 nT for 2-hour forecast are quite accurate (top row). The abso-447

lute and relative contributions shown in the subsequent rows vary substantially during448

the storm. From 18:00 to 20:45 UT (following the Storm Sudden Commencement, SSC),449

the observed SYM-H is positive, and this is roughly captured by the model for 1-hour450

prediction, but is completely missed by the 2-hour forecast. This is not very surprising,451
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Table 10. RMSEs for 1- and 2-hour ahead predictions using only the IMF as input (I2) with

our GBM model and the LSTM1 and CNN1 models of Siciliano et al. (2021). For 1-hour ahead

predictions, the lowest RMSE in each row is shown in bold.

1-hour ahead 2-hour ahead

Storm # GBM LSTM1 CNN1 GBM

26 12.6 18.0 19.8 12.9
27 20.1 16.8 23.4 20.9
28 12.7 18.6 14.4 12.4
29 15.4 21.1 20.0 16.7
30 17.0 24.2 25.8 17.1
31 28.5 32.5 32.1 29.6
32 21.8 23.4 18.9 21.9
33 35.7 33.8 26.7 38.1
34 15.3 17.9 16.6 15.5
35 16.9 21.3 18.6 17.3
36 16.2 20.4 21.4 16.8
37 41.6 42.6 36.9 42.7
38 10.5 18.6 13.0 10.6
39 13.0 20.3 16.5 12.8
40 10.9 13.6 9.2 10.6
41 23.2 27.3 25.4 23.7
42 16.9 17.8 16.7 17.1

Mean 19.3 22.8 20.9 19.8
Median 16.9 20.8 19.9 17.1
Min. 10.5 13.6 9.2 10.6
Max. 41.6 42.6 36.9 42.7
Std. error 2.284 1.994 1.853 2.402
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Figure 2. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM (left column) and the LSTM2 developed

by Collado-Villaverde et al. (2021) (right column). The observed SYM-H (black), the predicted

SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows, respectively.

since there is no information in the solar wind that would predict the sudden commence-452

ment prior to the arrival of the shock. The only reason the 1-hour prediction can get the453

SSC about half an hour rather than 1 hour late is the lead time provided by the time454

it takes the high speed solar wind to propagate from L1 to the Earth. The main con-455

tributors to the 1-hour prediction during this period are the density and dynamic pres-456

sure, and to some extent the IMF Bz. Based on our physical understanding, we would457

expect the dynamic pressure to be a more important predictor than the density, but that458

is clearly not the case, perhaps associated with the relatively constant value of the so-459

lar wind speed over that period.460

During the main phase (22:00 Nov 7 to 06:00 Nov 8) of the storm, the SYM-H grad-461

ually drops to its minimum value near −400 nT. Focusing on the two-hour prediction,462

the relative contribution of Bz peaks around 22:00 on November 7, and 01:00 and after463

04:00 UT. The first peak corresponds to the time when Bz decreases rapidly to nearly464

-50 nT value. The following period of very intense southward IMF shows initially low465

contribution from Bz, but then consistently high values with a peak at 04:00 close to the466

SYM-H minimum demarking the end of the storm main phase. The contribution from467

By, while generally low, has a broad peak between 20:00 and 00 UT on November 7. Dur-468

ing that period, By is first positive and then turns strongly negative. As the Bz is neg-469

ative during that time, the strong By component adds to the efficiency of the dayside470
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Table 11. P-values from paired t-tests for null hypothesis that the mean difference in RMSE

across storms for GBM vs. competing methods is zero.

1 hr ahead 2 hr ahead

LSTM2 0.008 0.419
LSTM1 0.000
Persistence 0.000 0.000
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Figure 3. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) for all the

geomagnetic storms. The panels show the contributions of all considered features to the 1-hour

ahead GBM prediction. Each prediction is represented as black dots. Kernel density estimates

using a Gaussian kernel are shown in color with the corresponding color legend on the right of

each scatter plot.

reconnection process, which may account for its independent role as a predictor. Finally,471

during the recovery phase the prior SYM-H dominates (SYM-H evolution dominated by472

internal ring current loss processes), with Bz playing a secondary role.473

Figure 6 shows the contribution of features as a function of time when the prior474

SYM-H is not used. The RMSE values become 33 nT and 37 nT for the 1 and 2-hour pre-475

dictions, respectively. For the 1-hour prediction, RMSE slightly increases by about 3 nT,476

but for the 2-hour prediction, RMSE decreases by roughly 2 nT. This suggests that there477

is no additional information from the 2-hour old SYM-H compared to what the model478

can infer from a longer history of L1 observations, at least for this event. If this held in479

general, it would put a prediction window limit on using past SYM-H for data assim-480

ilation purposes. Another unexpected result is that the 1-hour prediction misses the pos-481

itive SYM-H period despite using the dynamic pressure. This is in contrast with the 1-482

hour prediction that includes past SYM-H, which produced a larger positive SYM-H, al-483

though still lower than observed.484

The relative contributions (bottom row) show a rather complicated and interest-485

ing pattern. In the initial storm period 18:00 to 21:00 UT, when the observed SYM-H486

is positive, the main contributors are density and velocity. Once SYM-H goes negative,487

Bz gradually becomes the main contributing feature with Es and, Bx (for 1-hour pre-488
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Figure 4. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) from solar

wind and IMF parameters for 1-hour ahead prediction from GBM using only solar wind and IMF

parameters as input. Each prediction is represented as black dots. Kernel density estimates using

a Gaussian kernel are shown in color with the corresponding color legend on the right of each

scatter plot.

diction) and By (for 2-hour prediction) being the second and third most important. Once489

SYM-H drops below −100 nT, the contribution from Bz becomes dominant and this re-490

mains true during the whole recovery phase. The other features start to contribute more491

after 12:00 UT Nov 8 when Bz turns positive. Even with positive Bz, however, the main492

contributor remains Bz. This shows that the rectified Es, which simply zeroes out the493

electric field for positive Bz, is throwing away potentially important information.494

4.2.2 January 2004 Storm495

Next, we study the storm of January 2004 that has a minimum SYM-H of about496

-140 nT, so it is an intense storm, but not as extreme as the November 2004 super storm.497

As shown in figure 7, this is a very complicated storm due to the highly variable Bz field498

in the CME sheath (00:00 UT to 11:00 UT Jan 22) preceding the magnetic cloud with499

consistently negative Bz. The model prediction has 14.22 nT and 19.96 nT RMSE for500

the 1- and 2-hour predictions, respectively, which is quite good for such a complicated501

event. In the ICME sheath, the main contributor is the previous SYM-H followed by the502

dynamic pressure.503

The 1-hour ahead model predicts the jump of SYM-H from 0 to about +30 nT at504

2:00UT, which is about half an hour late compared to observations. This cannot be based505

on prior SYM-H that is observed 1 hour earlier, and it is clearly obtained from the dy-506

namic pressure as expected from physical understanding. The 2-hour prediction, how-507

ever, completely misses predicting positive SYM-H values (except for following the in-508

crease of the observed SYM-H with a 2-hour delay), similarly to the extreme event case.509

Between 01:00 and 11:00 UT the main contributors are the prior SYM-H and the510

dynamic pressure, with Bz playing a minor role only. After 11:00 UT, however, Bz turns511

consistently negative and it becomes the main contributor of predicting the main phase512

of the storm 1 hour or 2 hours later for the two models, respectively. The 2-hour pre-513

diction also relies heavily on By between 10 and 12:00 UT. A possible explanation is that514

the strong magnetic field in the magnetic cloud rotates, so a strong signal in Bx or By515

may be a predictor for a strong, possibly negative, Bz value that has strong geomagnetic516

impact.517
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The model correctly predicts the minimum value of SYM-H, but it is late by an518

hour and two hours for the 1- and 2-hour predictions, respectively. This means that the519

prior SYM-H was the primary contributor to the prediction of the minimum SYM-H.520

We note that the last available Bz is negative, but has a small amplitude at this point521

(about −5 nT). Clearly the model is not capable of predicting the behavior of the storm522

very well during this time period for this particular event. The recovery phase is correctly523

captured with the prior SYM-H dominating, as expected. Bz becomes slightly more neg-524

ative from 19:00 to 23:00, and the importance of Bz and Es becomes significant during525

this time correctly predicting the slow down of the recovery, although with considerable526

delay.527

Figure 8 shows the model predictions for the January 2004 storm without relying528

on the prior SYM-H values. The RMSE is around 33 nT for both the 1-hour and 2-hour529

ahead forecast. The positive SYM-H values are missed by the model and in fact there530

is a considerable underprediction of SYM-H until 11:00 UT. The main phase of the storm531

corresponding the rapid decrease of SYM-H is quite well captured. It is slightly too early532

for the 1-hour prediction, and quite spot on for the 2-hour prediction. The minimum SYM-533

H is correctly predicted by both models with an hour delay, and it is actually somewhat534

better predicted by the 2-hour ahead model. The recovery phase is reasonably predicted,535

although the predicted recovery rate is somewhat slower than what is observed.536

The main contributors to the prediction before 11:00 UT are velocity,the rectified537

electric field and density. During the main phase and the recovery, Bz becomes an im-538

portant contributor, but the velocity and Es still play considerable roles. Bx becomes539

the most important contributor during the recovery phase. Figure 4 confirms that Bx540

and By become significant contributors when prior SYM-H is not used.541

One of the surprises mentioned above was that Bz is a better predictor than Es.542

However, these features are highly correlated so it is not clear if the GBM prefers Bz over543

Es by chance only. To investigate this question, we have performed experiments to see544

whether Bz or Ey, or the rectified Es is the best predictor out of the three for future SYM-545

H. To make Ey (or Es) and Bz fully independent of each other, we have removed the546

Vx and ρV 2
x features and used only one the three quantities (Bz, Ey, and rectified Es)547

together with density and temperature while training the GBM. The RMSE values are548

shown in Table 12 including both cases with and without prior SYM-H.549

Table 12. RMSE from models with only one of Bz, Ey, and Es included as input calculated

using all test storms. The RMSE from a model trained with Bz, Es, and ρV 2
x is shown in the last

column as reference. For these experiments, density and temperature were also used as features.

Bz Ey Es Bz, Es, ρV
2
x

Including SYM-H 7.35 8.00 8.26 7.26
Excluding SYM-H 20.84 21.12 21.45 18.39

Based on the RMSE values in the table, we conclude that Bz is the best predic-550

tor followed by Ey and the rectified Es. It is also interesting to see that past SYM-H and551

Bz together are pretty much all that the model needs. The velocity Vx, for example, plays552

no significant role in contributing to the quality of the prediction as it only improves the553

RMSE from 7.35 to 7.26 nT. When past SYM-H is not used, the velocity plays a more554

important role by improving the RMSE from 20.84 to 18.39, but still much less impor-555

tant than Bz, Ey or Es. A possible reason may be that Vx varies only about a factor of556

2 between about −350 km/s and −700 km/s even during storm events.557
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5 Discussion and conclusions558

We apply an explainable machine learning method to quantify the contribution of559

prior SYM-H values, solar wind, IMF, and derived parameters to predictions of the SYM-560

H index 1 to 2 hours ahead. In particular, gradient boosting machines (GBM) are used561

and the explanation is based on the TreeSHAP method. We showed that gradient boost-562

ing machines have similar, if not better, performance compared to the less explainable563

but highly effective LSTM method for forecasting the SYM-H index.564

From the quantified feature contributions, we were able to show that our proposed565

model makes predictions in a physically consistent manner, while also challenging some566

of the commonly assumed relationships among the interplanetary magnetic field, the so-567

lar wind and the formation of Earth’s ring current. In particular, we found that past SYM-568

H and Bz are the most important features overall but feature contributions vary depend-569

ing on the storm phase and the storm itself. During the storm sudden commencement,570

past SYM-H, density, velocity, and to some extent, dynamic pressure and electric field,571

became the main contributors to predictions. As SYM-H decreases during the main phase,572

past SYM-H and Bz played an increasingly larger role.573

SHAP values revealed ways that our models made predictions during the two storms574

we investigated in detail: density and velocity had a larger independent contribution than575

dynamic pressure during the storm sudden commencement; By had a non-negligible con-576

tribution during the storm sudden commencement and main phase; and Bz was a bet-577

ter predictor than the rectified Es. However, strong correlation among solar wind vari-578

ables (Borovsky, 2018) may affect how SHAP values should be interpreted. A physically579

important feature may have a small contribution if a highly correlated feature is present580

and has a large contribution. For example, from figs. 3 and 4, we see that the contribu-581

tion from Vx increases drastically when past SYM-H is omitted as an input, which is likely582

due to the correlation between SYM-H and Vx. Therefore, a low feature contribution should583

not simply be interpreted to mean the corresponding feature is not physically important584

without investigating how different features are correlated. Further efforts will be made585

to investigate the robustness of these findings and to perform a comparison of feature586

contributions for many different storms.587

Along with gray-box approaches, this work takes the first steps in making machine588

learning methods more reliable and trustworthy for operational forecasting of geomag-589

netic activity. However, explanation methods like SHAP should be used with caution,590

especially in high-stakes decision making, as they do not always provide explanations that591

are faithful to the original model (Rudin, 2019). Thus, developing highly accurate but592

intrinsically interpretable models should be prioritized. In addition to interpretability,593

quantified uncertainty is also equally as important. Consequently, we will devote future594

efforts to developing interpretable methods for forecasting other types of geomagnetic595

indices and geomagnetic activity that also estimate predictive uncertainty.596
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Appendix A597

A1 Graphical comparison with persistence model & Burton equation598

Figure A1 shows the 1 hour ahead predictions from our GBM (with past SYM-H599

and IMF parameters as input) and the persistence model during the main and recov-600

ery phases of the three strongest test storms with SYM-H < −300 nT (31, 33, 37) along601

with the corresponding prediction errors. The difference in prediction error between our602

GBM and the persistence model is most notable during the main phases of the three storms603

considered. For example, during the main phase of storm 37, the persistence model has604

prediction errors reaching > 100 nT which means it severely overpredicts SYM-H dur-605

ing the main phase. Meanwhile, our GBM has prediction errors between around -100 to606

40 nT, which means it tended to underpredict rather than overpredict SYM-H. Figure A2607

shows the 1 hour ahead predictions from our GBM and the Burton equation during the608

same time periods. In these plots, the GBM seems to capture the timing of the storms609

slightly better than the Burton equation. However, they have similar predictive perfor-610

mance during these three storms as shown by their RMSEs in table 6.611

A2 Descriptive statistics of solar wind & IMF parameters612

Table A1. Descriptive statistics for the solar wind and IMF parameters in the 25 storms used

for training listed in table 1. The minimum temperature (MK) is most likely a measurement

error.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) -43.700 -3.131 0.340 3.378 34.681
By (nT) -51.968 -2.901 0.221 3.289 46.862
Bz (nT) -77.258 -2.296 -0.092 2.179 38.717
Vx (km/s) -1233.693 -539.489 -445.287 -384.021 -264.722
Density (amu/cm2) 0.041 2.912 5.027 8.477 76.239
Temperature (MK) 0.0032 0.0385 0.0702 0.1262 1.0983

Table A2. Descriptive statistics for the solar wind and IMF parameters in the 25 test storms

listed in table 2. The minimum temperature (MK) is most likely a measurement error.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) -48.717 -2.868 0.221 3.444 33.827
By (nT) -48.963 -2.816 -0.205 2.855 54.563
Bz (nT) -48.585 -2.357 -0.084 1.933 53.002
Vx (km/s) -887.784 -535.138 -424.304 -373.465 -251.481
Density (amu/cm3) 0.295 2.760 4.424 7.643 113.982
Temperature (MK) 0.0052 0.037 0.0658 0.122 0.9909
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Figure 5. 1-hour (left) and 2-hour (right) ahead predictions for the Nov. 2004 storm using

GBM trained on all considered features. The first row shows the observed (black) and predicted

(blue) SYM-H values. Rows 2-9 show the contributions from each feature (left axis, colored) and

its value (right axis, black). The percentage contributions are shown in the last row. The contri-

bution from past SYM-H on predictions is omitted, but its percentage contribution is implicitly

shown as the remaining white area in the last row.
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Figure 6. 1-hour (left) and 2-hour (right) ahead predictions for the Nov. 2004 storm using

GBM trained on only solar wind and IMF parameters (first row), corresponding feature contribu-

tions and values (rows 2-9), and percentage contributions (last row).
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Figure 7. 1-hour (left) and 2-hour (right) ahead predictions for the Jan. 2004 storm using

GBM trained on all considered features (first row), corresponding feature contributions and val-

ues (rows 2-9), and percentage contribution (last row). The contribution from past SYM-H on

predictions is omitted but the percentage contribution is implicitly shown as the remaining white

area in the last row.
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Figure 8. 1-hour (left) and 2-hour (right) ahead predictions for the Jan. 2004 storm using

GBM trained on all considered features (first row), corresponding feature contributions (rows

2-9), and percentage contribution (last row).
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Figure A1. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM with past SYM-H and IMF parameters as

input (left column) and the persistence model (right column). The observed SYM-H (black), the

predicted SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows,

respectively.
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Figure A2. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM with past SYM-H and IMF parameters (left

column) and the Burton equation (right column). The observed SYM-H (black), the predicted

SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows, respectively.
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